Numerisches Praktikum (UKNum)

Preview:

Citation preview

Numerisches Praktikum(UKNum)

Hubert KlahrChristoph MordasiniMax-Planck-Institut für Astronomie

klahr@mpia.de

unterstützt von

http://www.mpia-hd.mpg.de/~mordasini/UKNUM.html

chris
Andreas Schreiber
chris
chris
chris
chris
Lösungen: aschreiber@mpia.de
chris

Numerisches Praktikumgeplanter Ablauf

• Lecture 1: Introduction, number representation in a computer• Lecture 2: Interpolation, Extrapolation, Splines•Lecture 3: Finding roots, iterative Newton-Raphson method• Lecture 4: Solving ordinary differential equations• Lecture 5: Numerical integration• Lecture 6: Sort algorithms• Lecture 7: Systems of linear equations• Lecture 8: Statistical methods, data modeling• Lecture 9: Random numbers, Monte Carlo methods• Lecture 10: Summary and concluding remarks

Numerisches Praktikumgeplanter Tagesablauf

Lösungen und Programme bitte an

senden

chris
aschreiber@mpia.de
chris

You can work on the exercises during the tutorial time in presence of lecturers. In the afternoonyou can continue and complete the assigned exercise work. Please write down the results, documentthe important bits of the code in proper form (tables, lists, etc). Do not print out theentire code. The results can be handed in until the following morning 9:15 a.m. by e-mail to

chris
aschreiber@mpia.de

Criteron for Certificate60 % of maximum number of points, and presentation of results at least once.

Contact:Hubert Klahr: klahr@mpia.de (Tel. 528-255)Christoph Mordasini: mordasini@mpia.de (Tel. 528-449)

UKNum

Geschichte

John von Neumann (1903-1957)‏Geb. Budapest, Dozent Berlin, seit 1930 Univ. PrincetonForderungen an den Aufbau einer elektrischen Rechenanlage (1946)‏

UKNum

Geschichte

Konrad Zuse (1910-1995) Berlin

Z1 in der elterlichen Wohnung 1936

Erfinder des frei programmierbaren Rechners

UKNum

Geschichte

Zuse Z4: 1944 Berlin, 1950 Zürich 1954 Frankreich 1959 Deutsches Museum München

Rechenanlage 0.03 MHzSpeicher 256 byte

0.03 Mflopshttp://www.rtd-net.de/Zuse.html

UKNum

Geschichte

Grundprinzipien des elektronischen. Rechners

Verwirklicht von Zuse, Theorie von Neumann

Freie ProgrammierbarkeitBinäres ZahlenformatSpeicherGleitkommaarithmetik

UKNum

Geschichte

Seymour Cray (1925-1996)‏!``The father of supercomputing´´

CRAY1: Vektorregister (1976) ‏160 Mflop, 80 MHz, 8 MByte RAMCRAY2: (1984)‏1Gflop, 120MHz, 2GByte RAM

UKNum

Geschichte

Wem nutzt es?

Auto, Luft- und RaumfahrtMeteorologie, Klimaforschung, WetterTheoretische ElementarteilchenphysikAstrophysik

Hitachi SR8000 LRZ München6 Tflops, TByte Speicher HLRS Stuttgart

NIC Jülich

UKNum

SuperrechnerJUGENEIBM Blue GeneAm FZ Jülich

Eröffnet mit J. Rüttgers Juni 2008

Computer

UKNum

2007…GeForce 8800 GTX, 128 Stream Proc., 768 MBGeForce 8800 GTS, 128 Stream Proc., 512 MBGeForce 8800 GT, 112 Stream Proc., 512 MB

2008…GeForce 9800 GTX, 128 Stream Proc., 512 MBGeForce 9800 GX2, 256 Stream Proc., 1 GBGeForce 9800 GT, 64 Stream Proc., 512 MB

Grafikkarten (GPU) als Superprozessoren http://www.nvidia.com

Computer

http://numericalmethods.eng.usf.edu 14

Introduction to Scientific Computing

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu15

How do we solve an engineering problem?

Problem Description

Mathematical

Model

Solution of Mathematical Model

Using the

Solution

http://numericalmethods.eng.usf.edu16

Mathematical Procedures" Nonlinear Equations" Differentiation" Simultaneous Linear Equations" Curve Fitting

• Interpolation• Regression

" Integration" Ordinary Differential Equations" Other Advanced Mathematical Procedures:

• Partial Differential Equations• Optimization• Fast Fourier Transform

http://numericalmethods.eng.usf.edu17

Nonlinear EquationsFloating Ball Problem

Root of equation,

http://numericalmethods.eng.usf.edu18

DifferentiationVelocity vs. time rocket problem

What is the acceleration at t=10 seconds?

http://numericalmethods.eng.usf.edu19

Simultaneous Linear EquationsFind the velocity profile from

Time,t Velocity,v

s m/s

5 106.8

8 177.2

12 279.2

Three simultaneous linear equations:

http://numericalmethods.eng.usf.edu20

Interpolation

Time,t Velocity,v

s m/s

5 106.8

8 177.2

12 279.2

What is the velocity of the rocket at t=10 seconds?

http://numericalmethods.eng.usf.edu21

IntegrationFinding the contraction in a metal construction part.

Ex: magnetohydrodynmical equations

Ideal MHD + self-gravity + ideal gas + heating & cooling

Ex: magnetohydrodynmical equations

with random component: Bx = 3µG + δb = 3µG

Ex: magnetohydrodynmical equations

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

25

Garching, Feb 1st, 2011

The nature and role of Turbulence in Planet Formation: Magnetorotational and Baroclinic Instability.Hubert Klahr, Max-Planck-Institut für Astronomie, HeidelbergWlad Lyra (AMNH), Peter Bodenheimer (Santa Cruz), Anders Johansen (Lund), Natalia Raettig, Helen Morrison, Mario Flock, Natalia Dzyurkevich, Karsten Dittrich, Til Birnstiel, Kees Dullemond, Chris Ormel (MPIA), Neal Turner (JPL), Jeffrey S. Oishi (Berkley), Mordecai-Mark Mac Low (AMNH), Andrew Youdin (CITA), Doug Lin (Santa Cruz)

Johansen and Klahr: High resolution simulations of planetesimal formation 7

t=35.0

0 100 200 300 400 5000

100

200

300

400

500t=35.7

0 100 200 300 400 5000

100

200

300

400

500

t=36.1

0 100 200 300 400 5000

100

200

300

400

500t=36.2

0 100 200 300 400 5000

100

200

300

400

500

t=36.3

0 100 200 300 400 5000

100

200

300

400

500t=36.5

0 100 200 300 400 5000

100

200

300

400

500

Fig. 6. The particle column density as a function of time after self-gravity is turned on after t = 35.0Torb. The insert shows an enlargement of theregion around the point of highest column density.

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

“Birth places of Planets:”Gas and dust disks around young stars

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

t = 107

t = 0

... a miracle occurs...

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

28

t = 103-104 yrs t = 105 yrs

t = 105-106 yrst = 105-106 yrs t = 106-107 yrs

a. Turbulent disk b. Hit and stick c. Gravotubulent fragmentation

d. Gravitational focusing e. Gas accretion f. Migration and scattering

The planetary construction plant.

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

29

Synthetic Populations...

...to explore the importance of metallicity, stellar mass, etc...

...and to test the individual modeling steps of planet formation by comp. To observations.

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

10 cm sized boulders:

V ertic a l

h o r i z o n t a lJohansen, Henning & Klahr 2006

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

31

Magneto Rotational Instability (MRI) drives turbulence in accretion disks

Simulation by Mario Flock using the Pluto code.

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

384x192x768

32

Global 360 stratified!At 20 grid cells per H!1.8 Million CPU hours

Pluto Code: HLLDUpwind CT, piecewise linear reconstruction,

Runge Kutta 2nd order

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

33

Disk:

Box:

…because it is a reliable source for turbulence.

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

34

Development of MHD Turbulence

From initial perturbation to saturation of the turbulence

Colors: gas densityyellow = highblue " = low

Standard magneto rotational instability simulation ala Balbus and Hawley

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

35

2,000,000 boulders of 1m

Johansen, Klahr and Henning, 2006

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

gas

dust

MRI plus self-gravity for the dust, including particle feed back on the gas: collaboration with Mac Low & Oichi AMNH

Poisson equation solved via FFT in parallel mode: up to 2563 cells

Pia 256 + 8 Opteron processor clusterNext: Theo 1008 Cores

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

Streaming instability for radial drift:

vertical

r a d i a l

This is what laminar radial drift actually looks like!

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

Johansen, Oichi, MacLow, Klahr, Henning & Youdin, 2007, nature

http://www.mpia.de/homes/johansen/research_en.php

From 2563 to 5123 and 10243 simulations. Question: Does the mass of the Planetesimals converege? Higher resolution allows for higher density concentration

and thus the formation of a wider mass scale.

Changes in Pencil to allow for runs on 4096 cores

At 5123 and the usual set up: As before mass of planetesimals depends on the available mass.

new: Intermediate Formation of Binaries;Also: confirmation of prograde rotation!

Johansen and Klahr: High resolution simulations of planetesimal formation 7

t=35.0

0 100 200 300 400 5000

100

200

300

400

500t=35.7

0 100 200 300 400 5000

100

200

300

400

500

t=36.1

0 100 200 300 400 5000

100

200

300

400

500t=36.2

0 100 200 300 400 5000

100

200

300

400

500

t=36.3

0 100 200 300 400 5000

100

200

300

400

500t=36.5

0 100 200 300 400 5000

100

200

300

400

500

Fig. 6. The particle column density as a function of time after self-gravity is turned on after t = 35.0Torb. The insert shows an enlargement of theregion around the point of highest column density.

41

12/13/2009 Hubert Klahr - Planet Formation - MPIA Heidelberg

42

Vorticityaz

imut

hal

radial

02/05/10 http://numericalmethods.eng.usf.edu 1

Binary Representation

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu2

How a Decimal Number is Represented

http://numericalmethods.eng.usf.edu3

Base 2

http://numericalmethods.eng.usf.edu4

Convert Base 10 Integer to binary representation

Table 1 Converting a base-10 integer to binary representation.

Quotient Remainder

11/2 5

5/2 2

2/2 1

1/2 0

Hence

http://numericalmethods.eng.usf.edu5

Start

I n p u t (N)10

i = 0

Divide N by 2 to get quotient Q & remainder R

ai = R

Is Q = 0?

n = i(N)10 = (an. . .a0)2

STOP

Integer N to be converted to binary

format

i=i+1,N=Q

No

Yes

http://numericalmethods.eng.usf.edu6

Fractional Decimal Number to Binary

Number Number afterdecimal

Number beforedecimal

0.375 0.3750.75 0.751.5 0.51.0 0.0

Table 2. Converting a base-10 fraction to binary representation.

Hence

http://numericalmethods.eng.usf.edu7

Start

Input (F)10

Multiply F by 2 to get number before decimal, S and after decimal, T

ai = R

Is T =0?

n = i(F)10 = (a-1. . .a-n)2

STOP

F r a c t i o n F t o b e converted to binary format

No

Yes

http://numericalmethods.eng.usf.edu8

Decimal Number to Binary

and

we have

Since

http://numericalmethods.eng.usf.edu9

All Fractional Decimal Numbers Cannot be Represented Exactly

NumberNumber

afterdecimal

Number beforeDecimal

0.6 0.61.2 0.20.4 0.40.8 0.81.6 0.6

Table 3. Converting a base-10 fraction to approximate binary representation.

http://numericalmethods.eng.usf.edu10

Another Way to Look at Conversion

Convert to base 2

http://numericalmethods.eng.usf.edu11

02/05/10 http://numericalmethods.eng.usf.edu 1

Floating Point Representation

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu2

Floating Decimal Point – Scientific Form

http://numericalmethods.eng.usf.edu3

Example

The form is

or

Example: For

http://numericalmethods.eng.usf.edu4

Floating Point Format for Binary Numbers

1 is not stored as it is always given to be 1.

http://numericalmethods.eng.usf.edu5

Example9 bit-hypothetical word

#the first bit is used for the sign of the number, #the second bit for the sign of the exponent, #the next four bits for the mantissa, and#the next three bits for the exponent

We have the representation as

0 0 1 0 1 1 1 0 1

Sign of the number

mantissaSign of the exponent

exponent

http://numericalmethods.eng.usf.edu6

Machine Epsilon

Defined as the measure of accuracy and found by difference between 1 and the next number that can be represented

http://numericalmethods.eng.usf.edu7

ExampleTen bit word

#Sign of number#Sign of exponent#Next four bits for exponent#Next four bits for mantissa0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1Nextnumber

http://numericalmethods.eng.usf.edu8

Relative Error and Machine Epsilon

The absolute relative true error in representing a number will be less then the machine epsilon

Example

10 bit word (sign, sign of exponent, 4 for exponent, 4 for mantissa)

0 1 0 1 1 0 1 1 0 0

Sign of the number

mantissaSign of the exponent

exponent

http://numericalmethods.eng.usf.edu9

IEEE-754 Format

32 bits for single precision

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign BiasedExponent

Mantissa

http://numericalmethods.eng.usf.edu10

Exponent for 32 Bit IEEE-7548 bits would represent

Bias is 127; so subtract 127 from representation

Actually

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

is -126

is 127

for number zero

for infinity, NaN, etc.

http://numericalmethods.eng.usf.edu11

IEEE-754 FormatThe largest number by magnitude

The smallest number by magnitude

Machine epsilon

http://numericalmethods.eng.usf.edu 65

Sources of Error

Major: All Engineering MajorsAuthors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu66

Two sources of numerical error

1) Round off error2) Truncation error

http://numericalmethods.eng.usf.edu67

Round off Error" Caused by representing a number

approximately

http://numericalmethods.eng.usf.edu68

Problems created by round off error

" 28 Americans were killed on February 25, 1991 by an Iraqi Scud missile in Dhahran, Saudi Arabia.

" The patriot defense system failed to track and intercept the Scud. Why?

http://numericalmethods.eng.usf.edu69

Problem with Patriot missile" Clock cycle of 1/10 seconds

was represented in 24-bit fixed point register created an error of 9.5 x 10-8 seconds.

" The battery was on for 100 consecutive hours, thus causing an inaccuracy of

http://numericalmethods.eng.usf.edu70

Problem (cont.)" The shift calculated in the ranging

system of the missile was 687 meters." The target was considered to be out of

range at a distance greater than 137 meters.

http://numericalmethods.eng.usf.edu71

Truncation error" Error caused by truncating or

approximating a mathematical procedure.

http://numericalmethods.eng.usf.edu72

Example of Truncation ErrorTaking only a few terms of a Maclaurin series toapproximate

If only 3 terms are used,

http://numericalmethods.eng.usf.edu73

Another Example of Truncation Error

Using a finite to approximate

P

Q

secant line

tangent line

Figure 1. Approximate derivative using finite Δx

http://numericalmethods.eng.usf.edu74

Another Example of Truncation Error

Using finite rectangles to approximate an integral.

http://numericalmethods.eng.usf.edu75

Example 1 —Maclaurin seriesCalculate the value of with an absoluterelative approximate error of less than 1%.

n

1 1 __ ___

2 2.2 1.2 54.545

3 2.92 0.72 24.658

4 3.208 0.288 8.9776

5 3.2944 0.0864 2.6226

6 3.3151 0.020736 0.62550

6 terms are required. How many are required to get at least 1 significant digit correct in your answer?

http://numericalmethods.eng.usf.edu76

Example 2 —Differentiation Find for usingand

The actual value is

Truncation error is then,

Can you find the truncation error with

http://numericalmethods.eng.usf.edu77

Example 3 — Integration Use two rectangles of equal width to approximate the area under the curve for

over the interval

http://numericalmethods.eng.usf.edu78

Integration example (cont.)Choosing a width of 3, we have

Actual value is given by

Truncation error is then

Can you find the truncation error with 4 rectangles?

http://numericalmethods.eng.usf.edu 79

Measuring Errors

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu80

Why measure errors?1) To determine the accuracy of

numerical results.2) To develop stopping criteria for

iterative algorithms.

http://numericalmethods.eng.usf.edu81

True Error" Defined as the difference between the true

value in a calculation and the approximate value found using a numerical method etc.

True Error = True Value – Approximate Value

http://numericalmethods.eng.usf.edu82

Example—True Error The derivative, of a function can be approximated by the equation,

If and a) Find the approximate value ofb) True value of c) True error for part (a)

http://numericalmethods.eng.usf.edu83

Example (cont.)Solution:a) For and

http://numericalmethods.eng.usf.edu84

Example (cont.)Solution:

b) The exact value of can be found by usingour knowledge of differential calculus.

So the true value of is

True error is calculated asTrue Value – Approximate Value

http://numericalmethods.eng.usf.edu85

Relative True Error" Defined as the ratio between the true

error, and the true value.

Relative True Error ( ) = True Error

True Value

http://numericalmethods.eng.usf.edu86

Example—Relative True ErrorFollowing from the previous example for true error, find the relative true error for atwith

From the previous example,

Relative True Error is defined as

as a percentage,

http://numericalmethods.eng.usf.edu87

Approximate Error" What can be done if true values are not

known or are very difficult to obtain?" Approximate error is defined as the

difference between the present approximation and the previous approximation.

Approximate Error ( ) = Present Approximation – Previous Approximation

http://numericalmethods.eng.usf.edu88

Example—Approximate ErrorFor at find the following,

a) usingb) usingc) approximate error for the value of for part b)

Solution:a) For and

http://numericalmethods.eng.usf.edu89

Example (cont.)Solution: (cont.)

b) For and

http://numericalmethods.eng.usf.edu90

Example (cont.)Solution: (cont.)

c) So the approximate error, isPresent Approximation – Previous Approximation

http://numericalmethods.eng.usf.edu91

Relative Approximate Error" Defined as the ratio between the

approximate error and the present approximation.

Relative Approximate Error ( Approximate Error

Present Approximation) =

http://numericalmethods.eng.usf.edu92

Example—Relative Approximate Error

For at , find the relative approximateerror using values from andSolution:From Example 3, the approximate value of using and using

Present Approximation – Previous Approximation

http://numericalmethods.eng.usf.edu93

Example (cont.)Solution: (cont.)

Approximate Error

Present Approximation

as a percentage,

Absolute relative approximate errors may also need to be calculated,

http://numericalmethods.eng.usf.edu94

How is Absolute Relative Error used as a stopping criterion?

If where is a pre-specified tolerance, thenno further iterations are necessary and the process is stopped.

If at least m significant digits are required to be correct in the final answer, then

http://numericalmethods.eng.usf.edu95

Table of ValuesFor at with varying step size,

0.3 10.263 N/A 0

0.15 9.8800 0.038765% 3

0.10 9.7558 0.012731% 3

0.01 9.5378 0.024953% 3

0.001 9.5164 0.002248% 4

02/05/10 http://numericalmethods.eng.usf.edu 1

Propagation of Errors

Major: All Engineering Majors

Authors: Autar Kaw, Matthew Emmons

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu2

Propagation of Errors

In numerical methods, the calculations are not made with exact numbers. How do these inaccuracies propagate through the calculations?

http://numericalmethods.eng.usf.edu3

Example 1:Find the bounds for the propagation in adding two numbers. For example if one is calculating X +Y where X = 1.5 ± 0.05 Y = 3.4 ± 0.04SolutionMaximum possible value of X = 1.55 and Y = 3.44

Maximum possible value of X + Y = 1.55 + 3.44 = 4.99

Minimum possible value of X = 1.45 and Y = 3.36.

Minimum possible value of X + Y = 1.45 + 3.36 = 4.81

Hence 4.81 ≤ X + Y ≤4.99.

http://numericalmethods.eng.usf.edu4

Propagation of Errors In Formulas

If is a function of several variables then the maximum possible value of the error in is

http://numericalmethods.eng.usf.edu5

Example 2:The strain in an axial member of a square cross-section is given by

Given

Find the maximum possible error in the measured strain.

http://numericalmethods.eng.usf.edu6

Example 2:Solution

http://numericalmethods.eng.usf.edu7

Example 2:

Thus

Hence

Example 3:Subtraction of numbers that are nearly equal can create unwanted inaccuracies. Using the formula for error propagation, show that this is true.

SolutionLet

Then

So the relative change is

http://numericalmethods.eng.usf.edu8

Example 3:For example if

= 0.6667 = 66.67%

http://numericalmethods.eng.usf.edu9

http://numericalmethods.eng.usf.edu 105

Taylor Series Revisited

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.eduNumerical Methods for STEM undergraduates

http://numericalmethods.eng.usf.edu106

What is a Taylor series?Some examples of Taylor series which you must have seen

http://numericalmethods.eng.usf.edu107

General Taylor SeriesThe general form of the Taylor series is given by

provided that all derivatives of f(x) are continuous and exist in the interval [x,x+h]

What does this mean in plain English?

As Archimedes would have said, “Give me the value of the function at a single point, and the value of all (first, second, and so on) its derivatives at that single point, and I can give you the value of the function at any other point” (fine print excluded)

http://numericalmethods.eng.usf.edu108

Example—Taylor SeriesFind the value of given that

and all other higher order derivativesof at are zero.

Solution:

http://numericalmethods.eng.usf.edu109

Example (cont.)Solution: (cont.)Since the higher order derivatives are zero,

Note that to find exactly, we only need the valueof the function and all its derivatives at some other point, in this case

http://numericalmethods.eng.usf.edu110

Derivation for Maclaurin Series for ex

Derive the Maclaurin series

The Maclaurin series is simply the Taylor series about the point x=0

http://numericalmethods.eng.usf.edu111

Derivation (cont.)Since and

the Maclaurin series is then

So,

http://numericalmethods.eng.usf.edu112

Error in Taylor Series

where the remainder is given by

where

that is, c is some point in the domain [x,x+h]

The Taylor polynomial of order n of a function f(x) with (n+1) continuous derivatives in the domain [x,x+h] is given by

http://numericalmethods.eng.usf.edu113

Example—error in Taylor seriesThe Taylor series for at point is given by

It can be seen that as the number of terms usedincreases, the error bound decreases and hence abetter estimate of the function can be found.

How many terms would it require to get an approximation of e1 within a magnitude of true error of less than 10-6.

http://numericalmethods.eng.usf.edu114

Example—(cont.)Solution:Using terms of Taylor series gives error bound of

Since

http://numericalmethods.eng.usf.edu115

Example—(cont.)Solution: (cont.)

So if we want to find out how many terms it wouldrequire to get an approximation of within amagnitude of true error of less than ,

So 9 terms or more are needed to get a true errorless than

http://numericalmethods.eng.usf.edu116

http://numericalmethods.eng.usf.edu

" Questions? 117

Recommended