Werkstofftechnik 3 Lecture 7 Sintering and Microstructure€¦ · Werkstofftechnik 3 –L7...

Preview:

Citation preview

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de1

    Werkstofftechnik 3

    Lecture 7

    Sintering and Microstructure

    Prof.Dr.-Ing.

    Kurosch Rezwan

    krezwan@uni-bremen.de

    Keramische Werkstoffe und Bauteile - Advanced Ceramics

    Universität Bremen

    Am Biologischen Garten 2, IW3

    D - 28359 Bremen

    Tel: +49 421 218 4507

    Fax: +49 421 218 7404

    http://www.ceramics.uni-bremen.de/

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de2

    Outline Course „Werkstofftechnik 3”

    1. Introduction: Applications, Goals and Challenges

    2. Atomic Bonding

    3. Crystal – and Glass Structures

    4. Microstructure and Property Relations

    5. Fracture Mechanics of Brittle Materials

    6. Powder Conditioning and Processing

    7. Sintering and Microstructure

    8. Structural Ceramics

    9. Functional Ceramics

    10. Bioceramics

    11. Glass and Glass Ceramics

    12. Ceramic Matrix Composites

    13. Selected Applications of Advanced Ceramics

    14. Summary

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de3

    From Powder to Advanced Ceramics

    Colloid Crystals

    Surface Micro Patterning

    Bulk Materials

    Surface

    Coatings

    Porous Materials

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de4

    The Importance of the Microstructure (“Gefüge”)

    Raw Material Processing

    Microstructure

    Properties

    Different Microstructure

    =

    Different Materials Properties!

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de5

    Flow Chart of Advanced Ceramic Processing

    High Quality

    Powder

    Shaping(Green Body / Grünkörper)

    Sintering(1000 – 1800 °C)

    Finishing(Cutting / Polishing)

    ?

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de6

    Sinter Processes

    Sintering

    Solid Phase

    Sintering

    Festphasensintern

    Liquid Phase

    Sintering

    Flüssigphasensintern

    Pressure

    Sintering

    Drucksintern

    Multi

    Phase

    Single

    Phase

    Liquid

    15 Vol.%

    Hot

    Pressing

    Hot

    Isostatic

    Pressing

    (HIP)

    no chemical

    reaction

    with chemical

    reaction

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de7

    Sintering: Macro- and Microscopic Processes

    On the Macroscale?

    • Densification of the Ceramic Body

    • Increase of mechanical strength

    • Decrease of Porosity

    • Shrinkage of Ceramic Body

    And on the Microscale?

    • Rearrangement of Particles

    • Increase of Coordination

    • Neck Formation

    • Pores get smaller and isolated

    • Increase of grain boundary interface

    • Grain growth and coarsening

    • Decrease of grain boundary/volume ratio

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de8

    I.) Initial Stage

    - rearrangement of particles

    - formation of sintering necks

    - hardly any shrinkage

    II.) Intermediate Stage

    - particles stop moving

    - growth of sintering necks

    - strong decrease of porosity

    - highest shrinkage rate, approx.

    65-95% TD

    III.) Final Stage

    - decrease of porosity (< 5%)

    - grain growth

    - closed porosity disappears

    The three Sintering Stagesre

    l. D

    ensi

    ty(%

    rel

    . T

    D)

    Temperature

    green

    100 %

    I. Initial

    II. Intermediate

    III. Final

    RT / Time

    TD = Theoretical Density

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de9

    Illustration of the Sintering Stages I. – III.

    Neck

    Formation

    I. Initial Stage

    Neck

    Growth

    II. Intermediate Stage

    III. Final Stage

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de10

    Characteristic Sintering Curves

    Isothermal Sintering (T=const.)Sintering with a constant heating rate

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de11

    Microstructure of a-Al2O3 between Sinter Stage I./Stage II.

    1450 °C, 0.5 h, relative Density 67 % TD

    Neck

    Formation

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de12

    Driving Energy for (Solid Phase) Sintering and Grain Growth

    ΔGSPS =(GS

    Surface Energy+GS

    Grain Boundary Energy)–(G0

    Surface Energy+G0

    Grain Boundary Energy)

    G0 >> GS

    high surface area significantly reduced surface area

    high grain boundaries/grain volume ratio after grain coarsening: reduced

    grain boundary to grain volume ratio

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de13

    Transport Mechanisms during Sintering

    Surface Diffusion

    & Evaporation/Condensation

    & Volume. Diffusion from Surface

    no shrinkage

    Grain boundary and volume diffusion

    (Korngrenzen- und Volumendiffusion)

    with shrinkage

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de14

    Diffusion Paths & RatesIncreasing Temperature

    Incre

    asin

    g D

    iffu

    sio

    n R

    ate

    [Gjostein, in Diffusion, ASM, 1973] Tm/T(K)

    Log D

    (m2/s

    ec)

    surface

    grain

    boundary

    volume

    surface

    >>

    >

    grain boundary

    volume

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de15

    Stage II.: Microstructure Development

    End of Stage I. End of Stage II.

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de16

    Intermediate Stage II. (II < 90 - 95 %TD)

    • Particles stop rearranging: High Particle Coordination

    • Material diffuses from grain boundary to neck region

    • Pores form a three-dimensional network

    • strong growth of sintering necks

    • strong decrease of porosity

    • highest shrinkage rate, approx. 65 - 95% TD

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de17

    III. Final Sinter Stage (ρIII ≈ 95 - 99.9 %TD)

    Microstructure of a-Al2O3 after

    the final sintering stage

    (1500°C / 2h in air)

    • decrease of inner porosity (< 5%)

    • closed porosity disappears

    • from now on:

    grain growth and coarsening !re

    l. D

    ensi

    ty(%

    rel

    . T

    D)

    Temperature

    green

    100 %

    I. Initial

    II. Intermediate

    III. Final

    RT / Time

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de18

    SnO2-agglomerate with different sinter temperatures on a gold sputtered substrate

    800 °C 900 °C 1000 °C

    1100 °C 1200 °C 1250 °C

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de19

    Grain Coarsening (Kornvergröberung)1. Big grains grow

    bigger at the

    expense of small

    grains

    2. Straightening the

    grain boundary:

    - Grains with

    concave grain

    boundaries grow

    - Grains with convex

    grain boundaries

    shrink

    - 120° grain

    boundary angles are

    preferable

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de20

    III. Final Stage: Grain Growth and Coarsening

    Schematic microstructure

    with moving directions of

    grain boundaries during

    sintering:

    Small grains disappear -

    big grains grow!

    (Numbers give surrounding

    grains)

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de21

    Grain Size as a Function of Sintering Time

    Grain Size Distribution of

    a MgO microstructure

    after different sintering

    times.

    t4 > t3 > t2 > t1

    Grain Size [µm]

    n

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de22

    Impact of Grain Size on the Dielectric Constant εr

    Temperature dependency of

    the dielectric constant εr as a

    function of the average

    microstructure grain size of

    (Ba0,87Ca0,13)(Ti0,88Zr0,12)O3

    [Waser, R. et al. 1994]

    Temperature [°C]

    ε r

    How to control grain growth

    and coarsening ?

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de23

    The Solution: Sintering Additives

    Sintering Additives are used in order to

    • decrease sintering times

    • control grain growth and

    to prevent grain coarsening

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de24

    Grain Growth Inhibition by Soluble Additives

    Dopings (Dotierungen) with little solubilities

    and with small diffusion coefficients may effect

    the microstructure in the following ways:

    • Dopings precipitate in grain boundary regions

    • Uniformisation of interface energy

    • Introduction of a space charge

    • Introduction of mechanical stresses

    • Slower diffusion than the atoms of

    the host crystal

    • decrease of grain boundary energy

    • increase of surface energy

    -> All these factors hamper the migration of

    grain boundaries and thus grain growth.

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de25

    Grain Growth Inhibition by Insoluble Additives

    Additives with no solubility may effect the

    microstructure in the following ways:

    • Additives move with the grain boundary and

    feature a low resistance

    • Additives move with the grain boundary but

    determine the speed of movements

    • Additives are so immobile that the grain

    boundary needs to overcome them

    -> All these factors hamper with an

    increasing impact the migration of grain

    boundaries and thus grain growth.

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de26

    Sintering AdditivesMaterial Verdichtungshilfen Wachstumshemmer

    Al2O3 LiF, TiO2 Mg, Zn, Ni, W, BN, ZrB2

    MgO LiF, NaF MgFe, Fe, Cr, Mo, Ni,

    BN

    BeO LiO Graphit

    Si3N4 MgO, Y2O3, BeSiN2 -

    SiC B, Al2O3, Al -

    TaC, TiC, WC Fe, Ni, Co, Mn -

    ZrB2, TiB2 Ni, Cr -

    ThO2 F Ca

    ZrO2 H2, Cr, Ti, Ni, Mn

    BaTiO3 Ti, Ta, Al/Si/Ti

    Y2O3 Th

    Pb(ZrTi)O3 Al, Fe, TA, La

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de27

    Sinter Processes

    Sintering

    Solid Phase

    Sintering

    Festphasensintern

    Liquid Phase

    Sintering

    Flüssigphasensintern

    Pressure

    Sintering

    Drucksintern

    Multi

    Phase

    Single

    Phase

    Liquid

    15 Vol.%

    Hot

    Pressing

    Hot

    Isostatic

    Pressing

    (HIP)

    no chemical

    reaction

    with chemical

    reaction

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de28

    Microstructure of Zirconia Toughened Alumina (ZTA)

    ZTA with 4 weight-% ZrO2.

    In the SEM picture the ZrO2grains show up bright due to

    the atomic weight difference.

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de29

    Properties of ZTA (15% ZrO2-85% Al2O3) vs Al2O3

    The addition of zirconia to the

    alumina matrix increases

    fracture toughness easily by two

    times and can be improved by

    as high as four times, while

    strength is more than doubled.

    Key Properties

    • high wear resistance

    • high temperature stability

    • corrosion resistance

    • slow crack growth

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de30

    Sinter Processes

    Sintering

    Solid Phase

    Sintering

    Festphasensintern

    Liquid Phase

    Sintering

    Flüssigphasensintern

    Pressure

    Sintering

    Drucksintern

    Multi

    Phase

    Single

    Phase

    Liquid

    15 Vol.%

    Hot

    Pressing

    Hot

    Isostatic

    Pressing

    (HIP)

    no chemical

    reaction

    with chemical

    reaction

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de31

    Reaction Sintering: Si3N4

    Reaction:

    3 Si + 2 N2 -> Si3N4T ≈ 1400 °C

    Si Powder porous Si3N4 body

    Increase of body density by the reaction with

    Nitrogen.

    Advantage: No shrinkage!

    Disadvantage: Pores, weak mech. properties

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de32

    Sinter ProcessesSintering

    solid phase

    sintering

    Festphasensintern

    liquid phase

    sintering

    Flüssigphasensintern

    pressure

    sintering

    Drucksintern

    Multi

    Phase

    Single

    Phase

    Liquid

    15 Vol.%

    Hot

    Pressing

    Hot

    Isostatic

    Pressing

    (HIP)

    no chemical

    reaction

    with chemical

    reaction

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de33

    Liquid Phase Sintering Stages%

    rel. T

    D

    Sintering Time [min]

    I. Particle

    Rearrangement

    II. Solution/

    Precipitation

    III. Framework

    Sintering

    Skelettsintern

    Principle:

    One component becomes

    liquid during the sintering

    process and enhances

    the particle

    rearrangement. Wetting

    and capillary forces are

    additional driving forces

    to the sinter process.

    I. II. III.

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de34

    Additional Force between two Particles bridged by a Liquid

    F : Force between two particles N

    : Wetting angle °

    pK : Capillary pressure Pa

    r1 : Radius of contact circle m

    γlV : specific interface energy liquid gas [J/m2]

    uckKapillardrBenetzung

    KlV prrF2

    11 cos2

    Shrinkage Swelling

    Wetting Capillary Pressure

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de35

    Particle Wetting

    uckKapillardrBenetzung

    KlV prrF2

    11 cos2

    Shrinkage Swelling

    Wetting Capillary Pressure

    Advantage

    - Increased body density

    Disadvantage

    - More Complex Composition

    needed

    - Good Wetting is required!

    Good Wetting

    Poor Wetting

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de36

    Examples for Solid and Liquid Phase Sintering

    Solid Phase Sintering

    • Al2O3• MgO

    • ZrO2• Perowskites (ABO3)

    • Mullit

    • Spinells

    Liquid Phase Sintering

    • Si3N4 (MgO or (Y2O3 + Al2O3 + SiO2) as melt) < 15 Vol.%

    • ZnO (Bi2O3 + MeO-Additives as melt < 15 Vol.%)

    • WC/Co (Co as melt > 15 Vol.%)

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de37

    Sinter Processes

    Sintering

    Solid Phase

    Sintering

    Festphasensintern

    Liquid Phase

    Sintering

    Flüssigphasensintern

    Pressure

    Sintering

    Drucksintern

    Multi

    Phase

    Single

    Phase

    Liquid

    15 Vol.%

    Hot

    Pressing

    Hot

    Isostatic

    Pressing

    (HIP)

    no chemical

    reaction

    with chemical

    reaction

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de38

    Hot Pressing

    Advantage

    - Simpler than HIP

    Disadvantage

    - Uniaxial pressure

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de39

    Hot Isostatic Pressing (HIP)

    Advantage

    - isostatic pressure (around 2000 bar)

    ensures an even compaction/sintering

    - high sinter density achievable

    Disadvantage

    - encapsulation necessary if ceramic

    porosity is not closed

    - high costs

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de40

    Mechanical Properties of differently processed Si3N4

    Gas Pressure Sintered

    Silicon Nitride (GPSSN)

    Hot Isostatic

    Pressed Silicon

    Nitride (HIPSN)

    Reaction Bonded

    Silicon Nitride

    (RBSN)

    Density min. [g/cm3] 3.2-3.3 3.2-3.3 1.9-2.5

    4-point-bending-strength

    [MPa]

    700 – 1000 800 – 1100 200 - 330

    Elastic Modulus [GPa] 290 – 330 290 – 330 80 – 180

    Hardness Vickers [GPa] 14 – 16 15 – 17 8 - 10

    Stress Intensity Factor

    [MPam-0.5]

    5 – 8.5 8.5 1.8 – 4.0

    Weibull Modulus [-] 10 – 15 12 – 20 14 - 16

    [http://www.keramverband.de/]

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de41

    Summary: Driving Energies for Sintering

    ΔGSintering = (GS

    Surface Energy+GS

    Grain Boundary Energy)

    –(G0Surface Energy+G0

    Grain Boundary Energy)

  • Werkstofftechnik 3 – L7

    www.ceramics.uni-bremen.deUniversität Bremen

    krezwan@uni-bremen.de42

    Outline Course „Werkstofftechnik 3”

    1. Introduction: Applications, Goals and Challenges

    2. Atomic Bonding

    3. Crystal – and Glass Structures

    4. Microstructure and Property Relations

    5. Fracture Mechanics of Brittle Materials

    6. Powder Conditioning and Processing

    7. Sintering and Microstructure

    8. Structural Ceramics

    9. Functional Ceramics

    10. Bioceramics

    11. Glass and Glass Ceramics

    12. Ceramic Matrix Composites

    13. Selected Applications of Advanced Ceramics

    14. Summary

Recommended