24
13.8.12 itglied der Helmholtz- emeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

Embed Size (px)

Citation preview

Page 1: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12

Mitg

lied

der H

elm

holtz-G

em

ein

schaft

Data Acquisitionat a particle physics experiments

Sergey Mikirtytchiants, IKP FZJ

GGSWBS'12, Batumi Aug. 13-17

Page 2: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 2

Outline.

How to study interaction of an elementary particles?

Particle identification and detectors.

Digitizing of detector signals.

Data acquisition system.

Trigger.

Example: Strange particle production in p-p collision.

Summary.

Page 3: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 3

How to study interaction of an elementary particles?

p 1 ,m1

incident

targetpT ,mT

interaction ejectilesp 1 ,m1

p 2 , m 2

p21 ,m2

1

p n , m n

p22 ,m2

2?

Kinematics(conservation law)

Reconstruct ejectiles,unobservable directly(missing mass)

Example:

Strange particle production in proton-proton collisionpp → K + p Λ , Λ→π + p , BR=0.639

pp → K + p Σ 0 , Σ 0→γ Λ , BR=1.00

pp →K + n Σ + , Σ + → p π 0 , BR=0.516→π + n , BR=0.483

total

~ b

Page 4: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 4

What is needed to carry out such study?

Accelerator

Target

Setup to detect and identify ejectiles

Incident particle beam

Particle: p; Energy: 2 GeV; Intencity: nb = 1012 1/s

Particle: p; Dencity (thikness): nt = 1014 1/cm2

Luminosity: L = nt n

b f

b= 1014 x 1012 x 106 = 1032 cm-2 s-1

Event rate: R = total

L = 10-29 cm-2 x 1032 cm-2 s-1 = 103s-1

Page 5: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 5

Particle identification.

Energy losses in matter

Cherenkov radiation

Bending of trajectory in magnetic field B

Time of flight

Means the type of the particle (mass) and its momentum (P)Charged particles

(π + , π − , K + , K− , ... , p , n , ...)

E/x [ MeV/cm ]

(velocity)

R=P/eBR=P/eB → P=f(x,y)

tof = (t1-t

0)/L [ ns/m ]

Page 6: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 6

Detectors.

Temporal resolution TOF Spatial resolution Tracking Energy resolution E, E Dead time

MW ChambersProp.

DriftScintillators Organic Inorganic Silicon

StripPixel

2 ns 2 ns 0.1 ns 10 ns 1 ns ------

0.1mm 0.1mm DG DG 10 m 1 m

------ ------ 1 MeV 0.1MeV 0.1MeV 0.1MeV

0.2 s 0.1 s 10 ns 1 s 10 s 100 s

DG - Detector Geometry

Page 7: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 7

Digitizing (1).

TDC — Time Digital Converters

ADC — Analog Digital Converters

Resolution - [ns/bin]Range (full scale) – n-bits Nonlinearity - = f(bin)Conversion time ~ s

Resolution - [AV / bin]Range (full scale) – n-bitsNonlinearity - = f(bin) Conversion time ~ s

Amplitude A N i=k A⋅Ai

Flash ADC aj

N ij=k A⋅ai

j

0 m T

clk

0 < j < m

Charge Q N i=kQ⋅∫0

t

I (t)dt

t

t0

start t

0

stop t

1 t

stop_m t

n t

j

N i = k T ⋅(t 1−t0)N ij=k T ⋅(t j−t 0)Multihit TDC: m times

m times

Page 8: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 8

Digitizing (2).

Registers

Scalers

Coordinate detector (MWPC)

Each input signal increments the counter content by ONE Data = Data + 1

Double pulse resolution ~ 5...10 ns Max. speed ~ 20...200 MHz Capacity – 24...32 bits

0/1

0/10/10/1

1 0 1 1

Latch

Data MSB n MSB n 0 LSB 2 1

Page 9: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 9

Data acquisition.

Common hardware structure

DATA stucture

Detectors Front endelectronics

Digitizers Digitizers Interface Computer

CAMACVME

LVDS BusPCI Bus

…..

ADCTDCREGSCL ….

PreAmpAmplifier

Discriminator ….

D1...Dn

HV, LVGas,

Cooling ….

TriggerLevel 1

…..

DATAstorage.

Header (Run number, comment) {Event number; Time stamp; Source ID (ADC_1); {Data_ADC_1}; Source ID (TDC_1); {Data_TDC_1}; …........ End of event}; // event size {Next Event};

Amount of DATA = <event size> x Accepted Trigger rate upto 100 MB/s !!!

→ Zero data suppression → Selective Trigger

Page 10: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 10

Data acquisition.

Common hardware structure

Dead time: After each accepted event DAQ is insensitive during a period (DT)

Detectors Front endelectronics

Digitizers Digitizers Interface Computer

….. …. t

0 , gate

….

Trigger

…..

DATAstorage.

D1...Dn

DT ninp

nacc

ninp

Full Dead time: Full Live time:

nacc⋅1−nacc⋅

For a unit of time:

Efficienty of Data taking:

naccninp

= 11+ninp⋅

= ninp⋅(1− ninp⋅ )

nacc

Average DT: <> = 100

s<n

inp>

103 1/s 0.91

104 1/s 0.50

105 1/s 0.09

106 1/s 0.01

Efficiency increasing by

→ Clusters ( less DT ) → Selective Trigger (less n

inp )

DT

DT BUSY

nacc

Page 11: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 11

Data acquisition.

Cluster structure

Advantages: a) Flexibility; b) High performance …

Detectors Front endelectronics

Digitizers Interface Computer

….. …. …..

DATAstorage.

D1

nacc

cluster_1

Triggern

inp

DT DAQBUSY

nacc

…. t

0 , gate

…. Dn cluster_n

clustersynchro

clusterevent builder

Page 12: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 12

Trigger.

Level 1: very fast, but pure rejection

Level 2: stronger rejection, but slower ; needs data buffering

Higher trigger levels: more selective and slower

Aim: digitize and store data only in case of the certain conditions.

Goal: reduce data losses and amount of stored data by ignoring of undesirable background events.

Hardware logic based on Timing (restricted time window for TOF)E,E (cut π by setting of high threshold Spatial selection by coincidence of certain SC's

Dedicated digital signal processing based on special algoriythm (rough track reconstruction)

Software based, can be applied ofline.

Page 13: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 13

Example.Strange particle production in p-p collision near to threshold T

p 1.8 – 2.2 GeV

pp → K + p Λ , Λ→π + p , BR=0.639

pp → K + p Σ 0 , Σ 0→γ Λ , BR=1.00

pp →K + n Σ + , Σ + → p π 0 , BR=0.516→π + n , BR=0.483

total

Searching for pair: (K+p), (K+π+)

Триггер: K+

Aim of experiment:

Page 14: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 14

COoler SYnchrotron COSY.

p, d (un)polarized momentum 0.3...3.7 GeV/c intencity upto 1010 1/s

Cooling electron: ~0.3 GeV/c stochastic: >1.5 GeV/c

Page 15: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 15

Spectrometer ANKE.

STT

Target

1 m

ND (SC, MWPC)

H2,D

2

cluster jet

FD (SC, MWPC, MWDC)

PD (SC, MWPC) K+,π

p, d

Page 16: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 16

Frontend electronics of Scintillator Detectors.

Y= 0

Front endelectronics

Sc

PMT_up

PMT_dn

HV_up

PS

HV_dn

FanOut

CFD

Meantimer

FanOut

CFD

PdSo14_Tup → TDC, Scaler

PdSo14_MT → TDC, Scaler , Trigger

PdSo14_Tdn → TDC, Scaler

PdSo14_Tdn → QDC

PdSo14_Tup → QDC

Y= L

L=1m =7 ns/mt = 2L = 14 ns

Page 17: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 17

Raw spectra.

Source: TDC'sTOF spectra between So13 and Sa1...23

Source: QDC'sEnergy loss spectra So13 and Sa1...23

criterion efficiency of registration K+ BGValid Sa 1.0 0.25

Page 18: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 18

Time of flight (TOF).

TOF spectrum of So13 (& Sa1...23)

criterion efficiency of registration K+ BGTOF onl 1.0 0.11TOF ofl 0.99 0.29

online

offline

Energy loss spectrum of So13

Page 19: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 19

'Delayed Veto'.

criterion efficiency of registration K+ BGDel_Ve onl ~0.2 ~ 5x10 -3

Del_Ve ofl 0.2 < 10 -3

offline online

Delayed Veto spectrum of Tel13

&

t-So

&del_1

&del_2

&del_n

Valid Sa

TOF triggerunit

So

t-Ve

del_Ve Trigger

Ve

K+→+ν ; (BR=0.63)

K+=12.4 ns

Page 20: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 20

Vertical angle.

criterion efficiency of registration K+ BGVertical angle 0.99 0.11

Vertical angles after K+-cuts in SC of Tel.13

Page 21: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 21

Summary of Criteria

criterion efficiency of registration K+ BGValid Sa 1.0 0.25TOF 1.0 0.11Del_Ve ~0.2 ~ 5x10 -3

TOF 0.99 0.29Del_Ve 0.2 < 10 -3

Vertical angle 0.99 0.11

All 0.2 < 3.5x10 -6

Trigger ratesuppresion

10 — 30 times

50 — 200 times

Right Criteria allows to study rare processes !

Page 22: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 22

Result: total cross section

Σ nKpp

PLB 652, 245-249 (2007)

)( Σ

Tp =2.16 GeV

Page 23: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 23

Summary.

Data Acquisition : Small dead time Cluster stucture Flexibility

Trigger: Compromise of a criteria Cut Background Do not cut effect

Online Data Handling: To control trigger criteria setting and thus be sure in quality of taken data

For effictiveness data taking it is needed:

Page 24: 13.8.12 Mitglied der Helmholtz-Gemeinschaft Data Acquisition at a particle physics experiments Sergey Mikirtytchiants, IKP FZJ GGSWBS'12, Batumi Aug. 13-17

13.8.12 Slide 24

Questions.

Detectors: 1. Which types of detectors can be used for tracking? 2. Which detectors have fast time response?

Digitizers: 1. Types and main characteristics of a digitizers?

Data Acquisition : 1. What is important for effictiveness data taking? 2. Ways how to increase the efficiency of data taking?

Trigger: 1. What is aim of trigger? 2. Which criteria could be used on the first level of trigger?