51
Anhang I (a) Die Transfonnierten des Speisepunktes 1 Z=R 2 z = L8 3 Z=_!_ Ca 4 Z=R+LB -- 5 Z= RCa +I Ca 6 Z= LCa 1 +I Ca 7 R z = RCa +I 8 Z= RL8 LB+ R 9 L8 z =LOB'+ I IO z = (R1 + R 1 )LB + R 1R 1 L8 + R, 11 z = (Rl + R1) + R 1R 1Ca R 1Ca +I I --- L --tt- I L --o- -[J- L -CJ-- c CJ- --'tN•' R, L CJ-- R, c

Anhang I (a) Die Transfonnierten des Speisepunktes978-3-663-01882-7/1.pdf · (a) Die Transfonnierten des Speisepunktes 1 Z=R 2 z = L8 3 Z=_!_ Ca ... y2)&+ I I ~ + 28 1 + 28 I

Embed Size (px)

Citation preview

Anhang I

(a) Die Transfonnierten des Speisepunktes

1 Z=R

2 z = L8

3 Z=_!_ Ca

4 Z=R+LB

--

5 Z= RCa +I

Ca

6 Z= LCa1 +I

Ca

7 R

z = RCa +I

8 Z= RL8 LB+ R

9 L8

z =LOB'+ I

IO z = (R1 + R 1 )LB + R 1R 1

L8 + R,

11 z = (Rl + R1 ) + R 1R 1Ca R 1Ca +I

~JIJ I

---L

--tt-

~ I L

~

~

--o--[J-

L

-CJ--c

CJ---'tN•' R,

L

CJ--~/IN

R, c

270 Anhang I

I2 z = RLCa1 + La + R LOa1 +I -rl::J-

c

13 Z= RLa1 +La+ R -t~ a(La + R) R

14 z = R(01 + 0 1)8 + 1 a(R010aB + 0 1) ~H:J-c,

c,

15 z = L(01 + 0 1)a1 + 1 a(L010.S1 + 0 1) -i~ c,

c,

16 z = LROa1 + La + R ROa + 1 ~

c

17 z = a(L1LaB + R[L1 + L 1]) ~ L.a + R L,

18 z = 8[L1L10a1 + (L1 + L 1)]

L 10a' +I ~ L>

19 Z= La+R LCa1 + ROa +I --c::J-

c

20 Z = a(RLOa + L) LCa1 + ROa + 1 --c::::J-

L

2I z = R1R10 10.a• + (R10 1 + R 10 1 + R 10 1)a + 1 a(R10 10.a + 0 1) ;-cJ---~

c,

22 z = R1Ra010sB1 + (R10 1 + R 10 1)a + I 8((R1 + R 1)010.a + (01 + 0 1)] -c ::r

c, R,

(b)

über

trag

ungs

funk

tion

en

Net

zwet

k

YN

t

lc

R

1 I

2 ::

:I

3 3

' :::

E

5 ~

Ic

6 3

--

Zr(

e) =

E

,(e)

; T

=

R

C;

T1

= R

P1

; et

c.

Ex.

(•)

1 z,

.(e)

=

RC

B +

1

La

Zr(

•) =

La

+ R

R

Zr(

B)

=

La.

+ R

RC

a z,

(e)

=

RC

B +

1

1 Z

r(e)

=

LC

e 1 +

1

w.•

Zr(

•) =

L

Ce1

+

1 --------~~------~~----

I N

-l

......

Net

zwer

k

7 t~cT

8 ~

Tc

I'

9 ~

t I'

t

10 ~

t t

t t

11

~'L\ifTiiTitT'fi'•' I

t t

t t

t

12

~fc ~

R

E (

s)

O.

Zp(s

) =

-

0-; T

= R

O;

T1

= R

1 1

• et

c.

Em

(s)

L1 C

Jis'

+ L

os•

Z:r

(s)

= L

1 0"s

' +

3L

0s1

+

1

1 Zp

(s)

= R

•o•a

• +

3RO

s +

1

1 Z

r(B

) =

T•r

+ 5

T1 s

1 +

6T

s +

1

1 Z

r(s)

=

T's

' +

7T•s

• +

15

T1 s

1 +

lOT

s +

1

1 Z

:r(s

) =

T&s&

+ 9

T's

' +

28

T8 s

1 +

35

T1 s

1 +

15T

s +

1

Ta

Zp(s

) =

T1 s

1 +

3T

s +

1

N

....:1

N f

13

-"«~

'R

14

-ritfc

f2R

--

Ein

Abs

chni

tt is

olie

rt (

eine

r von

bei

den)

15

'(:fr'(~·1,;···--.rrr

t t

t K

atho

denv

erst

ärke

r zw

isch

en A

und

B

-- 16

"t;•'!c

~R2

17

~±c

IR

18

~fc !R

Ts

Z2'

(a)

= T

2 a• +

37's

+ 1

(die

selb

e Ü

bert

ragu

ngsf

unkt

ion

wie

in

Nr.

12)

4RC

a Z

2'(a

) =

4R

1 C1 s

1 +

8RC

s +

1

1 Z

2'(s

) =

(Ta

+ 1

)(T

1 sl +

3T

s +

1)

R•

Z2'

(s)

= R

R

' R

R

1

1Cs+

1

+

Z2'

(a)

= lc

( s1

1 )

81+

RC

+ L

C

Z2'(B

) =

1 L

•c•a

• 2L

B

L"C

"a' +

--

+ 3L

Ca1

+ -

+ 1

R

R

f N

-.J w

19

20

21

22

23

24,

Net

zwer

k

.....

''/(

'ii:r·

;r Tc

' Tc

a

Tir

r

___L

_.i

-f~

t I

R,

lla

~~CIT

R

R

R

I

~r.l

fcT-

cT

:TI

Ee(

•)

Zr(

B)

= E

m(B

);

T =

RO

; T

1 =

R10

1;

etc

.

1 Z

r(•)

= T

1Tr

8• +

(T1 +

T1 +

R10

1)B

+ 1

1 Z

r(B

) =

2TB

+ 3

TlT

rB'

Zr(

B)

= T

1Tr

B' +

(T1 +

T1 +

R10

1)B

+ 1

T'B

' Z

r(•)

= T

IB• +

6T

··· +

5TB

+ 1

T's4

Z

r(•)

= T

'•' +

IOT

'•1 +

15

T1 B

1 +

7TB

+ 1

z 1

8)-

TB

f'\

-T

1 B1 +

3TB

+ 1

(d

iese

lbe

For

m w

ie i

n N

r. 12

und

Nr.

13)

IV

-...)

.j:

>. ~ ~

25

-1:~ f·

-

t 26

Ic

-

-cJ

27

lc

c I

28

-or

29

-L?T

Ta

Zf'(

B)

=

3TB

+ 1

TB

+ 1

Z

f'(s)

=

2T

s+

1

TB

+ 1

Z

f'(B

) =

2T

B +

1

(die

selb

e F

orm

wie

in

Nr.

26)

(TB

+ 1

)1

Zf'(B

) =

T1 s

1 +

3T

s +

1

z~) =

TB

+ 1

8

TB

+ 2

~ Jl N

-.J

VI

Net

zwer

k

--

30

=2

I 31

er

--

~'

32

I --

33

~'

----

---

E (

s)

R C

·

t Z

(s)=

-0--· T

=R

T1

= 1

10ec.

T E

IN(s

)'

'

k(T

s +

I)

ZT(s

) =

k'l'

s +

(1

+ k)

Ts

+ 1

ZT(s

) =

Ts +

2 (d

iese

lbe

For

m w

ie N

r. 2

9)

Ts

+I

Zr(

s) =

1•s

+

3

(Ts

+ 1)

2

Zr(

s) =

T

•s•

+ 5

Ts+

2

----

--~-------

N

-.1

0\ ~ § ~

(0

I 0 rr

0 0 ;<"

34

35

37

--

38

39

TI=

R

v-

y ~

c_, _

_

c,_R

,

~t ~~

3Ta

+ 1

Z;r(

s) =

T•a

• +

5T

a +

2

6T•a

s +

5T

s +

1

Z;r(

s) =

T•a

• +

6T

1 s1 +

5T

s +

1

·-··

T3 s

• +

5TB

s1 +

6T

s Z;

r(s)

= T

•s• +

5T

•s• +

6T

s +

1

---·-

R1(T

1s +

1)

Z,.(

s) =

(RtT~

+ R

aTt)

s +

(Rt +

R,)

k(T

s +

3)

Zr(

B)

= 2

kTs +

3(1

+ k)

~ ~ N

-..J

-.

.J

Net

zwer

k

40

~t f

R

41

~'fc,

!R•

42

~wf7

'fx

!R

43

~v:F~'·f·'~]c

!R,

--

44

-G3

:J-

~ ~R,

~

Zr(

s) =

Eo(

s) ;

T

= R

O;

T1

= R

101

; et

c.

Em

(s)

2Ta

Zr(a

) =

T•a•

+ 4T

a +

1

R10

1a

Zr(

B)

= R

1R

1010

.a• +

(R10

1 +

R10

1 +

RsG

t)B -

Ir 1

1 Z

r(s)

= 2

T•a•

+ 6T

a +

3

1 Z

r(B

) =

RSO

•a•

4R

1 Ga

3R

R

•o•8

• +

--

+ 5

R10

1 a2 +

~ +

6RG

a +

R +

1 R

1 1

1

R1R

101 a

1 +

2R

1Ga +

1 Zr

(a)

= R

1R

1G•a

• +

(2R

1 +

R1)G

a +

1

N

-.)

0

0 ~ ~

(nor

mal

e S

erie

n)

'-.'J

ll

I, 4

5

I

I

46

"1iT

47

11

Tf

48 ~

49 ~

I I

Z,.(

«) =

« +

I

!

I Z

,.(.!)

= «

1 +

( y2

)&+

I

I Z

,.(«)

= ~ +

28

1 +

28 +

I

I Z

,.(«)

= «

' +

2.6I3I~

+ 3.

4I42

81 +

2.6

I3b

+

I

I Z

,.(«)

= ~ +

3.

23&

' + 5.

23~

+ 5.

23&

1 +

3.23

& +

I

I N

-.l

\0

Net

zwer

k

50

~1-!1

~

51

,.

:117

11

56

52 ~

~

1!151 1

53 ~~

. 141

55

--

I M

~ J H

Ü~ >5iö

~:04i

i~~ 1

1 I

I ..

55

Hl7

~2

92

~1'6

26

IHS6

4

--

Eo(

8 )

RG

T

-R

G ·

tc

z.

,(8)

= -

-; T

=

; 1

-,

,, e

· E

IN(8

)

I Z

r(8 )

= 8

• +

3.86

378•

+ 7.

4641

8' +

9.l

4lf

lal +

7.4

64la

1 +

3.86

378

+ l

l Z

,.(8 )

= 8

1 +

4.49

398'

+ 1

0.09

7886

+

14.

5918

8'

+ l4

.59

I8a'

+ I0

.097

881 +

4.49

398

+ l

l Z

,.(8 )

= 8

• +

5.I2

6a7

+ 1

3.14

88 +

21.8

586 +

25.

69a'

+

21.8

58• +

I3.I

481

+

5.1

2&

+ I

I Z

,.(8 )

= 8

• +

5.75

988 +

16.5

887 +

3l.

I6a8

+

41.9

986

+ 4

1.99

8' +

3l.

l6a3

+

I6.5

881 +

5.75

98 +

I

I Z

,.(8 )

= 8

•• +

6.39

2a' +

20.4

3s• +

42.8

087 +

64.8

88' +

74.

238'

+

64.8

88' +

42.8

081 +

20.4

381 +

6.39

28 +

l

N

00

0 ~ ~

(c)

über

trag

ungs

funk

tion

enak

tive

r N

etzw

erke

-E>-

or

~A•n

Ver

stär

ker

sind

dur

ch d

ie S

ymbo

le g

eken

nzei

chne

t, w

obei

en

die

Ein

gang

sspa

nnun

g am

Ver

stär

ker

bede

utet

--

---1

1

qJ

c 'R

1

Zp(

B)

=

8

RC

•I

--

VJI

I

8EJ c

f R

1

2 Z

p(B

) =

8

RC

•I

T ~ 'R

RC

B

3 Z

p(s)

=

(1

-A)R101

~1 +

3R

Cs +

l

--

---il

ElJ

c

lc R

CB

4

I Z

p(B

) -=

R10

1 s1 +

3RG

's +

1 -

A

~ ~ N

00

D4

J

5 C

C

A

Q=J

--

YIN

lc R

6

I

~

7 Tc

8 ·'·'{{

·' L&

Jc

9 'ii

' 'Ii

' 1

'""L;

J .... ,

2 r

I (R

Ca

+ 1)

2

ZT

(a)

= R

•C•a

• +

(3 -

A)R

Ca

+ l

1 Z

T(a

) =

R•c

•a•

+ (3

-A

)RC

a +

1

1 Z

T(a

l =

(Res

+ 1)

1

1 Z

,(a

) =

1 -

RC

a

2 Z

T!a

) =

R

•c•a

• +

1

N

00

N

f

10

1

IV

e-IN

•o

M

o

11 I

'• :::

::t:[ '•

-1

----

121 ~

~Mo

~Beo I

131

J~J~!·

14

z z

V

~y

c.Q

zy =

Z

(s)Y

(s) 1

ZT

(8)

= (1

_

A)Z

Y +

1

1 Z

T(s

) =

(1

-B

)Z•Y

• +

(3 -

4B

-A

)ZY

+ 1

-2

B

1 Z

T(s

) =

R

•c•s

• +

(5 -

B)R

•c•s

• +

(6 -

2B

-A

)RC

s +

1

1 Z

T(s

) =

~·"·

. ,.

~·"·

•A

~~

.. ~" ••

ZT

(s)

= -·

···

-· -·

·-·-

. -~··

-··-

__

__

.. -·

·

f N

00

w

284 Anhang I

Aktive Butterworth-Filter- Gleichung in 1-b

15 n=2

16 n•3

• •

1·0824 2·6131

17 I

10"92388 o-38268I n•4

• •

18

• 19

I·OFI­~ +I >-'--N~I\...J.~..,.....-4

• o-~93I

Anhang II

Operationen mit Laplace-Transformierten

No.J f(t) F(s)

1 af(t) aF(s)

2 E"'.f(t) F(s- a)

3 -tf(t) dF(B) ----;{8

4 f (~) aF(as)

5 Lt f(t)dt F(s)

8

6 f"(t) B"F(s) - B"-1f(0) - s"-1f'(0) - · · · - j"-1(0)

7 (t - a)U(t - a) e-••F(s)

8 f(t) = f(t - a) 1 J0

11 f( t )e-.e dt 1- "-••

!) limj(t) limsF(s) t--+0 ,_,. 00

10 1imf(t) lim sF(s) t--+00 1-+0

11 [t j 1(t - T)j.(T)dT F 1(s) · F 1(s) -0

12 f'(t) sF(s) -f(O)

-

No.,

F(8

)

1 1

2 8

3 1 - 8

4 1 Bi

5 1 ;,;(

n =

I,

2, 3

·

· ·)

6 I ;.;

(n >

0)

I 7

81

/0

8 1

8"'

"

Anh

angi

ii

Tab

elle

der

Lap

lace

-Tra

nsfo

rmie

rten

f(t)

U (

)

!im

U(t

) -

U(t

-a)

E

inh

·t .

1

1 t

= ,

et S

lffip

u s

a-+

0

a

U (

)

-!i

m U

(t)

-2U

(t -

a) +

U(t

-2a

) E

inh

"t .

1 d

b1 t

t 1

t -

1 ,

et S

IIDpU

S U

e

a-+

0

a

U(t

), E

inhe

itss

prun

gfun

ktio

n

t

en

-1

(n

-I)

!

en

-1

r(n)

1 y(

7rt)

J(~)

---

---

--

~ ~ s

1 91

8

+IX

- 1

10 I

(8

+IX

)"

-- 1

111

(8 +

IX

}(8 +

{J

)

1 12

I

8(8

+ IX

}(8

+ {J

)

1 13

I

(8 +

IX

}(8

+ {1

)(8 +

v)

1 14

I

8(8

+ IX

)(B +

{1

}(8 +

v)

1 15

I

81(8

+

IX)

---

1 16

I

8°(8

+

IX)(8

+

{J)

1 17

I

8'(

8 +

IX

}(8

+ {J

)(B +

v)

1 18

I

8• +

IX

a - 1

19 I

s2

-

cxt

e-a

l

t"-l

e-o

<l

(n

-1

)!

e-a

1 -

e-P

1

~-

1 {Je

-<1.

1 -

IXB

-pt

IX{J

+ '-tX

-:{J"'"

( IX--

-{J"

"')-

e-<~

.1

e-P

I e-

•1

({J -

IX}(

V-

IX)

+ (IX

-{J

}(v

-{J

) +

(IX -

v}({

J -

V)

1 e-

•1

rPt

e-<~

.1

IX{J

V V(

IX -

V}({

J -

V) -

{J(IX

-{J

)(v

-{J

) -

IX({J

-

IX)(

V -

IX)

1 äi (e

-<~.

1 +

IXt

-1)

1 [

1 IX

2{11

(IX

-{J

) (1

X•e

-ß1

-fl2

e-<1

.l) +

IX

{Jt

-IX

-{J J

_IX{l,_

_('---v_

t ----:1

--'l..".

---=-

IX-v_

-___

,_fl_v

+

e-<~.

1 +

rP1

+ e-

•1

(1X{

Jv)2

1X

2 (v

-IX

)({J

-IX

) {J

2 (v

-{J

)(IX

-{J

) -v2

-({J _

__

v_)(_

IX _

__

v)

Bin

IXt

IX

sin

h IX

t IX

~ ~ - - - N

00

-.

J

No.

I F

(8)

20 I

l 8(

8° +

cx2 )

21

I l

s2(8

2 +

cx2 )

22

I l

(8 +

cx){

82 +

ß2 )

--

23

l 8(

8 +

cx){

82 +

ß2 )

-

24

l 8°

(8 +

cx){

82 +

ß")

---

25

I l

(8 +

cx)(s

+ ß

)(s•

+ v1

)

-

26 I

l 8(

8 +

cx)(a

+ ß

)(81

+ v2

)

-27

I

l s2

(8 +

cx){

8 +

ß)(

8° +

v2)

j(t)

l -

cos

cxt

cx•

t si

n c

xt ;o

---o

ca

cx• ~

ß• (

e-cx

• +

lJ si

n ß

t -

cos

ßt)

l l

{sin

ßt

cx c

os ß

t e-

<'~ '

\ cx

ß• -

cx• +

ß•

-ß-

+ -p

+ a

}

t l

r"''

cos

(ßt +

</>)

cxß•

-cx

•ß• +

cx•(c

x2 +

ß')

+ ß•

v(cx

• +

ß•)

' "'=

tan-1

(i)

..,...e-,

--"'1 ;;-

:---

-;;-

c +

e-ß

t +

sin

( vt

-</>

) (ß

-cx

)(cx2

+ v•

) (cx

-ß)

(ß' +

v•)

vv {v

1 (cx

+ ß

)1 +

(cxß

-r)

'}'

<f> =

ta

n-1

{~)

+ ta

n-1

(~)

l e-

cxt

e-ß

t co

s (v

t +

</>)

cxßv

• +

cx(cx

-ß)

(cx•

+ v2

) +

ß(ß

-cx

)(/JI

+ r

) +

rv' {

(cxß

-v•

) +

r(cx

+ ß)

"}

4> =

tan

-1 (~

+ ta

n-1

(~)

l (

l l)

e-

cxt

e-ß

t cx

ßv•

t -

~ -

ß +

cx2 (

ß -

cx)(c

x2 +

r) +

ß"(a

. -

ß)({

l" +

v•)

CO

S (

vt +

</>)

-1 (ß

\ -1

(V)

+ v

"y'{

(a.ß

-v•

)• +

(a. +

ß)•

v•}'

"'=

tan

v} -

tan

~

N

00

0

0 ~ § O

Q - - -

28

l

(a0 +

a.2)(

s2 +

ß2

)

29

l

(8 +

a.)•

+ ß

30

l

s2[(

a +

a.)2

+

ß2 ]

31

l (s

+ v)

[(s +

a.)•

+ ß"

]

32

l

s(s +

v)[(

s +

a.)2

+

ß"]

33

l s2

(a +

v)[(

s +

a.)2

+

ß"]

34

l (s

+ v)

(s +

6)[(

s +

a.)2

+

ß"]

35

l (s

2 +

v2)[

(s +

a.)•

+ ß"

]

l (s

in a

.t si

n ß

t)

ß• -

a.•

-a

.--

-

e-«

' sin

ßt

ß

l (

2a.

) e-

cx•

sin

(ßt

+ </>

) a.•

+ ß

• t

-a.

• +

ß"

+

ß(a.

• +

ß")

• .p

= 2

tan

-1

(~)

e-~•

e-«

' sin

(ßt

-</>

) "'

= ta

n-1

(-ß

) ß•

+ (v

-a.

)• +

ßv {(

v -

a.)•

+ ß

•}'

v-a

.

l c''

e-

«' s

in (

ßt +

</>)

-+

.

v(a.

• +

ß")

v[(a

. -

v)• +

ß"]

ßV

(a."

+ ß

2)[

(a.

-v)

2 +

ß2

]

.p =

tan

-1

(~

+ ta

n-1

(a

. ~

v)

l (

l 2a

. )

e-••

e-

«' s

in (

ßt +

</>)

t------

+

+

. v(

a.• +

ß")

v a.•

+ ß•

v•

[(v

-a.

)• +

ß"]

ß(a.

• +

ß"lv

{(v

-a.

)• +

ß"}

.p =

2 ta

n-1

(~ -

tan

-1

(v ~ a.

)

c••

e-6•

e-

cx•

cos

(ßt +

</>)

(<5 -

v)[(

a. -

v)2 +

ß"] +

(v -

6)[(

a. -

6)2 +

ß"] +

ßV

[(a.

-6)

2 +

ß2][

(a.

-v)

• +

ß•]

'

.p =

tan

-1

(a

. ~

6) -

tan

-1

(a

. p 11

)

ß si

n (v

t +

</>1

) +

ve-c

x• s

in (

ßt +

</>2

) .p

_ _ 1

(

2a.v

)

ßvv {4

a.•v

• +

(a.•

+ ß"

-v2

)2} .

1-t,a

n

v•-a

.•-ß

"'

--1

[

2a.ß

]

• -

tan

(a

.• -

ß" +

v•)

--

6'" §" OQ

.... .... .... N

00

\0

No.j

F(8

)

36

8(81

+

vl)[

(8 +

cx

)1 +

fJ"]

37 I

1 (8

+

v}(8

° +

<51

)[(8

+ cx

)1 +

fJ"]

l 38

I

8(8

+

cx)•

-- 1

39 I

8•(

8 +

cx

)• -

l 40

I

(8 +

cx){8

+

fJ)"

l 41

I

8(8

+

cx)(8

+ fl)

" !

1

I 42

I

81 (

8 +

cx

)(8 +

flj

j(t)

_l _

_ +

B

in (

vt -

cf>tl

_ B

in (

vt +

</> 2)

v•(c

x• +

f11

) {J

V(c

x1 +

{11)[4

cx1v1

+

(cx1

+ {1

1 -

v1)1

] ~v•::

-:v'147 cx

""•:=v1 :==

+'=(:=

cx~•=+

~f11

-v2

)2

<P

t= t

an

-t (~

) +

tan

-t (

cx

'-!cx

~ +

v"),

cf>2

=

tan

-t (-

cx1 _+_ 2!

~=V:)

e-•1

e

-C<

t B

in (

{Jt +

cf>t)

(v'

+ d1

)[(cx

-v)

• +

{12 ]

+

{JV

[(v -

cx)1

+

f11][4

cx1 <

51 +

(cx2

+ {1

2 -

<52

)1]

Bin

(&

+ </>

2)

-d

v' (

v' +

d1)[4

cx2 d

1 +

(cx2

+ fJ"

-<5

1)2

]

cf>t

=

tan

-t (V

ß CX)

-ta

n-t

(cx

" -!cx

~ + d

}

cp 2 =

ta

n-t

m

+ ta

n-t

(cx

l + :~-

d")

1 -

1r·«

• -

cxte

-«1

cx•

t 2

te-«

1 2e

-cc•

---+

-+

-cx

• cx

• cx1

cx8

e-«

' [ (

cx -

{J)t

-l ]

e-fJ

' (cx

-{1

)2 +

(cx -

{1)1

l e-

cc•

r-t

cx -

2{1 J

cxß•

-cx

( cx -

{1)1

-LfJ

( cx -

{1)

+ {1

1(

cx -

{1)2

e-

fJ'

e-cc

t l

( l

2)

[ t

2( cx

-{J

) -

fl]

_ ,

cx1({1

-cx

)• +

cx{12

t

+

{12

( cx -

{1)

+ {18

({1 -

cx)2

e

fJ

N

\0

0 ~ § ()Q

.....

.....

.....

43 I

I

(8 +

ß}(

8 +

v)(8

+ cx

)• --

44 I

I

8(8

+ ß

)(s

+ v

)(s

+ cx

)•

--

45 I

I s•

(s +

ß)(

s +

v)(8

+ cx

)2

--

46

I (8

1 +

cx2)(

s +

ß)2

--

47

I s(

s2 +

cx2)(

s +

ß)•

---

48 I

I

82(s

2 +

cx2)(

s +

ß)2

---

49

I (s

+ v

)(s2

+

cx2)(

s +

ß)'

50 I

I (8

+ v)

2 [(s

+ ß

)' +

<X2

]

[ t

2cx

-v

J e-

P•

e-••

-;--=

-;-----: +

6-a

t +

_

+ -;

-n--

-'-;

-;--

--:-

;;

(<X

-ß)

(cx

-v)

(cx

-ß)

'(cx

-v)

• (v

-ß)

(cx

)2

(ß -

v)(c

x -

v)•

I e-

P•

c••

-ßv

-cx•

+ ß(

ß -

v)(c

x -

ß)1

+

-v(:-v

----;ß;

;-)(,---

cx -

v)•

+ [

t (cx

-

v)(c

x -

ß) +

cx(

2cx

-v

)J

cx(cx

-v)

(ß -

cx)

-cx

2(cx

-v)

2(cx

-ß)

' e-

cx•

[ t

+ 2(

cx -

v)(c

x -

ß) +

cx(2

cx -

v -

ß)J

6_

"'' +

e-

P•

cx•(c

x -

v)(c

x -

ß)

cx3

(cx

-v)

2(cx

-ß)

• ß"

(v -

ß)(c

x -

ß)2

I (

2 I

I)

e-••

+ ß

vcx•

t

-a -

ß -

v +

v"(

ß -

v)(c

x -

v)2

Bin

(cxt

+ </>

) [

t 2ß

J -

p•

cx(cx

2 +

ß")

+

cx2 +

ß• +

(cx2

+

ß2

)2

6 '

.p =

2 ta

n-1

(~)

I B

in (c

xt +

</>)

f _

t 3ß

2 +

cx2 J _

1

cx•ß

• -

cx2

(cx2 +

ß2

) -

Lß(c

x2 +

ß2

) +

fJ2

(cx2 +

ß2

)2

6 p

' .p

=

tan

-1 (~

) -

tan

-1 (~

)

Bin

(cx

t +

</>)

te-P

' 2(

cx2 +

2ß'

)cP

' t

2 cx

3(cx

2 +

ß")

+

ß'(c

x2 +

ß')

+

ß•(c

x2 +

ß2

)2

+ cx

•ß•

-cx

3'

</> =

2

tan

-1 (~

)

Bin

(cxt

-</>

) tc

ß'

[2(v

-ß)

ß -

(cx2 +

ß')]

cx

(cx• +

ß"J

v'(c

x2 +

v2

) +

(v -

ß)(c

x2 +

ß2

) +

(v

-ß)

2(cx

2 +

ß2

)2

e-ß•

e-••

(cx)

(c

x)

+ (c

x• +

v')

(ß -

v)•'

</>

=

2 ta

n-1

ß

+ ta

n-1

v

e-ß•

Bin

(cxt

-</>

) 2(

v -

ß)c

"'

te-•

• cx

[cx2 +

(ß -

v)2

] +

[(ß

-v)

' +

cx•]•

+ cx

• +

(ß -

-v)2

' .p

=

2 ta

n-1

(;--~

p)

~ ~ - - - N

\0

No.,

F(s

)

51

1

8(8 +

v)"[

(a +

ß)" +

a.•]

52

1

(8 +

cx)1

(8 +

ß)1

53

1

8(8 +

cx)1

(8 +

ß)1

54

1

81(a

+ a.

)2(8

+

ß)2

55

1

(8 +

v)(8

+ a.

)2(8

+

ß)'

--

56

1

(81 +

v")(8

+ a.

)2(8

+

ß)1

~I

1

[a.•

+ (8

+

ßl"J"

j(t)

e-ß•

sin

(cx

t +

</>)

([cx

2 +

(ß -

v)1 ]

-2v

(ß -

v))

_ 1

ee-•

• cx

[cx•

+ (ß

-v)

2 h/(

cx

1 +

ß")

-v•

[a.•

+ (ß

-v)

1]1

e

' -

v[a.

• +

(ß-

v)3 ]

1

+ v1

(cx•

+ ß

•)'

q, =

2 ta

n-1

(v

: ~

+ ta

n-1

(~)

ee-a

;• 2e

-a•

te-ß

• 2e

-ß1

-------+

-

(ß -

cx)•

(ß -

cx)3

(c

x -

ßj•

(c

x -

ß)3

(3cx

-ß)

e-a•

ee

-a•

(3ß

-cx

)e-ß

' te

-ß'

1

a.•(

ß -

cx)•

-

cx(ß

-

cx)•

+ ß

'(cx

)"

-ß(

cx

)• +

a.•ß

2(ß

-2c

x)e-

a•

ee-a

• 2(

a. -

2ß)e

-ß'

ee-ß

' t

2(cx

+ ß)

a.'

(ß -

a.)•

+

a.'(ß

-a.

)• +

ß'

(a.

)•

+ ß"

(cx

)" +

a.•ß

• -

a.•ß

"-••

[3

ß -

(a. +

2v)]

e-ß'

te

-ß'

[3cx

-

(ß -

2v)]

e-<

X'

(a.

-v)

'(ß

-v)

2 +

(a

. -

ß)8

(v -

ß)2

+

(v -

ß)(a

. -

ß)1

+

(v

-a.

)2(ß

-cx

)3

te-a

• e-

" +

+

(v

-a.

)(ß

-a.

)1

(cx

-v)

1(ß

-v)

1

sin

( vt

+ 4>

) 2

[( cx

• +

v")

-a.

(ß -

a.)

J -<

X<

te-a

• v(

a.• +

v')(

ß• +

v")

-(c

x• +

v•)(

ß -

a.)a

e

+ (a

.• +

v")(

ß -

a.)•

[ß• +

v• -

ß(a.

)J

_ 1

te-ß

' -

2 (ß

" +

v')(

a. -

ß)•

e

ß +

(ß• +

v•)(a

. -

ß)•

' q,

= 2

tan

-1 (~

) +

2 ta

n-•

(;)

e-ßl

(B

in a

.t -

a.t C

OB a

.t)

2a.8

N

\0

N ~ ~ ......

......

......

1\J

0 I 0 CT

0 0 ><"

58

59

60

81

82

83

84

85

1 (aA

+ ot

1)1

1

B(aA

+ «"

)"

1 aA

(aA +

ot1

)1

1

<• +

{J)(a

A +

ot1

)1

1

•(• +

,8)(

•1 +

cx•)

1

aA(•

+ P

H•" +

«"l"

1

•<• +

at)•

1 aA

(aA +

ot1

)

Bin

aJ

-aJ

00

8 a

J

2ot1

(I -

00

8 a

J)

lsin

aJ

«' -~

3si

na.

t. +

loo

saJ +

_!_

2ot'

2ot'

«'

trfl

' I

sin

(aJ

+ .;

1)

(v' fJ

1 +

4«"l

co

s (a

.t. +

.;.>

--

(ot•

+ (J

I)•

2ot1

y(o

t1 +

(JI)

2o

t1( f

X1 +

(JI)

•1

= t

an

-1

(ID·

." =

tan

-1

(3o

t1 +

fii>J

1

2cx1

'C0

8 (

aJ +

.;1)

(V9c

x1 +

4{11

) co

s (

aJ +

.;,)

e-Il•

1

2cx1

y(o

t1 +

(JI)

-2a

t'(at

1 +

(JI)

-

,8(a

t1 +

{11)

1 +

«'fJ

.;1

= t

an

-1 (~.

.;. =

tan

-1

(~~) +

2 ta

n-1

(~)

I sin

(aJ

+ of>

1)

_ (I

6at1

+

9(JI

)111

sin

(aJ

+ .;

.) +

e-

Il•

+ _

, __

_ 1_

2ot'v

'(ot

1 +

(JI)

4c

x1(a

t1 +

(JI)

(J

I(cx1

+

{11)

1 «'f

J at

',81

.;1

= t

an

-1 (~.

.;, =

tan

-1

(!~) -

2 ta

n-1

(~)

--

-+

-+

-a-

«'

I e•

t I)

at1

2at

at1

at1

t•

(co

s a

J -

1)

-+

2c

x1

cx'

~ ~ - :::: N

\0

w

294 Anhang III

·i"tl > -IN i; ~ ~

-l"tt I 't:: ·S ~1-

Cl)

I ;:::;- >

~'"' ilr > -.,

i i i·tl I "t~ ~ I I ~

i"' 'i ;; 'i;"tf

j;IN 't:: .::._.:; -., Cl)

.<:: 1 =I~ -., I ~

~I~ ~

I~ • b ~

" 1;" ;:::;- "tt "t! ;:::;-

tl

~I~ '> + +

~\? "tt

I I + ~ + ~'I. I ~+ ~ ~ ~ ~~ ~ . 'lo

.. > .. " .. > ~ '> I~ ~

" 1;' .. I~

+ '> '> + ~ ~ ..

'>

<C I .... I ao I Cl> I 0 I ~ I IN I ..,

I "" I IQ <C <C <C <C .... .... .... .... .... ....

I J,

(joJ

) 76

I ,, ..

' •'I

J,::)

I

77

8 +

y(s

2 +

oc1

)

78

Vs' +

OC2

(8 +

V1 8

1 +

oc1)"

79

s&J•

--~-

80

va&'

' 1

---

81

e-••

8

--

82

8

s• +

oc1

83

8

a•

oc•

84

I 8

(81 +

oc1)(

81 +

ß1

)

---

85 I

[8' +

(oc +

ß)•i

8• +

(oc

-ß)

'] -

86 I

8

(s1 +

oc1

)1

J,.(

a.t)

oc

"

J,(

2V

a.t)

cos

2y

(a.t

) y

(1rt

)

U(t-

a)

cos

oct

cosh

a.t

CO

B r

J.t -

CO

B ßt

{J

' -

oc•

'

2ocp

t Bin

(1

j

2cX

oc• *

{J'

?,>

::r

§ ~ - - - N

\0

VI

No.

F

(8)

87

82

(8• +

a.')

'

88

8

(8 +

a.)2

89

8

•' -

cx:'

90

8•

B'

-et'

91

,,. 8

• -

ot•

92

8

8• +

4ot

' --

93

8

(8

-et

}(8

-ß)

94

8ot8

82

(8• +

ots)

a

95

8

(8 -

at)"

2

96

y'e

8 -

a.•

I --

------

----

··-

-----

-...

j(t)

Bin

Cd

-j-

cxl

CO

B a

.t 2c

x

f:-«

'( l

-a.

t)

co

sb

a.t

-C

OB

a.t

2a.•

sin

h a

.t +

sin

a.t

2a.

cosh

a.t

-j-

CO

B C

tt 2

sin

h C

tt •

Bin

a.t

2ot1

Ctf:

-«1

-ßE

.-fJ'

a.-

ß .

a.#

ß

( 1 -

j-et

1 t1

) B

in o

tt -

a.t C

OB

Ott

E."'1

(1 +

2a.t)

y

(".t

)

1 ••

rf

y(

..C

) +

!XE.

"' e

(oty

t)

N

\0

0\ ~ ~ .... .... ....

97

8 +

a 0

8(8

+ et

)

98

8 +

a 0

(8 +

oc)(

8 +

ß)

-

99

8 +

a 0

8(8

+ oc

)(8 +

ß)

IOO

8 +

a 0

82(8

+ et

){8

+ ß

)

IOI

8 +

a 0

(8 +

et){

8 +

ß)(8

+ v)

-

I02

8 +

a 0

8(8

+ oc

)(s +

ß)(

8 +

v)

103

8 +

a 0

81(8

+ et

}(8

+ ß}

(8 +

v)

I04

8 +

a 0

81 +

oc•

I05

s +

a 0

8(s•

+ oc

1 )

I06

8·+

a0

82{s

• +

oc2 )

I07

8 +

a 0

(8 +

cx)(

s2 +

ß")

a 0 -

(a0

-o

c)c

'"

Gt

(a0

-oc

)e-«

1 +

(ß -

a 0)e

-ß'

ß-et

a 0

(oc

-a

0)e

-«'

(ß -

a 0)e

-ß'

-+

+

oc

ß oc

-oc

) ß(

oc

)

(I +

a 0t)

_

(oc +

ß)a

0 +

_I_

[(a

0 -

oc)e

-o:•

_

(a0

-ß)

e-ß'

J oc

ß oc

•ß•

ß -

oc oc

1 ß•

(a0

-oc

)e-«

' +

(a

0 -

ß)e-

ß'

+

(a0

-v

)e-•

(1•

-oc

)(ß

-oc

) (o

c -

ß)(v

l (o

c -

v)(

ß -

v)

~ +

(o

c -

a0)E

-«'

+

(ß -

a 0)e

-ß'

+

(v -

a0)c

••

ocßv

oc

(ß -

oc)(

v -

oc)

ß(oc

-

ß)(

v-

ß)

v(oc

-

v)(ß

-v)

l +

a 0t

a 0(e

tß +

ßv

+ oc

v)

(a0

-oc

)e-«

' (a

0 -

ß)e-

ß'

(a0

-v)r

••

---

+-----+

+

oc

ßv

oc•ß

•v•

et2(ß

-oc

)(v

-oc

) ß'

(oc

-ß)

(v -

ß)

v1(c

t -

v)(ß

-v)

V (a

01 +

oc2

) si

n (

oct +

t/>)

4> =

ta

n-1

(~)

Gt

. a0

j c

a02 ) •

-+

-

+ -

sm (

oct

-,P

), ~z

az

4> =

ta

n-1

(~)

[I

a0t

Je

a0')

.

J -

+ -

--

+ -

· sm

(oc

e +

t/>)

, cx.

z a2

cx

t a•

4>

=

tan

-' (Y

.)

(a0

-oc

)e-«

' j (

a 02 +

ß•

) .

cx• +

ß•

+

cx•ß

• +

ß'

. sm

(ßt

+ t/>

), 4>

=

tan

-1 (~

) -

tan

-1 (7

J)

~ § 0<1 .... .... .... N

'D

-..J

112

113

f(t)

~ -~=-

a)e

-«'

J( ao

• +

ß•)

• a(

a• +

ß")

-

a•ß•

+ ß

• · c

os (

ßt +

</>)

, </>

=

tan-

1 '~)

-ta

n-1

(71)

--~

I cu

;--«

' l

J(a•"

-+-ß"

) . c

os (

ßt +

</>)

----

_I _

~

(.! _ e

) +

"( a~• +

ß") +

7fi

o:• +

ß•

_ 1 (~)

+ ta

n-1

(.f!_

\ o:

ß•

o:ß•

o:

o: .p

=

tan

ß

a"

J

8 +

a0

a"(8

+ a

)(8

+ ß

}(81

+ 111

)

8 +

ao

(81 +

o:1

}(8

1 +

ß")

_(a

0--=-a)e~

+

(a0

)e-ß

' I(

ao" +

v•

) .

(ß -

a)(o

:• +

v•)

(a

-ß)

(v•

-+-

ß")

+ .;

\~• +

v•)(

v• +

ß")

. s

m (v

t +

</>)

rf> =

ta

n-1

(~)

-ta

n-1 (~)

_ ta

n-1

(~)

a0

(o:

-a

0)e

--«'

-a

0)e

-fJ'

I J(

v•

+ a 0

2 )

• -+

+

+

-·s

mv

t aß

v•

o:(ß

-a)

(o:•

-+-

v•)

ß(a

-ß)

(a• +

v•)

v• ·

v•(a

+ ßl

" +

(aß

-v1

) (

+ </>

)

</> =

ta

n-1

!. +

tan

-1!.

+ ta

n-1

~

(X

ß

"

I ao

(t -~ -

~) (a

0 -

a)e-

-«'

(ao

)e-f

J'

-aß-

"• +

v•

+ a

'(ß

-a)

(a•

+ 11

2 ) +

"'ß•~(

a-'--"

-~ß).!

..(v-'

-o•-+-

ß"J

+ ~ J

(v•(a

+ ;j.

•: (~ß

_ r)•

) · cos

(vt

+ </>

), ß

-

V

-II

</>

=

tan

-1 -

-ta

n 1

-+

tan

l-

V

0:

a 0

a• ~ ß"

[ J (

I -1-;~"

) 'CO

B (

ßt -

r/>1

) -J (I

-t-~:)

• cos

(at

-rf>

1)]

.1.

-ta

n-1

ao

'1'1

-ß'

"'·

= t

an-1

~

a:

N

\Cl

00

~ ::r

§ 0<> - - -

114

s +

a 0

(s +

cx)2

+

p•

115

s +

a 0

a[(s

+-;)2

+ ß'

]

116

8 +

a 9

a'[(

a +

cx)2

+

ß']

117

8 +

a0

(s +

v)[(

s +

cx)•

+ ß

']

118

8 +

a 0

8(8

+ v)

[(8

+ cx

)2 +

ß']

--

119

8 +

a 0

s2(8

+ v)

[(s +

cx)2

+ ß

']

120

"+ ao

(8

+

IS}(

s +

v)[(

s +

cx)•

+ ß

']

J ( l +

(ao

Po cx

)') ·

5--

«1

• si

n (ß

t +

f>),

"= te.n

-1 (-

P-)

a

0-

cx

a0

J (ß' +

(a0

-cx

)")

--«

• •

cx• +

ß'

-ß'

(cx'

+ ß"

) .

6 •

sm (ß

t + +>

. +

= te,n

-1 {!

_ +

te,n

-1 _

{J_

cx

a,-

cx

l +

a0t

2cxa

0 V

{ß' +

(a0

-cx

)1}

1 •

+ =

tan

-1_

ß_

+ 2

te,n

-1 /!_

cx

' + ß

' -

(cx'

+ ß

')' +

ß(

cx' +

ß•)

. e-«

. s

m (ß

t +

+J,

a 0-a

. cx

(a0

-v)

e-•

• l J (ß

' + (a

0 -

cx)"

) --

«'

. (v

-cx

)' +

p• +

ß

ß' +

(v -

cx)'

. E

• sm

(ßt +

+>,

+ =

te.n

-• (-ß

) _

tan

-1 (-

P )

a 0-a

t •-cx

a0

(v -

a0)

c.,

l

j (ß'

+ (a

0 -

at)'

) 1

v(at

' +

ß')

+ v[

ß' +

(cx

-v)

'] +

ßy

'(cx

' +

ß')

p• +

(cx

-v

)'

• e-«

. s

m (ß

t + +>

.,. =

ta.n-1

{!_ +

tan

-1 _

ß_

+ ta

n-1

_

cx a 0

-cx

cx

-•

a0

[ l

l 2c

x J

(a0

-v

)r"'

v(

cx1 +

ß')

t + a.

-; -

(cx1 +

ß')

+

r[ß

' + (v

-cx

)1]

5--

«'

J (ß' +

(a0

-cx

)')

. +

ß(cx

' +

-ßi)

p• +

(v -

cx)'

. sm

(ßt +

.,.),

+ =

ta.n

-1 _

ß_

-ta

n-1

_ +

2 ta

n-1

/!_

a 0-c

x

v-c

x

a.

(v -

~;[(~

~):~:·

+ ß']

+ (<5

-:~[

(~ ~):

~:1 + ß'

]

-t j (

ß'

+ (a

0 -

cx)'

0 --<

XI

.,.)

-ß'

[ß' +

(cx

_ v

)'][

ß' +

(cx _

<5

)' • 6

·

cos

t +

,

.,. =

tan-

·1 _

/!___

-te

.n-1

cx

-"

+ te

.n-1

_{J

_

a0

-cx

ß

a

.-ß

~ § Oq

- - - N

\0

\0

I N

o. I

I2I

I22

I23

I25

I26

I27

I28

I30

I3I

---

F(8

)

8 +

a0

(8+~

8 +

a0

8(8 +

Q:)1

-s +

a0

82(8

+ 1X

)2

8 +

a0

(8 +

ß)(

s +

1X)1

8 +

a0

8(8

+ ß

)(8

+ Q

:)0

8 +

a 0

82 (

8 +

ß)(

s +

Q:)1

8 +

a 0

(e +

ß}(8

+ v)

(8 +

Q:)1

s +

a0

8(B

+ ß}

(8 +

v)(s

+ Q

:)l

8 +

a 0

(al +

ß')

(8 +

Q:)l

j(t)

[I +

(a0

-Q:

)t)E

--<~

<'

a0

[(

a0

\ a

0 ]

~ +

I

-~J t

-;ä

e-

-«1

I (

2a

0 )

I (

2ao

) 1

-I

+ a

"t -

--

-I

--

+ [Q

: -

a 0]t

e--«

(X

I IX

IX

t (X

(a0

)rfJ

' +

[a

• -

a; +

..!!_

-a

0 J

e--«

' (ß

-(X

)' ß

-(X

(ß -

Q:)•

~ +

(ß -

a0)r

fJ' +

[(a

0 -

Q:)t

_

Q:1

-a

0(2

1X -

ß)J

e--

«'

(XIß

ß

( IX

-

ß)l

Q:

( 0:

) (X

I( (X

)1

~ (.!

.. _ .!_

_!

+ t}

_ (ß

-a0

)rfJ

' _

[ (X

-a0

+

(2a

0-

Q:)

(2Q

:-ß

)--•] e-

-<~<'

Q:1 ß

ao

ß

(X pt

(Q:

)1

Q:1(ß

-IX

) Q:

8(Q

: -

ß)1

(a0

-ß)

e-fJ

' (a

0 -

11

)r••

[

a0

-(X

+ a 0

(2Q

: -

ß -

11)

-Q:

1 +

ß"]

I

+

-+

E

(v -

ß)(Q

: -

ß)'

-11

)(Q:

-V)

1 (Q

: -

v)(Q

: -

ß)1

(Q

: -

ß)1

(Q:

-11

)1

ao

(a0

-1

1)r

.,

(a0

)rfJ

' -

(X•ß

v -

,.(p

-11

)((%

-v)l

ß(

v -

ß)((

X

)'

+ [

(Q

: -

a 0)t

_ a

0(Q

: -

,.)(Q

: -

ß) +

a;(a

0 -

Q:)(

2Q:

-P

-")

] e--

«' Q:

((X -

v)(Q

: -

ß>

Q:1

(Q:

-v)

1(Q

: -

ß)1

[2a•

Q:

-(X

I +

ß'

-((X

-

ao

)J t

--«'

+ y

(pt +

ao

l).

sin

(ßt

+ f)

((X

I +

pt)>

(X

I +

pt

ß( (X

I +

pt)

'

• =

tan

-1 .!!

... -

tan

-1 p_

a,

Cl

t

....,

0 0 ~ ., ::s "" - -

13

2

8 +

a0

8(8•

+ {J

I)(8

+ IX

)•

13

3

8 +

a 0

8•(

•• +

{JI)

(• +

IX)•

13

4

8 +

a0

(8 +

v)(8

1 +

{11 )

(8 +

1X)1

135

8 +

a 0

(8 +

")1 [

(8 +

a)1

+

{JI]

13

6

8 +

a 0

8(8

+ v)

1[(

8 +

1X)1

+

{JI]

--~

---·· -

-------------

~-

+ [2

1X1

(1X -

ao)

-ao

(1X1

+ {J

I) +

(IX

-a

,)t J e-

«l

_ 00

8 ({

Jt +

~) .

y(

I +

{JI)

IX1 {

JI

1X1

(1X1 +

{JI)

1 1X

(IX1 +

{JI)

1 {J

I(1X

1 +

{JI)

a.

' ~

= ta

n-1!

!..

-2

tan

-1 !!.

a"

IX

1 +

aot

-2a

, +

[<IX

' +

{JI)

(2a

. -

IX) +

21X1

(a,

-IX

) +

(a

. -

IX)t J e-

«1

IX1 {

JI

IX1{J

I 1X

1( IX

1 +

{JI)

1 1X

1( IX

1 +

{JI)

+ v

' (a 0

1 +

{JI)

Bin

({J

t +

~)

{JI(

IX• +

{JI)

• ~

= ta

n-1

.!!.. +

2 t

an-1

~

a,

{J

(a0

-")E

_,.1

+ [1

X1

(1X -

a0

) +

{11

(11 -

a0

) +

IX(v

-IX

)(2a

0 -

IX) +

(a

0-

IX)t

J e--«

({JI

+ "S

)(IX

-")

1 (1X

1 +

{JI)

1(v

-1X

)1

(v -

IX)(I

X1 +

{JI)

+ J

(a01 +

~ .

Bin

({J

t +

~)

{JI +

".

{J( I

X• +

{JI)

• ~

= ta

n-1

!. -

tan

-1 ~ -

2 ta

n-1

!!. {J

{J

ot

(a0

-")

t +

(1X1 +

{JI +

2a 0

(v -

IX)

-v•]

r•• +

v' {J

I +

(a,

-ot

)1•

e--

«'.

sin

({Jt

+ ~)

{J

I +

(a -

11)1

[{

JI +

(a -

v)1

] {J

({JI

+ (IX

-v)

1 ]

'

' =

tan

-1 (-

{J-)

-2 t

an-1

(-{J )

a0-a

"_

IX

a0

e-«

1 J (<

IX -

a0

)1 +

{JI)

.

"S(a

• +

{JI)

+ {J

[(v

-a

)• +

{JI]

IX• +

{JI

. Bm

({J

t +

f) +

...

+

[2v(a

0 -

v)(a

-v)

-

a.[

(v -

1X)1

+

{JI]

(" -

a,)

l ~

1 . .

. +

e

-"'

"s((

v -

a)1

+

{JI]

11((1

1 -

1X)1

+

{JI

' =

tan

-1 {!_

-2

tan

-1 _

{J_

-ta

n-1

_{J_

IX

v-a

IX

-a

0

~ ::r

§ 0<1 .....

. .....

. .....

.

VJ

0

No.

F

(8)

137

8 +

Go

8

1 (8

+

v)1 (

(8 +

ot)

1 +

ßl]

138

8 +

Go

(8

+

.5){8

+

v)1 [

(8 +

ot)

1 +

ßl]

139

8 +

a 0

(8 +

ot)1(8

+

ß)1

1•o

8

+G

o

8(8

+

ot)1(8

+

ß)•

141

8 +

G 0

81 (

8 +

ot)1

(8 +

ß)

f(t)

G 0t

(v -

2a0

){ot

1 +

ß1)

-2a

0ot

v V

{(ot

-G 0

)1 +

ßl}e

-«1

.

r(ot

l +

pt)

+

r(o

t' +

ßl

)l

+ ß(

otl

+ ßl

)((o

t -

v)l

+ ßl

] B

ill

(ßt +

4-

) +

...

... +

[<

2a0

-v)

[(v

-ot)

1 +

ßl]

+ 2v

(G0

-v)

{ot

-v)

+

(a0

-v)

t J r

"'

r[(v

-ot

)1 +

ßl]

. r[

(v -

ot)1

+ ßl

]

4> =

tan

-1 p_

_ t

an

-1 ~ +

ta

n-1

(v

-ot

) _

tan

-1 (

-P

-) +

ta

n-1

(-P

-)

ot P

P

V

-ot

G 0-o

t

(Go

-.5J

e--.!

1 e-

<~1 si

n <P

t +

4-l j (

<ot

-G

o)•

+ ~

(.5 -

v)1 [

(.5 -

ot)1

+ ßl

] +

ß[{o

t -

v)•

+ ßl

] {o

t -

.5)1

+ pa

+

...

... +

[<

" -

G 0)(

(v -

ot)1

+ ß

l] -

2(at

-v)

(.5 -

v){G

0 -

v) +

(a

, -

v)t

J r.,

(v

-.5)

1 [ß

l +

(v -

ot)1

) (.5

-v)

[(v

-ot

)1 +

pa

4> =

ta

n-1

(-P

-) _

2

tan

(-P

) _

tan

-1 (-P

) ~-ot

v-o

t .5

-ot

[<G

o -

ß)t +

ot

+ p

-2a

0 ]

rfJI

+ [<

Go

-ot

)t +

ot +

P -

2a•J

e-<~l

{ot

-PJ

• {o

t -

Pl'

<P

-ot

)• <P

-ot

l'

~ +

[J

P-

G0)t

3a0

ß -

G0ot

-2~

-fJI

[

(ot

-G0

)t 3

a0ot

-Goß

-2o

t1 e

-<~l

ot•ß

i {o

t -

PJ•

+ ßl

<ot

-P

l'

e +

ot(ß

-ot

l• +

ot•<P

-ot

)•

[1 +

GJ

_ 2

a0(o

t +

Pl]

+

[ (G

0 -

ot)t

+ 2a

0(ß

-2o

t) +

ot{3

ot -

Pl]

e-«

' at1

ßl

ot1ß

l ot1

{ß -

ot)1

ot1

(ß -

ot)1

+ ~Go -

ß)t

+ 2a

0(o

t-2ß

) +

ß(3ß

-ot

)J r

fJI

(ot

-P

l'

ßl<a

t -

Pl'

w

0 10

~ ~ .... .... ....

14

2

8 +

a0

(a0

-v

)e-P

I [<<

X -

2a0)

(v-

at)

+ (v

{J -

at•)

-a

0({J

-at

) (a

0 -

at)t

J

1 (8

+ v

)(8

+ at

)1(8

+

{J)1

+

+ ~:--<~+

...

(v -

at)1(v

-{J

)1

(<X -

v)1

(at-

{J)1

(v

-at

}(at

-{1

)1

+ [<P

-2a

0)(v

-{J

) +

(vat

-

{11

) -

a0(a

t -

{J)

+ (a

0 -

{J)t

J ~:-/fl

({J

-v

)1(a

t -

{J)1

(v

-

{J)(

at -

{J)1

14

3

8 +

a0

[ (a

0-

at)t

2a

t(a 0

-<X)

<X

+ fJ

-2

a 0 J -

ou

V(a

01 +

v')

Bin

(vt +

~)

(81

+ v'

)(B

+ a

t)1(8

+

{J)1

(<X

-{J

)1(a

t• +

v1

) +

({J -

at)1

(at1

+

v')

1 +

({J-

at)1

(at1

+ v

1)

E: +

v({J

" +

v")(

at1

+ v')

[ (a

0 -

{J)t

2{J(

a 0

-{J

) <X

+ {J

-2a

0 J

1 +

...

+ (<X

-{J

)'({J

" +

".,

+ (<X

-{J

)"({

J" +

v")

' +

(<X -

{J)'(

{J"

+ v')

cfl

~ =

2 ta

n-1 ~

+ 2

tan-

1!!.

+ t

an-1

.!.

v v

a•

14

4

8 +

a 0

e-«

1

[(8

+ <X

)1 +

{1"]

1 [(

a 0

-<X

+ {J

"t) B

in {

Jt +

(<X

-a

0){J

t co

s {J

t] 2{

1"

~ ::r

14

5

8 +

a0

(a0 +

at1 t

) B

in r

d -

a 0rd

COB

rd

(81 +

at1

)1

2at1

~ - -.... 1

46

8

+ a

0 ~ +

( 1

-a"

t) B

in r

d _

(2a 0

+

at1 t

) CO

B rd

8

(81

+ at

1)1

at

' 2a

t1

'

14

7

8 +

a0

!_+

a",_

V{4

at1

+ 9a

01)s

in(a

tt +

<{> 1

) +

(Va 0

1 +

at')

tco

B(a

tt +

</> 1

)

81(8

1 +

at1

)1

at'

2at5

2a

t'

." -

tan

-1 2

at

at•

"'· =

tan

-1_

1

-3a

,' a

14

8

8 +

a0

(a.

-{J)

E: ~~

-_

t_ Je

·· + a

t')

Bin

(at

t +

"' ) +

V {

(at1

-{J

a.)

' +

4{J"

a.1 }

COB

(att

+ ."

) (8

+ {1

)(81

+ a

t1)1

( a

t1 +

{J")

l 2a

t1

at1

+ {J1

1

2at1

( at1

+

{J")

I

"'1 =

ta

n-1

~ +

tan

-1 !!.,

."

= ta

n-1

(at

• -{J

a.) -

2 ta

n-1

~

a0

at

1 2a

ta0

{J

w 8

No.j

F(8

) f(

t)

w ~

149

8 +

a 0

a0

(ß -

a0)e

-ll'

t j (

'x' +

a01

)

8(8

+ ß

)(8

1 +

1X1

)1

ßiX'

+ ß

(IXI +

ß')

l +

21XI

lX

I +

ß'

COB

(Qtt +

</>1)

v' {1X

1(3

a0 +

ß)1

+

4(ß

a 0

-1X

1)1

} co

s (a

tt +

</>1

) -

21X'

(IX1 +

ß1

)

""1

= ta

n-1

~ +

tan

-1

~.

a0

IX

</>

= tan

-1

1X(3

ao +

ß)

_ 2

tan

-1

~

1 2(

ßa0

-1X

1)

ß

15

0

8 +

a 0

1 -

a 0fß

+ a

J

(a0

-ß)

s-11

1 t

j (IX

1 +

a0')

81(8

+ ß

)(81

+ 1

X1)1

IX

+ ß'

(1X

1 +

pt)1

+

21X'

1X

1 +

ß•

sm (a

tt +

</>1

) +

· · ·

..

. +

y{4

1X

1(2

a0 +

ß) +

9(a

0ß -

1X1

)1}

• (a

tt +

</>

)

41XI

( IX• +

pt)

sm

• ~

"'1

=

ta.n

-1 ~ +

tan

-1

~.

</>

= ta

n-1

[2

1X(2

ao +

ß)J

-

2 ta

n-1

~

a0

IX

1 3(

a 0ß

-1X

1)

ß

::r

§ "" - - -15

1 8

+ a 0

[

1 +

e• ; IX

) t]

e-1

(8

+ 1X

)1

152

8 +

a 0

~ +

[<IX

-a

0)t

1 _

2a0

_ a0

t] ~-

· 8(

8 +

1X)1

~

2 ~

IX

15

3

8 +

a 0

1 +

aJ

3a 0

[

1 (a

0 -

1X)t1

(2

a 0

-IX

)t]

-•

81(8

+ 1X

)1

-1X

-.-

--;x

< +

~ +

21

X 1

+

1X1

e

15

4

8 +

a 0

(a0

-ß)

s-11

1 +

[ a

0 -

ß +

(ß -

a0)t

+ (a

0 -

1X)t

1 e-

«'

(8 +

ß)(

8 +

1X)1

(IX

)•

<ß -

1X)1

(IX

-

ß)•

2(

ß -

IX)

155

81 +

a18

+ a

0 a

11X

-a

0 +

a 0att

+ (1X

1 -

1Xa 1

+

a 0)e

-«1

81(8

+ IX

) IX

1 IX

1

156

a' +

a1a

+ a

0

I 8(

8+ <

X)(

8 +

-ß)

-

157

a• +

a1s

+ a

0

s'(a

+ oc

)(s +

ß)

158

a2 +

a1s

+ a

0

(a +

oc)(

s +

ß)(

s +

v)

--

--

159

s• +

a1s

+ a

0

a(s +

oc)(s

+ ß

)(a

+ v

)

160

s• +

a1s

+ a

0

s'(s

+ oc

)(a +

ß)(

s +

v)

161

a• +

a1s

+ a

0

a(s'

+ oc

1 )

162

a• +

a1a

+ a

0

a1(a

1 +

oc1 )

163

a1 +

a1a

+ a

0 (s

+ ß

)(a1

+ a;

2 )

164

a• +

a1a

+ a

0

•(• +

ß)(

a' +

oc1 )

a 0

(a1

oc -

a 0

-oc

')E-1

1 ' (ß

' -

a,ß

+ a

0)e

-P•

-+

+

oc

ß oc

(ß -

oc)

ß(ß

-oc

)

a1 +

a0t

_ a

0 (oc

+ ß

) +

__ 1

_ [

(1

+ ~ _

_ ~) E~

' _

(1 +

~ _

~) d'

] oc

ß oc

•ß•

ß -

oc oc

·' oc

ß•

ß

(oc1

-a 1

oc +

a0)

e-"'

+ (v

' -

a 1v

+ a

0)t

-"' +

(ß•

-a 1

ß +

a0)t

-P'

(v -

a.)(

ß -

oc)

(oc

-v)

(ß -

v)

(a.

-ß)

(v -

ß)

a 0

(a.1

-a

1oc

+ a

0)E

-att

' -

a 1ß

+ a

0)e

-P'

(v'

-a

1v +

a0)c

"'

-+

------+

+

a.

ßv

oc(o

c -

ß)(v

-a.)

ß(

a. -

ß)(ß

-v)

v(

oc -

v)(v

-ß)

a1 +

aJ

a 0(a

.ß +

ßv

+ a.

v)

(oc2

-a

1oc

+ a

0)e

-"'

---

+

a.ßv

a.

•ß•v

• a.

'(oc

-ß)

(oc

-v)

1 -

a,ß

+ ao

)e-P

' (v

1 -

a 1v

+ a

0)r

01

+

ß'(ß

-a.

)(ß

-v)

+

v'

(v -

a.)(v

-ß)

~ +

J{(~r +

(~ _

In cos

(<XI

+ q,)

. q,

= -

tan

-1 (~)

az-

ao

a, +

a.e

ain

(oct

+ r/>

) )(

• (

a·n

_

a._

•_ -

a.•

a1

+

oc -

oc •

+ =

tan

-1 ---

( a,

a.

) a 0

-

cx'

(ß' -

a1ß

+ a 0

)E

P•

ain

(<XI

+ 4>

) J {(

a.1 -

a0)

2 +

a 11 a

.'}

a.'

' +

<X

a

.•+

ß'

• q,

= ta

n-1

{~)

-ta

n-1

(a• a~a.

a.")

---

~ _

' -

a 1ß

+ a

0)e-

P'

_ co

a (a

.t +

rf>) )

{(o

c1 -

a0)

1 +

a11

a.1 }

a.'ß

ß(

a.' +

ß')

oc

• a:

• +

ß'

'

"'= tan

-1 (~

_ ta

n-1

e· :.a. a

.') ·--~-·-·-·--·-··-·-

~ § (JQ

- - - w

0 Vl

No.,

F(•

)

165

8• +

a 18 +

a 0 8'

(8 +

ß)(

•• +

a.•)

166

81 +

a 18 +

a 0

(8 +

ß)(i

t + 1>

)(81 +

cx1 )

167

81 +

a 18

+ a 0

8(

8 +

ß)(8

+ tt)

(81 +

a.1

)

168

111 +

a 111 +

a 0

s•(s

+ ß)

(a +

v)(a

1 +

cx1 )

169

a• +

a 1a +

a 0

(a1 +

cx1 )

(a1 +

ß')

--

J(t

)

_1_

[ _ ~ +

J +

(fJ'

-a1

ß +

a")r

l' +

coe

(cxl

+ <(>

) J{

(a.1

-a0

)1 +

Gt1

a.1 }

a.•p

a1

ß

ae

t ß

'(a.

' + ß

')

a.&

a.• +

ß'

.,. =

t.

n-1

(ID +

t.n

-1 (~)

a. a

,-a

.•

(fJ' -

a 1ß

+ a 0

)e 1

11

("S

-a

11> +

a 0)e

-1'1

B

in (

eil +

<(>) J {(t

:r.1 -

a.)'

+ a 1

1 a.'}

(1>

-ß)

(a.•

+ ß

')

+ (

ß -

tt)(c

x1 +

tt1)

+

a. (a

.• +

pt)(

a.1 +

"S)

+ =

t.n

-1 (~)-

t.n

-1 (!

)-t.

n-1

(!)

a 0

-cx1

"

P

a.

(ß-

a1 +

7]) e

-ßt

(~~- a

1 +

~) e-

~'' si

n (

cxl-

<(>) J{

(c

x'-

a")'

+ a,

•a.•

} a.

•p" +

-tt)

(a.•

+ {J

') +

(tt

-ß)

(cx•

+ "S

) +

a.•

a.

'(/1 +

•)' +

(a.•

-fl•

)'

<(> =

te

.n-1

(~)

+ ta

n-1

(;)

+ ta

n-1

("•

a~a. a

.i

a1 +

a,

(t -~ -

~) +

(fJ'

-a 1

ß +

a 0)e

-/1'

+ ("

0 -

a 11>

+ a,

)e_,

.' a.

•ßv

ß'(

v -

ß)(a

.' +

p•)

tt"(ß

-tt)

(cx•

+ "S

)

+ co

a (c

xt +

<(>) J{

(a

.1

-a

0 )1 +

a11

or;1

} cx

• rx.

"({J +

P)'

+ (a

.• -

p,.)•

+ =

tan

-1 (~

) +

tan

-1 (

a. a~

cx cx•

) -

tan

-1 ~)

CO

S (

tXt +

r/>1

) J{a

t + (

ao

-czt

n + CO

S (

ßt +

t/>,)

J{a

1 +

("•

-p•n

ß"

-cx

• 1

cx cx

• -

p• 1

fJ .,.

, =

ta

n-1

e~·

-a·).

a 1a.

+• =

tan

-1 (fl

' a~{J a

•)

---

w

0 0\ ~ ~ ""

170

s• +

a1.«

+ a

0

s[(s

+ oc

)2 +

ß']

171

s2 +

a1s

+ a

0

s2[(

s +

oc)2

+ ß

2 J

172

s2 +

a1s

+ a

0

(s +

v)[

(s +

oc)

2 +

ß']

173

s• +

a1s

+ a

0 s(

s +

v)[(

s +

oc)•

+ ß'

]

s2 +

a1a

+ a 0

17

4 s•

(s +

v)[(

s +

oc)'

+ ß

']

~ _

e-'"

sin

(ßt

+ </>

) J(

ß"(

2o

c -

a1)

2 +

(.oc2

-ß'

+ a

0 -

a1o

c)'}

oc• +

ß'

ß rx

• +

ß'

'

q, =

ta

n-1

(~)

+ ta

n-1

(

~(a1

-2 o

c) )

rx ~2

-

fJZ +

ao

-al

rx

a1 +

a0t

2

a0oc

s--«

' sin

(ßt

+ </>

) 1

(ß'(

2 ) 2

(

2 ß'

2

tX2 +

ß2

-(;

2 +

ß')

' +

ß(tx'-t{J~ \-

oc -

a1

+ o

c -

+ a

0 --

a1 o

c) ),

q, =

2 ta

n-1

(~) -

tan

-1 (

ß(

2oc

-a

.)

) oc

oc2

2 +

a0

-a

1oc

(v2

-a

1v +

a0)

c••

+ t

:_~"'

sin

(ßt

+ </>

) J(

ß'(

2o

c -

a,)2

+ (

oc2

-ß'

+ a

0 -

a,oc

)'}

(o

c-v

)'+

ß2

ß

(oc-v

)2+f

J"

' q,

=

tan

-1 [

(a

1 -

2 oc)

ß J -

tan

-1 (-

ß-)

oc2

-ß'

+ a

0 -

a1o

c v

-ot

ao

(alv

-flo

-

v2)E

-vt

---

+ -------

(ot2

+ ß

')v

v[(o

c -

1•)'

+ fl'

J ,_

c"' s

m (

ßt +

</>)

J[ß2

(2o

c-

a1)

2 +

(oc2

-ß2

-a

1oc +

a0)

]

; ß

(o

c• +

ß')

{(ot

-v

)' +

ß')

'

</> =

ta

n-1

(~)

+ t

an

-1 (

-) -

-ta

n-t

(

ß(2o

c -

a1)

) ,I

X

rx -

l'

cx.2

-ß2

+

a0

-a

1rx

( I

a1 )

a

t--+

-0

v a

0 2o

ca0

(v2

-a

1v +

a0)c

"'

-----

-----

+-

v(oc

2 +

ß')

v(

oc2

+ ß2 )

2 v2

[(oc

-v)

2 +

ß2 ]

+ c

"' si

n (

ßt +

</>)

J(ß

'(2

oc

-a

1)1 +

(oc2

-ß'

-a

1oc

+ a

0)2 }

ß(oc

2 +

ß')

(o

c -

v)2

+ ß'

"' =

tan

-1 [

2

ß~~l

-2 oc

) J -

tan

-1 (

-) +

2 t

an

-1 m

!X

--

-a

1 oc

-f-a

0 v

-!X

oc

> g. ~ ~ .....

.....

.....

w

0 --..1

No.

I F

(8)

175

81 +

a

18 +

a 0

(8

2 +

v1 )[(

8 +

1X)1

+

ß2 ]

-

176

81 +

a

18 +

a 0

8(

81 +

v0 )

[(8

+ 1X

)1 +

ß"

]

177

s• +

a

18 +

a

0 8(

8 +

ct)1

178

81 +

a18

+

a 0

s1(8

+

1X)1

-

179

s• +

a

1s +

a

0 (a

+

ß)(8

+

1X)1

--------

--

--

J(t)

e-«' si

n (

ßt +

r/>

1) J

tx•

-ß•

+

a 0 -

a11

X)1

+ (2

1X

-a

1)1 ß

*}

ß (1X

1 +

ß2

-v2

)1 +

(2

1Xv)

1

sin

(vt

+

r/>1)

j{

(v

1 -

a0 )

1 +

a11

v1

} +

V

(1X1

+ ß

1 -

v,l)1

+

(21X

V)1

'

.p -

ta.n

-1 (

21

) +

ta.n

-1 [

ß(

a1 -

21X)

J

~ -

IX1

+ v•

-ß"

IX

1 -

ß" +

a 0

-a

11X

'

.p _

_ 1 (

a

1 v )

_ 1

(

21Xv

)

2 -

ta.n

---.

-ta

.n

I ß

' I

' a 0

-v

IX+

-v

a

0 e-a

.• sin

(ßt

+

r/>1)

j(<

IX'

-ß•

+

a0

-a

11X)

1 +

ß*(2

1X -

a1)

'}

v2(1X

2 +

ß')

(1X1

+ ß

1 )[(1

X1

+ ß"

-v1

)1 +

(2

;tv)

1 ]

_ si

n (

vt +

r/>

1) j

{

(v1

-a

0 )1

+ a

12v"

}•

v•

(1X1

+ ß•

-v"

)1 +

(2

1Xv)

1

.p =

ta

.n-1

(~

_ ta

.n-1

(IX

" -

ß• +

v')

+

ta.n

-1 (I

X1

-ß*

+

a0 -

a1 1

X).

1 IX

21X

ß ß(

21X

-a

1)

tf. =

ta

.n-1

(IX

" +

ß* -

v") +

ta

n-1

(~)

• 21

Xv

~ -

v"

~ +

[<

a11X

-a

0 -

1X2 )

t +

IX2

-a

0 ]

e-«'

IX1

IX IX

1

---

--

+ -

--

a1

+ (1X

1 +

a0

-a

11X)

s-

«

a1

+ a0

t 2

a0

1 [2

a0

J 1

IX1

IX3

IX1

IX

(ß1

+ a

0 -

a 1ß)

e-fJ

' +

[(1X

1 -

21X

ß -

a 0 +

a 1

ß) +

(1X

1 +

a0

-a

11X

)t] s

-«'

(1X

-ß)"

(1

X-ß

)"

ß-IX

--

w

0 00

~ ~ "" .... .... ....

"-l :r

0 0:

0 0 "

180

181

182

183

184

a• +

a1a

+ a 0

8(

8 +

ß)(a

+ a:

)•

a• +

a1a

+ a 0

a1(a

+ ß)

(a +

a;)1

a• +

a1a

+ a 0

(8 +

ß)(8

+ v)

(a +

a:)1

a• +

a1a

+ a 0

(a1 +

ßi)(

a +

a:)•

a• +

a 1a +

a 0

a(a'

+ ßl

)(8

+

a:)1

~ +

(a1 ß

-a0

-ßi

)e-f

l' +

e-

«'

[<a:

• _

a a;

+ a

)t +

a:1(ß

-a

1 ) +

a0(2

a; -

ß]

a:•p

ß(

a; -

ß)•

a.

(a;

-ß)

1

0 a;

(a;

)

~ c~ -~ -~+ e]

a:

•p

ao

ß a;

+

e-<X

I [<

a:'

_ a

a; +

a )t

+ 2a

oß -

a;(3

ao +

a1ßl

+ a:

'(2a1

-a:

)J +

0 0

0

a:'(

ß -

a;)

1 0

a:(ß

-a;

)

+ (p

t -

a 1ß

+ a 0

)n''

{J''(

ß -

a:)•

(v;p

-_

a;~(; ~0

~~~" +

(ß:v

~ ap

~:-~·

~~~~~·

+

e-

a.•

[<a.

' _

a a;

+ a

)t +

(v -

ß)(a

:1

-a

0) +

vß(

a1 -

2a:)

-a;

(a1a

; -

2a 0

)]

(a:

-v)

(a;

) 1

o (a

; v)

(a:

) ~ ~

sin

(ßt

+ </>

) V

{(ß"

-a

)' +

a •p•

} ß(

a:' +

ß•)

0

1 + ~ [

<a:•

-a

a; +

a )t

+ 2a

:(ß"

-ao

)" +

a1((J

• -

a:')

] a:

• +

p•

1 0

(a:•

+ ß"

)

(Jq

- - -"'=

tan

-1 (~) -

2 ta

.n-1

f!. ao

-p•

a;

ao

sin

(ßt

+ t/>

)v {ß

2 a1•

+ (ß

• -

ao)2

}

a:•p

s -

ß'(a

:• +

ß•)

_ [a

:'[(a

;2

1) +

a 0(a

;1 +

ß") +

2(a

0 -

a1a

;)J +

(a;1

-

a1a

; +

a 0)t

] 0

-«C

a:•(

a:• +

ß')

' a:

(a:•

+ ß"

) e

"'= tan

-1 (~

)0 -ta

n-1

(~

+ ta

n-1

(~)

ß a;

a.-

ß•

w ~

No.

I 18

5

186

187

188

189

F(s

)

s• +

a1s

+ a

0

s•(s

' +

ß•)

(s +

ot)2

s• +

a1s +

a0

(s +

ß)1

[(s

+ ot

)1 +

v2

)

s• +

a1s

+ a

0

(s +

ot)1

(s +

ß)1

s• +

a1s

+ a

0

s(s

+ o

t)'(

s +

ß)'

s• +

a1s

+ a

0

s2 (

s +

ot)1

(s +

ß)'

j(t)

a 0t +

a1

-2a

0fot

[(

ot1

+

ß')

(2a 0

-

a1ot

) +

2ot1

(ot1

-

a1ot

+ a

0) +

(ot3

-

a,a:

+ a

0)~ e

-a•

a:•p

• +

ot

3(o

t1 +

ß1

)1

ot1(o

t1 +

ß">

-J V

(ß1

-a

0)1

+

a,•

ß• s

in (

ßt +

<f>)

+

ß'( o

t• +

ß')

"' =

ta

.n-1

(~) +

2 t

a.n-

1 (~

) a

.-ß

ß

ca.•

sin

(vt

+ <

f>h/

{v1(a

1 -

2ot)

1 +

(ot1

-v•-

a1ot

+ a

0)1

}

v[v•

+ (o

t -

ß)1

]

+ [

(ß•

-a 1

ß +

a0)t

+ (a

1 -

2ß)[

v1 +

(ot

)1]

-2(

ot -

ß)(ß

• -

a,ß

+ a

o)J

1,-{

J•

". +

(o

t-ß)

• "'

=

ta.n

-1 [

v(

a, -

2ot)

_l

-2

ta.n

-1 r _

____.!.

_] ot

1 -

v1

-a

1ot

+ a;

;J

Lß -

ot

[a

1(ot

+ ß

) -

2(ot

ß +

a0

) +

(ot1

-

a,a:

+ a

0)t]

e-«'

-ot

)•

(ot

-ß>

'

ao

a.'ß

' +

+ [<

ß" -

a1ß

+ a

0)t

_

a1(o

t +

ß)

-2(

a.ß +

a0)] e-

fJ'

(ot

-ß)

• (ß

-a.

)•

[(a

,a.

-a 0

-

a.')t

+ 2o

t{ot

1 -

a 1a.

+ a

0) +

(a.1

-

a0)(

ß -

a.)J

e-«

' a.(

a. -

ßl'

a.•(

ß -

ot)1

+ [

(a1ß

-a

0 -

ß")t

+ 2

ß(ß

" -

a1ß

+ a

0) +

(ß1

-ao

)(a.

)J t

rfl'

ß<

ß -

a.)•

ß•

(ot

-ß)

a1 +

a0t

_

2a 0

{ot +

ß) +

[(o

t1

-a

1ot

+ a

0)t

+ 2

ot(a

1ot-

a 0-

ot1

) +

(2a 0

-

a 1a:

)(ß -

ot)J

e-«

' ot

•ß•

a.•ß

• a.

•(a.

-ß)

• a.

'(ß -

ot)•

+ [

<ß'

-a

,ß +

a0)t

+ 2

ß(a 1

ß -

a0

-ß"

) +

(2a0

-

a1ß

){ot

)J e

-fJ'

ß'(

a. -

ß)•

ß"

(a.

-ß>

w -0 f .... ::::

I 8

1 +

a1s

+ a 0

e-

«•

190

1 [(

s +

o:)'

+ ß

']'

{[(<

X1 +

ß')

+ (

a 0

-a 1

o:) +

(a1

-2o

:)ß'

t] s

in ß

t +

[(a 1

o: -

a 0)

-(o

:' -

ß')

] ßt

cos

ßt}

2{

P --~

191

a• +

a1s +

a 0

2~3 {

[a0 +

<X1(1

+ a

1t)]

sin

o:t

+ (<X

2 --

a 0)or

;t co

s o:

t} (a

' +

or;')

' --

192

a• +

a1a

+ a 0

ao

t s

in (<

Xt +

~1h/ {(

o:1

-a 0

)1 +

a12

o:1 }

-

CO

B (<

Xt -

j-</J

2)y

'(a 1

2<X

2 -j

-4

a 01

)

a(s2

+

o:1

)1

;t-

2o:•

2o:'

. ~ =tan-1(~)

1 a

o-c

x•"

.P.

= t

an-1

(~:)

--

193

81 +

a1a

+ a 0

~+ a

0t +

t co

s (o

:t +

</J1)v

' {(o

:1

-a 0

)1 +

a 12 o

:2}

_ si

n (<

Xt +

.p,)

·l/(o

:2

-3

a 0)2

+

4a 1

1or;

1

8'(

•' +

o:')"

~

~

~

. ~

= ta

n-1 (~).

~ =

tan-

1 (

2a,o

r; )

1 ao

-cx

2 •

3ao

-or;

• I -

194

82 +

a1s +

a 0

[2 +

(a1

-2o

r;)t +

(o:' +

a,;

+ ao

)t~

6-«

t (8

+ o

:)•

- -19

5 a1

+

a18

+

a 0

~ _

e-

«'

[2a

0 +

(a0 +

<X2)t

+ (<X

1 -

a1

o: +

a0)t~

8(8

+ or

;)1

o:•

<X

o:•

<X

2

196

a• +

a18

+

a0

a 1or;

-3

a 0 +

a 0t +

[3

a0

-a

1<X

+

(2a 0

-

a1o

r;)t +

(o:•

-a

1or; +

a 0)t

'] e

-«t

81(8

+ <X

)1

o:•

o:•

o:'

o:•

2o:'

197

a• +

a.,s

• +

a1s

+ a 0

a

1 +

a0 t

_

a0(<

X +

ß) +

_I_

[ (<

X +

~ _

a _ ~) e-

<xt

_ (ß

+ ~ _

a _ ~) e-~

•J

81 (

8 +

o:)(

a +

ß)

o:ß

o:•ß

• <X

-

ß <X

2

"<X

2 p

2 p•

198

83 +

a.,s

• +

a1a

+ a

0 ~ +

(<X1

-a,

tX +

a 1

-a 0

/<X

)e-«

1 +

(ß'

-a

,ß +

a 1

-a

0/ß

)e-f

J1 +

(v'

-a

,v +

a 1

-a 0

fv)e

_"'

8(8

-j

-<X

){B

-j

-ß)

{B -

j-V

) rx

ßv

(v

-rx

)(ß

-rx}

(v

-ß)

(rx

-ß)

-v

)(rx

-v)

w

---------------------

--------

--

-----

---------------------~

312

.. I

J

t! + ~ ... 1:1 IS

++ }t + '1.

. .,_ + "as '!.+ .,,. +­;.~ ., + +~ '1.

Anhang Ili

.. I

J ....

+

1.::""1 ~ I

} + IS ,; I

!. +

llas + ,; I

~ tl"as +

ll~ I

;l"as

t! + .. .. tfti' ++ .. .. "_ .,,. + '1.

I ~

20

5

s1 +

Gsß1

+

a18

+ a 0

8(8

+ ß

)(8

+ 1X

)1

20

6

s• +

Gsß2

+

a18

+ a 0

s2 (

s +

ß)(

s +

1X)2

20

7

s• +

a2s

2 +

a1s

+ a 0

(s1 +

ß2 )

(8 +

1X)1

20

8

s1 +

asß

1 +

a 1

8 +

a0

s(8

2 +

ß1 )

(8 +

1X)1

20

9

88 +

a.a•

+ a

18 +

a

0

(s +

1X)1

(s +

ß)1

~ +

(ß•

-a,

ß• +

a,ß

-a

0)e

-111

IX1 ß

ß(

IX

-ß>

' +

[IX

' -

2ß1X

1 +

IX1(a

-a

1) +

a0(

21X

) +

(1X1

-

G11

X1 +

G11

X -

ae)'] s

-«l

1X2 (

1X -

ß>'

IX(ß

-IX

)

~ c~ -~

-.!.

+ e]

+ (a

. -

a,ß

+ a

,ß•

')e-/

11

IX'ß

ao

IX

ß ß

'( IX

-ß)

" +

[IX

"(ß

-a

1) +

a0(ß

-IX

) -

(a11

X -

a0)(

ß -

21X)

+ (a

0 -

a11

X +

a11

X1

-1X1)~ e

-«1

1X1 (

IX -

ß)1

1X

1(ß

-IX

)

sin

t +

t/>

h/{

ß'(

a1

1 )1 +

(a0

-a

2ß')

1 }

ß(IX

• +

ß">

+ ~ [<

_ +

1

_ ')

t +

(I

X'+

'IX1

-a

1 1X1

+

aiß'

+

2a0 1

X-

2a1

ctß

')J

IX• +

ß"

a0

a1 1

X a

1 1X

IX

(IX" +

ß">

t/> =

ta

n-•

[i•

ß'

-ao

J

_ t.

an

-1 (~ +

t.

an

-1 (~)

(a1

')

IX

ß

a0

+

e--«

1 [<

1 1

+

)t +

21X

'{a1

') -

IX1 (

2a0

+

a11

X1 -a

1ß')

-a

0(c

t1 +

ß

')]

IX•ß

• IX

( IX• +

ß")

IX

-a,I

X a

,IX

-ao

IX

( IX•

+ ß'

)

sin

(ßt +

t/

>h

/ {ß

'(ß

'-a

1)1

+

(a1ß

' -a

.)1 }

+

ß'(

IXI +

ß")

t/> =

ta

n-1

(ß'

-a

,)J

_ t.

an

-1 (~ +

t.

an

-1 ~)

a 1ß

'-a

0 IX

[(a

0 -

a11

X +

a21

X1

-ct

1 )t

+

1X1 (

-IX

) -

2a

11Xß

+

a1(

1X +

ß>

-2

a 0]

e-«

l (IX

-ß>

' <ß

-IX

)'

+ [

(a0

-a 1

ß +

a 1

ß'

-ß'

)t +

ß

'(31X

) -

2a

11Xß

+ a

1(1X

+

ß)

-2

ae

J rl'

(IX

)'

(IX -

ß>'

f (JQ - - - w -w

No.

I F

(s)

j(t)

210

2ll

212

213

214

215

216

-~--

s-3 +

a2s

2 +

a1s

+

a0

a0

[(cx

3 -

a2

cx2 +

a1

oc ::_

a0)t

cx

'[a2

(cx +

ß)

-2(

a 1 +

cxß)

J +

a0(3

cx

)J

-at

--------

-+

+

f

8(8

+

cx)2

(s +

ß)2

cx2 ß

2 oc

(ß -

cx)'

cx'(ß

-cx

)3

+ [

(ß3

-a

,ß• +

a1ß

-a

0)t

+ ß

'[a,

(oc

+ ß

) -

2(a

1 +

cxß)

J +

a0(3

ß -

cx)J

f-{

J•

ß(cx

)'

ß'(o

c -

ß)'

s• +

a s

2 +

a s

+ a

f-

cxt

sin

ßt

[(s ~ c

x)' +'

ß'J

' 0 ~-

[(a

, -

cx)(c

x2 +

ß')

-cx

(a1 +

2) +

(3cx

2 -

ß2

-2

a2cx

+ a

1)ß

2 t +

a0

)

f-C

ll c

os ß

t +

-2-

-;p-[

2ß3

-

(a0

-a

1cx

-1-a

2[cx2

-

ß2J +

cx[3

ß2

-oc

'J)ß

t]

---------

83

+

a2s

2 +

a1s

+ a

0 a

1 +

a0t

sin

(cx

t +

</>1

) '{

4 2

2 +

( 2

3 )'

} --s'(

s' +

cx

')-,

----~--

2cx•

V

a

, cx

<X a

,-

ao

+ t

cos

(cxt

+ </>

2)

• 1

{ '(

2

_ )' +

( 2

_ )'

}

2cx•

v

cx cx

a 1

cx a2

ao

4>1 =

ta

n-1

(3

2cxa

1 2

_\,

q,, ~

= ta

n-1

(-c

x(_a

,_-_2

cx_2

)) a 0

--

cx a

J

a 0

-cx

a2

!----------------1

----------

---------------------

83

+

a2s

2 +

a1s

+

a0

~ +

[(c

x3

-a

2cx2

+

a1c

x -

a 0)t

2 _

(a0

-a

2cx2

+

2cx3

)t _

2(

a 0

-cx

')] f

-at

s(s +

cx)3

cx3

2c

x cx

2 cx

3

---------------

-----

83

+

a2s

2 -1-

a,s

+ a

0 a

1 +

a0t

3a 0

[(

6a

0 -

2cxa

1) +

(2a

0 -

a1

cx +

cx3)t

(a

0 -

a,cx

+ a

2cx

2 -

cx3)t

2 ]

-cx•

s

2(s

+ cx

) 3

--cx

.--

7 +

cx

4 ----cx

-.---

+

2cx2

E

1---------

t.ß

'-e«

' v

(s-

cx

)-vi(

s-

ß)

·2y

(rrt

3)

w l

f--

+ f

2(s2

+

w')

Js

in w

tl

w -~ ~ ~ - - -

.. 21

7 e

' - 8

.. 21

8 e

' y'8

.. 21

9 e'

y'8

220

tn(~)

B+P

221

lnB

- 8

222

lnB

81 +

1

223

8ln

8

81 +

1

224

ln (

~

a)

225

tan-

1 m

22

6 "-

...

J0(2

y'(

at))

cos

2y

'(at

) y'

(?rt

)

cosh

2y

'(at

) v'

( ?rt)

e-fJ

' -

e-«'

t

-0.5

77

2 -

ln t

Si(

t) c

os t

-O

i(t)

sin

t

-S

i(t)

Bin

t -

Oi(

t) C

OB t

2(1

-co

sat)

t

sin

at

t

d(t

-a)

f - - - w -VI

No.

F

(•)

227

E_

..

- • 22

8 E

-.. ...

229

E_

_.

(8 +

IX)

230

E_

..

<• +

IX

)•

231

E-.

.

<• +

IX

)(•

+

ß)

232

1-

E-.

. --- •

233

(• +

a

)r ..

a.

23

. E

_ ..

8(8

+

IX

)(B +

ß

)

I /(

I)

U(t-

a)

(t -

a)U

(I -

a)

E--

«11-

•lU(t

-a

)

(t -

a)E

--«

U-.

lU(t

-a

)

[E--

«(1-

•l -

E-t

JU

-•]

ß _

IX

V(t

-a

)

U(t

) -

U(t

-a

)

(t + ~

-a)

U(t

-a

)

[ I

E--«

1 ·-

·)

E-t

iU-•

l J

--

-U

(t-

a) IX

ß 1X

(ß -

IX)

ß(IX

-ß)

w -0\ ~ ~ - - -

Sachwortverzeichnis

Ähnlichkeitssatz 103 aktive Tiefpaßfilter n-ter

Ordnung 221 Algebra I Anfangsbedingung 65, 153 Anfangsstrom in einer Spule

ISS Anfangswertsatz 89 angepaßte Tiefpaßfilter 200 Anregungsfunktion 67 aperiodische Funktion 39 -- Schwingung 43 Ausschnitte von Funktions-

teilen 97

Bandfilter, geometrische Symmetrie von 197

-, Konstruktion von 198 -, maximal flache 197 Bandsperre 200 Beschleunigungsfunktion 166 Beschleunigungsmesser 166 Beseitigen einer Polstelle 28,

75 Besselsche Polynome 213 Binomialkoeffizienten 151 Blindwiderstand 107 Borelsches Theorem I 00 Brückenoszillator, Wienscher

113 Butterworth-Filter 186 Bu tterworth- Funktionen,

Polstellenlage von I 9 I

Cauchy-Riemannsche Kriterien 20

Dämpfungsfaktor 47 Determinanten, Lösung mit

Hilfe von 72 Differentialionssatz t'ür die

Bildfunktion 93 differenzierende Schaltungen,

aktive 131 Diracsche Deltafunktion 168 direkte Laplace-Transformierte

5 I, 52 direktes Fourier-Integral 44 Durchlaßbereich 187

Eingangsimpedanz 108 Einheitssprung 45

Fourier-Transformierte des 47

Einheitsvektor 2 einseitige Fourier-Transfor-

mation 49 Endwertsatz 86 Erregerfunktion 67 Eulersche Formeln 4, 36, 37

Faltungsintegral97, 100 Faltungssatz 97, 100 Filter, die Legendreschen

Polynomen entsprechen 217 die Tschebryscheffschen Polynomen entsprechen 217 Grenzfrequenz eines 186 Ordnung des 186

Filtergrenze, Schärfe der 187 Flächenelement 18 Flußverkettung 156, 161 Fourier-Analyse eines Rechl-

eckimpulses 44 Integral 42 Integral, direktes 44 Integral, inverses 44 Koeffizienten 172 Reihe 35 -, komplexe Form der

36 Transformation, einsei­tige 49 -, komplexe 49 Transformierte des Ein­heitssprunges 47

direkte 39 -, - einseitige 49 -, inverse 39

Frequenznormierung 185 Frequenzspektrum 39, 40 -, reelles diskretes 42 Funktion, analytische 20

aperiodische 39 -, maximal flache 187, 188 -, nichtanalytische 20 -, periodische 33 Funktion von Y s 227

Gegen-EMK 159 Gegeninduktivität I 53, I 58 geographische Ebene 6 Gleichrichtung, Halbweg- 178 Grenzfrequenz 186 Grundfrequenz 33 Grundschwingung, Kreis-

frequenz der 38

Halbweg-Gieichrichtung 178 Harmonische als Verzerrung

119 harmonische Schwingungen

35 Herationsschaltungen 233 Hochpaßfilter 196

Integrationssatz für die Bild­funktion 95

Integrationsweg 2 0 -, geschlossene Schleife als

20 integrierende Schaltungen,

aktive 131 inverse Laplace-Transformierte

5 I, 52 inverses Fourier-Integral 44 imaginäre Größen 2 Impedanz 109 Impedanzpegel 183 lmpulsfolgen, Laplace-Trans-

formierte von 17 4 Induktivität eines L-C-Reso­

nanzkreises 50 induzierte Rückwirkungs­

spannung 159 Integral, reelles 18 Integration als Summierung

der Residuen 31 in der komplexen Ebene 18 ff. längs einer geschlossenen Kurve 21 um eine Polstelle 21

zwei oder mehr Polstellen 29

Kapazität eines Koaxialkabels 11

- - Plattenkondensators 13

Kathodenverstärker 121 Kern 78 Kettenleiter 1 51, 241 -, Formeln Itir die Koeffi-

zienten von 247 Kirchhoffsche Gesetze 108 Kirchhoffsches Gesetz 69 Knotengleichungen 154 komplexe Ebene 3, 4

Integration in der 18 ff.

318

Fourier-Transformation 49 Funktion 13 ff.

Definition der 5 -, Nullstelle einer 16 -, Pol einer 15 Variable 13 -, Funktion einer 13 ff. Zahl 3, 4, 5

algebraische Form einer 3 Exponentialform einer 4

Imaginärteil einer 5 Polarform einer 4

, Realteil einer 5 Konvergenzfaktor 48 Kopplungsimpedanz 108

Ladungsverstärker 135 -, Analyse des 137 Laplace-Integral 51, 52 Laplacesches Grundintegral

53 Laplace-Transformation 49

einer·Stammfunktion 63

, Symbol der 54 Transformierte 50, 52 - der Ableitung 61

Exponentialfunk­tion 54 Exponentialfunk­tion von imaginärem Argument 55 - von komplexen

Argument 57 Hyperbelfunktionen 57 trigonometrischen Ausdrücke 55

des verschobenen Ein­heitssprunges 164 direkte 51, 52 eines einzelnen Säge­zahnimpulses 178 gepulster perio­discher Funktionen 179 inverse 51, 52 von Impulsfolgen 174

Leitwert, transformierter 154

lineare Phase, Approxima­tion einer 209

Linienintegral 32

Maschengleichungen 154 Mehrfachschleifenschaltun­

gen, Netzwerkgleichun­gen für 108

Merkatorprojektion 5

negative Zahlen 1 Netzwerksynthese 188 Nichtlinearität 119 Normierung der Frequenz 185 - - Übungsfunktion 183 Nullstelle einer komplexen

Funktion 16

Oberschwingung 33 Operator j 2

parametrische Variable 89, 99

Partialbruchzerlegung 79 Partialbrüche 77 Pascalsches Dreieck 1 51,

241 periodische Funktion 33

Funktionen, gepulste 179 -, Satz für 178

Phasenschieberoszillator 116 Phasenwinkel 10 Pole, Gruppen von 15 - höherer Ordnung,

Residuen von 79 Pol einer komplexen Funk­

tion 15 - Nullstellen-Diagramm

17 f. Polstelle außerhalb des

Integrationsweges 22 -, Beseitigen einer 28, 75 -, Integration um eine 21 Polstellen, radiale Kontrak­

tion der 105 Potenzreihe 248

radialer Fluß im Koaxial­kabel 13

Radiusvektor 21, 2 2 R-C-Aufspannetzwerke 126

Filter ftir die Hochfre­quenzstromversorgung 223 Kathodenverstärker 121 Oszillator mit Drehkon­densator 128

Sachwortverzeichnis

Tiefpaß, dreiteiliger nicht verjüngter 149 -, einteiliger 146 -, zweiteiliger nicht

verjüngter 14 7 Rechenverstärker 134 Rechteckimpuls 165

Fourier-Analyse eines 44 Gleichstromterm des 41 Grundschwingung des 41

, Oberschwingungen des 41 reelle Achse, Translation der

90 reelles Integral 18 reelle Variable 13 - -, Funktion einer 13 Relaisdämpfung 110 Residuen von Polen höherer

Ordnung 79 Residuum 24 -, Definition des 27 Rückkopplungsverstärker,

Analyse des 3-stufigen induktiven 143

Rückwirkungsspannung, induzierte 1 59

Sägezahnimpuls, Laplace­Transformierte eines einzelnen 178

Schaltungsmodelle , verlust­freie 259

Schaltungsparameter, Anfangsbedingungen fUr 153

Schwingung, allgemeine 175 -, aperiodische 43 Schwingungssystem,

mechanisches 166 S-E bene 6 ff. -, Translation in der 83 Selektive Variable 99 Siebschaltungen 131

Spannung, transformierte 154

Spannungsverstärker, induk­tiv rückgekoppelte 139

Spektrum, diskontinuier-liches 40

-, kontinuierliches 40 Sprungfunktion 45 -, verschobene 46 Spule, gegenseitig gekoppelte

159

Stammfunktion, Laplace­Transformation einer 63

Stoßcharakteristiken 16 5 Stoßspektrum-Computer 165

Sachwortverzeichnis

Strom, Definition des 65, 159

-, fiktiver 72 -, transformierter I 54 Summotionsindex 25 I

TabeHiermethoden 238 Tiefpaßfilter 186 -, angepaßte 200 Trägerwelle 179 Transformation eines

Gebietes II punktweise 7 zwischen z- und s-Ebene 7 ff.

transformierte Batterie I 56, 161

transformierter Leitwert 154

- Strom I 54 transformierte Spannung I 54 Translation der reellen

Achse 90 - in der komplexen

Ebene 83 transzendente Funktionen

77

Übergangsvorgang I 57 Übertragungsfunktion 67

, Normierung der 183 -, ungerade und gerade

Teile der unendliche Reihen in ge­

schlossene Form 250 Unterdeterminante I 09

319

Variable, parametrische 89, 99

-, selektive 99 Vektor 2 -, Drehung eines 2 verlustfreie Schaltungs-

modelle 259 Verschiebungssatz 175

W-Ebene 6

Z-Ebene 5 ff. Zeitebene I 5 Zeitverschiebung 91 Zeitverzögerungsfilter,

maximal geebnete 205