25
B-Physics activitites of the Karlsruhe CDF group - an Overview Michael Feindt, Ulrich Kerzel , Kurt Rinnert for the Karlsruhe CDF B group University of Karlsruhe, Germany Elementarteilchenphysik - Förderschwerpunkt Großgeräte der physikalischen Grundlagenforschung mailto:[email protected] 10th February 2004 U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 1

B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B-Physics activitites of the Karlsruhe CDF

group - an Overview

Michael Feindt, Ulrich Kerzel, Kurt Rinnert

for the Karlsruhe CDF B group

University of Karlsruhe, Germany

Elementarteilchenphysik

- Förderschwerpunkt

Großgeräte der physikalischenGrundlagenforschung

mailto:[email protected]

10th February 2004

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 1

Page 2: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

1. Tevatron and Luminosity

2. The CDF detector

3. B-Physics at Hadron colliders

4. B-physics program, Bs mixing

5. Particle ID, B-tagging

6. Observation and properties of X(3872)

7. Other activites: Grid, alignment, tracking, top

8. Conclusion

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 2

Page 3: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

The Tevatron

CDF

@@@R

D0

@@@R

Tevatron

main injectorrecycler

· observe pp̄ collisions

· 2 detectors: CDF and D0

· RunI (’85-’96) :√

s = 1.8 TeV

· major upgrades

· RunII (’01-’09) :√

s = 1.96 TeV

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350day

CD

F a

cqui

red

Lum

inos

ity (p

b-1)

2001

2002

2003

2004

2005

· better performance each year

· recorded ≈ 0.5fb−1

· (≈ 400pb−1 “good” data)

· expect ≈ 4− 8fb−1 by 2009

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 3

Page 4: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

The CDF Detector

New

Old

Partially New

Time of Flight Drift Chamber

Plug Calor

CentralCalor

Solenoid

Muon

Silicon MicrostripTracker

Muon System

• extensive upgrades

between RunI and RunII

• excellent tracking:

vertex dectector,

drift chamber

• particle ID:

dE/dx, time-of-flight

• tracking used already at trigger level:

strong in hadronic B decays

(trigger on displaced tracks)

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 4

Page 5: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B Physics At Hadron Colliders

p (GeV)T,min

Total Inelastic Cross−Section

.. 5000x

σ

60 mb

4 nb

100 nb

µ~29 bσ (b)

T

Integrated

pp b + ....

Above Min−P

Tevatron: (|y|<1)

9.44 9.46

Mass (GeV/c2)

0

5

10

15

20

25

σ (e

+ e- → H

adro

ns)(n

b) ϒ(1S)

10.00 10.020

5

10

15

20

25

ϒ(2S)

10.34 10.370

5

10

15

20

25

ϒ(3S)

10.54 10.58 10.620

5

10

15

20

25

ϒ(4S)

Υ(4S)e e+ −

• large production rates:

σ(pp̄ → bX) ≈ 29µb

103 higher than Υ(4s)

• heavy states only

at Tevatron: Bs, Σb,Λb

• but:

– inelastic cross-sec 1000 times higher than signal

→ triggers are essential

– σFNALbb̄

≈ σLEPbb̄

at high pt

– events “polluted” by beam remnants, etc.

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 5

Page 6: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Trigger overview

Most important triggers for B physics:

• Dimuon: “easy” trigger, clean signal

( J/Ψ → µ+µ−)

low branching fraction

• Displaced track: semileptonic decay

need particle ID to identify lepton

(BR ≈ 20%)

• Two track: trigger displaced vertex

trigger for fully hadronic B decays

(BR ≈ 80%)

d0

PV track

track

unstable

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 6

Page 7: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B-physics programme at CDF

• B0 mixing

• Bs mixing

• Observation and

properties of X(3872)

• Λb → J/ΨΛ lifetime

• Λb branching ratios

• B masses

• B+ → J/Ψπ

• semilep. moments

• BR and CP violation

in B → hh

• Bc → J/Ψπ

• FCNC B → µ−µ+

• J/Ψ, B cross-sections

• Bs/B0 BR ratio

• excited states: B∗∗, Σb

• B meson lifetimes

• Λb → pK, pπ

• Bs → φφ

• PentaQuark searches

• . . .

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 7

Page 8: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Exclusive states

Some examples of reconstructed states:

2) mass, GeV/cπKµµ(5.20 5.25 5.30 5.35

2ca

ndid

ates

per

2.5

MeV

/c

0

20

40

60

80

100

120

140

160

180

200

CDF Run II Preliminary -1pbL ~ 260*0 Kψ J/→ 0 B

39 sig.±1155candidatesFit prob: 29.7%

data

m(Sig)m(Swp)m(Bkg)

2) mass, GeV/cπKµµ(5.20 5.25 5.30 5.35

2ca

ndid

ates

per

2.5

MeV

/c

0

20

40

60

80

100

120

140

160

180

200

]2 candidate mass [GeV/cuB5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50

2E

vent

s/5

MeV

/c0

50

100

150

200

250

300

35052.6±N(Bu)=2264.1

-1CDF Run II Preliminary 220 pb

± Kψ J/→±B Fit Prob: 52.0%

]2

candidate mass [GeV/cbΛ5.3 5.4 5.5 5.6 5.7 5.8 5.9

2E

vent

s/6

MeV

/c

0

5

10

15

20

25

30

3510.3±)=88.6bΛN(

-1CDF Run II Preliminary 220 pb

Λ ψ J/→BΛFit Prob: 23.3%

2KK) mass, GeV/cµµ(5.3 5.4 5.5

2ca

ndid

ates

per

5.0

MeV

/c

0

10

20

30

40

50

60

CDF Run II Preliminary -1pbL ~ 260

φ ψ J/→ sB15 sig.±203

candidatesFit prob: 93.4%

data

m(Sig)m(Bkg)

2KK) mass, GeV/cµµ(5.3 5.4 5.5

2ca

ndid

ates

per

5.0

MeV

/c

0

10

20

30

40

50

60

M(Bs) [MeV]5340 5360 5380

Delphi 5374. ± 16. ± 2. 5374. ± 16. ± 2.

Aleph 5368.6 ± 5.6 ± 1.5 5368.6 ± 5.6 ± 1.5

Opal 5359. ± 19. ± 7. 5359. ± 19. ± 7.

CDF 5369.9 ± 2.3 ± 1.3 5369.9 ± 2.3 ± 1.3

CDF II (this) 5366.01 ± 0.73 ± 0.33 5366.01 ± 0.73 ± 0.33

Worldaverage 5369.6 ± 2.4 5369.6 ± 2.4

]2 [GeV/cφ φm5 5.2 5.4 5.6 5.8 6

2E

vent

s/24

MeV

/c1

2

3

4

5

6

7

CDF RunII Preliminary -110 pb±L = 179 12 events in search window

0.62±Expected BG events = 1.95

Bs → φφ

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 8

Page 9: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B mixing I

mass eigenstates 6= weak eigenstates

→ unitary CKM Matrix

→ unitarity triangle

(complex ρ, η plane)

d′

s′

b′

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

·

d

s

b

Aim: overconstrain triangle:

→ measure parameters

→ test unitarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

α

∆md

εK

εK

|Vub/Vcb|

∆ms & ∆md

sin 2β

α

βγ

ρ

η

excl

uded

are

a ha

s C

L < 0.05 C K M

f i t t e rICHEP 2004

· sin(2β) from B0 → J/ΨK0s

·γ from B0 → π+π−, Bs → K+K−

·|Vtd| from B0/B̄0 mixing

· xs

xd≈ |Vts|2

|Vtd|2(x = ∆m

Γ)

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 9

Page 10: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B mixing II

Measure:

A(t) =Nmix(t)−Nunmix(t)

Nmix(t) + Nunmix(t)

∝ cos(∆mst)

−0.1

−0.05

0

0.05

0.1

0 2.5 5 7.5 10proper decay time, t [ps]

Mix

ed A

sym

met

ry

Bd mixing ∆md = 0.5 ps−1

Bs mixing ∆m s= 20 ps−1

Dilution: 0.05%

challenging task reconstruct Bs signal:

• low Bs branching fraction

• tag flavour at production/decay

→ need high quality taggers:

Aobs(t) = A(t)true ·D(D = 2 · Purity − 1), tagging power εD2

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 10

Page 11: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Flavour tagging methods

K−

Bs

SST

OSTa l−

b K+

• Jet Charge:

Qjet =∑

i wiQi∑i wi

wi: weight, e.g. pαt (2− Tp)

Tp: prob. primary track

(sum over all tracks in jet)

• (Soft) Lepton ID:

identify semilep. B decay:

B → lX

• Kaon ID:

K is leading fragmentation

partner of Bs

→ particle ID essential for Bs mixing

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 11

Page 12: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

From Delphi to CDF . . .

Extensive experience with inclusive B physics at Delphi:

Expert-system BSAURUS

· 30 man-years of B physics experience

· provides 250 B physics related variables

· uses many neural nets to exploit all information

· TrackNet: track originates from B or not

· production decay flavour nets

· BDNet: discriminate secondary/tertiary vertex

· B species network

· . . .

→ transfer knowledge to CDF . . .

. . . but life much more difficult at hadron machines

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 12

Page 13: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

NeuroBayes I

→ Enormous Experience with Neural Networks in KA

Advantage of Neural Networks:

· learn higher order correlation to training target

· learn (higher order) correlation between variables

· do not require complete information all the time

· allow to to include “quality variables”

(e.g. good/bad measuerement, fit, etc)

Karlsruhe development: NeuroBayes NN package

(→ spin-off company Phi-T, supported by BMBF)

· sophisticated, automated preprocessing

· Bayesian approach and regularisation

· Network estimate can be interpreted as probability

· . . .U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 13

Page 14: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

NeuroBayes II - Bayesian Approach

Example: Exponential with Gaussian resolution

(lifetime of a particle)

t (true)

x (m

easu

red)

f(x|t)

f(t|x)

f(t|x)

f(x|t)

class. approachf(x|t) = f(t|x)approx valid farfrom phys. boundarieswith good resolution

Bayes’ statistics:uses a priori knowledge

− lifetime never negative− true distrib. is exponential

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 14

Page 15: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

TrackNet

→ B hadron has finite lifetime (≈ 1.6 ps)

→ decays at secondary vertex−−b

+b

BD

lepton

K

π

pK

π

Opposite Side

Same Side

→ use 3 consecutive NeuroBayes

neural networks to identify tracks from B decay

-· initial probability for track

to be B decay track

· build intermediate sec. vertices

of best candiatates

· select tracks compatible with

this vertexefficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1efficiency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

puri

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ construct best secondary vertex

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 15

Page 16: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

JetCharge tagging with Neural Networks

Aim: select inclusive high purity b jets for JetCharge Tag

→ TrackNet: use NeuroBayes to

obtain probability for track

come from B decay

(very good Data/MC

agreement, note log-scale)Neural Network output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-310

-210

-110All tracks in jets

lepton+SVT datalepton+SVT MCsignalbackground

→ JetNet: use NeuroBayes to

select b jets

(combine TrackNet,

jet-type variables)

jetNet output0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-210

-110

All Jetslepton+SVT datalepton+SVT MCbackgroundsignal

→ expect ≈ 10% improvement wrt. to current jet selection

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 16

Page 17: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Particle ID I

Time-of-flight:

· scintillation detectors at r = 140 cm

from interaction point

· combine: momentum from tracking

and time-of-flight → mass

→ 2σ K/π sepraration up

to pt ≈ 1.5GeV/chMass

Entries 395116

Mean 1.028

RMS 0.01923

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

1000

2000

3000

4000

5000

6000

hMassEntries 395116

Mean 1.028

RMS 0.01923

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

50

100

150

200

250

(TOF) Kaon > 0.0σ hMass0s_tofEntries 7184

Mean 1.026

RMS 0.01721

/ ndf 2χ 95.96 / 72

p0 11.1± -6821

p1 12.2± -4612

p2 12± 2.808e+04

p3 10± -1.66e+04

p4 7.7± 185.8

p5 0.000± 1.019

p6 0.000133± 0.003246

S/B = 1.02

(TOF) Kaon > 0.0σ

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

50

100

150

200

250

(TOF) Kaon > 0.5σ hMass05s_tofEntries 6159

Mean 1.026

RMS 0.01702

/ ndf 2χ 93.52 / 72

p0 10.3± -6772

p1 11.2± -4598

p2 11± 2.806e+04

p3 10± -1.665e+04

p4 7.2± 164.1

p5 0.000± 1.019

p6 0.000141± 0.003232

S/B = 1.03

(TOF) Kaon > 0.5σ

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

20

40

60

80

100

120

140

160

180

200

(TOF) Kaon > 1.0σ hMass1s_tofEntries 4576Mean 1.025RMS 0.01665

/ ndf 2χ 77.82 / 72

p0 8.8± -4539 p1 9.6± -6715

p2 9± 2.594e+04

p3 8± -1.465e+04

p4 6.6± 135.5

p5 0.000± 1.019 p6 0.00015± 0.00311

S/B = 1.11

(TOF) Kaon > 1.0σ

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

20

40

60

80

100

120

140

(TOF) Kaon > 1.5σ hMass15s_tofEntries 3309

Mean 1.024

RMS 0.01634

/ ndf 2χ 87.95 / 72

p0 7.4± -2400

p1 8.1± -8749

p2 8± 2.392e+04

p3 7± -1.275e+04

p4 5.8± 108.8

p5 0.000± 1.019

p6 0.000151± 0.002968

S/B = 1.18

(TOF) Kaon > 1.5σ

inv. Mass KK [GeV]0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.070

20

40

60

80

100

(TOF) Kaon > 2.0σ hMass2s_tofEntries 2198

Mean 1.023

RMS 0.01617

/ ndf 2χ 84.35 / 72

p0 5.9± 741.8

p1 6± -1.18e+04

p2 6± 2.095e+04

p3 5.5± -9877

p4 5.11± 78.62

p5 0.000± 1.019

p6 0.000178± 0.002858

S/B = 1.28

(TOF) Kaon > 2.0σ

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 17

Page 18: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Particle ID II

dE/dx: exploit energy-loss

according to Bethe-Bloch formula

µ π K p

e

D

e

Ene

rgy

depo

sit p

er u

nit l

engt

h (k

eV/c

m)

Momentum (GeV/c)

8

12

16

20

24

28

32

0.1 1 10in driftchamber (COT):

→ > 1.4σ K/π separation for pt > 1.4 GeV/c

→ 3σ e/π separation for p = 1GeV

in silicon detector (SVX):

→ up to 3σ separation

for p < 1 GeV

possible.

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 18

Page 19: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Particle ID III

Soft Lepton Tagging: electron ID

→ semilep. B decay: b → lX, J/Ψ → e+e−

Very difficult: huge background

· < 10% e− per event (mainly π±)

· conversion electrons

· Bremsstrahlung

efficiency0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

efficiency0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

puri

ty

0.8

0.85

0.9

0.95

1

@@Icut based approach

Approach: use NeuroBayes to identify electrons

→ exploit information about:

· calorimeter

· dE/dx

· time-of-flight

· curvature change in material

→ use same technique to build soft muon IDU.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 19

Page 20: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

B-Tagging for SingleTop

Search: electroweak top production

→ need to identify jet containing b� �

� �

��� ��

��� ���

Main background:

(after reconstr. second. vertex)

Wbb̄ 33%

Wcc̄ 12%

Wc 12%

mistag (uds) 26%

non-W 14%

Di-Boson 3%

→ 50% background from u, d, s, c

→ use NeuroBayes to

enrich events with b jets

efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

efficiency0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

puri

ty0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 20

Page 21: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Observation of X(3872)

New state: X(3872) → J/Ψπ+π−

Observed by Belle, confirmed by CDF

)2

Mass (GeV/c-π+πψJ/3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00

2C

andi

date

s/ 5

MeV

/c

0

500

1000

1500

2000

2500

3000

3.80 3.85 3.90 3.95900

1000

1100

1200

1300

1400

1500

-1~200 pbCDF II

measured by CDF:

· mass: 3871± 0.7± 0.4 MeV/c2

· lifetime: 439± 107µm

· long lived fraction: 16.1± 4.9 (stat)± 2.0 (syst) %

But what is it??

· cc̄ charmonium state?

→ very close to DD̄∗ threshold

· “molecular” state (1977: Glashow et al.) ?

· “Deuson” (DD̄∗ bound by π exchange) ?

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 21

Page 22: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Properties of X(3872)

m(π+π−) spectrum :

· peaks at high values

· ρ like ?

Determination of JPC: Helicity analysis

exploit information about:

· decay angles

· m(π+π−) spectrum

→ predicted distribution varies with

assumed JPC and decay

→ discriminate between different

assumptions

)ΨJ/Θcos(-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

arb.

uni

ts

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

ρ via -0

s)ππ via (+0ρ via +0

)ΨJ/Θangular distribution: cos(

Φ∆0 1 2 3 4 5 6

arb.

uni

ts0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

ρ via -0

s)ππ via (+0ρ via +0

Φ∆angular distribution:

→ challenge: low X(3872) yield

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 22

Page 23: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

Conclusion

• Rich and diverse B-physics programme

both at CDF in general and Karlsruhe

• Measured ∆md, on the way for measuring ∆ms

• Karlsruhe group very active:

· tracking, alignment,

· Grid,

· neural networks

· particleID, flavour tagging,

· exclusive B states, Bs-mixing,

· X(3872) properties

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 23

Page 24: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

What I did not talk about . . .

• Tracking:

KA main tracking developers

• Alignment

• Grid activities:

· successfull operation of SAM datahandling system

· ≈ 23TB of data at GridKa Tier1 centre

· (almost) autonomous operation of German group

· next step: fully GRID enabled

• Top-Group:

· focus on electroweak top production

· development of Physics Analysis Expert (PAX)

(with CMS group at KA, Aachen)

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 24

Page 25: B-Physics activitites of the Karlsruhe CDF group - an Overviekerzel/Talks/kerzel-heidelberg.pdf · Time of Flight Drift Chamber Plug Calor Central Calor Solenoid Muon Silicon Microstrip

U.Kerzel, University of Karlsruhe Hochenergiephysik Gruppenseminar 25