Bernd Schmid-Solar Cells

Embed Size (px)

Citation preview

  • 7/31/2019 Bernd Schmid-Solar Cells

    1/19

    Thin Film Solar Cells

    Thin Film Solar Cells

    Bernd Schmidt

    01.02.2008

  • 7/31/2019 Bernd Schmid-Solar Cells

    2/19

    Thin Film Solar Cells

    Physical Basics

    Semiconductors

    Metal: VB / CB overlap SC: energy gap eV

    Isolator: high energy gap (> 4.5eV) chargetransport

    withelectrons

    and withelectron-

    hole-pairs

  • 7/31/2019 Bernd Schmid-Solar Cells

    3/19

    Thin Film Solar Cells

    Physical Basics

    pn-junction, photovoltaic effect

    Fermi-niveau adjusts in crystal. Pairs may be seperated at thepn-junction.

  • 7/31/2019 Bernd Schmid-Solar Cells

    4/19

    Thin Film Solar Cells

    Physical Basics

    Shockley-Queisser Limit

    Shockley-Queisser Limit:

    The efficiency of a photovoltaic cell islimited by energy losses (particularly 1 and

    2). Thereby, the classical cells have anefficiency maximum of 33%.

    1. low energy photons2. relaxation from higher energies

    3. energy difference between layers

    4. passage into contacting electrodes

    5. recombination

  • 7/31/2019 Bernd Schmid-Solar Cells

    5/19

    Thin Film Solar Cells

    Forms of Solar Cells

    1st Generation

    mono or poly crystallinesemiconductor-plates, doped and

    contactedadvantage: simple fabrication,allready existing for electronicsdisadvantage: nonelastic,expensive, waste of material

  • 7/31/2019 Bernd Schmid-Solar Cells

    6/19

    Thin Film Solar Cells

    Forms of Solar Cells

    2nd Generation

    thin film cells with crystalline,

    amorph or organic semiconductorsadvantage: cheap, elastic, lesswastedisadvantage: lower efficiency,lower durability

  • 7/31/2019 Bernd Schmid-Solar Cells

    7/19

    Thin Film Solar Cells

    Forms of Solar Cells

    3rd Generation

    tandem cells with multiple thinfilmsadvantage: higher efficienciesdisadvantage: difficultimplementation (more energylosses)

    Shockley-Queisser-Limit:max. efficiency 33%energy losses with higher or lowerenergies

  • 7/31/2019 Bernd Schmid-Solar Cells

    8/19

    Thin Film Solar Cells

    Fabrication of Solar Cells

    mono crystalline wavers

    High-purity silicon is melted and and grownas a single crystal. Then the crystal issawed to wavers and polished, doped andcontacted.advantage: wavers are allready produced

    disadvantage: 50% of the material are lost

  • 7/31/2019 Bernd Schmid-Solar Cells

    9/19

    Thin Film Solar Cells

    Fabrication of Solar Cells

    poly crystalline silicon

    Silicon is melted and cast on a polycrystalline surface. It crystallizes alsopoly crystalline.

    advantage: fabrication even cheaper than wavers, user-definedform of crystalsdisadvantage: still much waste, lower efficiency

    h F l S l C ll

  • 7/31/2019 Bernd Schmid-Solar Cells

    10/19

    Thin Film Solar Cells

    Fabrication of Solar Cells

    Edge-defined Film-fed Growth (EFG)- Silicon

    Octagonal thin crystalsare grown. The crystalscan be several m thick.

    advantage: nearly no waste, directly thin filmsdisadvantage: lower efficiency (more imperfections)

    Thi Fil S l C ll

  • 7/31/2019 Bernd Schmid-Solar Cells

    11/19

    Thin Film Solar Cells

    Fabrication of Solar Cells

    Generation of thin Films

    1. sputtering of a transparentconductive oxyd layer (TCO) onglass

    2. structuring of the TCO layer with alaser

    3. deposition of thin doped siliconlayers

    4. silicon structuring with laser

    5. sputtering of back contact (Al)

    6. back contact structuring with laseradvantage: very precise fabrication, nearly no wastedisadvantage: (in case of silicon) special atmosphere / vacuum

    needed

    Thi Fil S l Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    12/19

    Thin Film Solar Cells

    Fabrication of Solar Cells

    Doping

    Diffusion:

    donators / acceptors gaseous inspecial atmosphere

    diffusion into crystal at about

    800 1200

    C concentration defined by

    endurance and temperature

    Ion Implantation: ion beam shot on crystal

    concentration defined by energyand angle of beam

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    13/19

    Thin Film Solar Cells

    Thin Film Cells

    CdTe-Cells

    large-scaled semiconductor-films possible

    deposition and doping also in oxygenic atmosphere

    no surface sealing

    band gap 1.5 2.4eV

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    14/19

    Thin Film Solar Cells

    Thin Film Cells

    CIS-Cells

    (nearly)user-defined bandgap (various similarmaterials)

    better tandem cells(less crystallinestructureimperfections)

    very elastic

    even textile solar cells

    cheap

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    15/19

    Thin Film Solar Cells

    Thin Film Cells

    Organic Semiconductors

    Spaghetti and Peas

    no more doping

    no sputtering

    InkJet printing

    Plastic Solar Cells

    extremely elastic

    sensitization by pigments

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    16/19

    Thin Film Solar Cells

    Thin Film Cells

    Spaghetti and Peas

    The absorber (spaghetti) take the energy of the photons passing it tothe acceptors (peas). The acceptors transport the electrons to the back

    contact (Al).Caused by this process splitting there are much less recombination andmore re-adsorbtion processes.

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    17/19

    Thin Film Cells

    Sensitization

    1. photon absorption

    2. electron transfer to SC

    3. electron transport in SC

    4. ohmic back contact

    5. small voltage at front contact

    6. small resistance in electrolyte

    7. fast regeneration

    fast injection of electrons intoTiO2 (fs ps)

    slow back transfer (nsms)

    slow recombination in thepigment (60ns)

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    18/19

    Applications

    Applications

    cheap power supply (e.g.Eldorado)

    small integrated solar cells

    architecticalimplementation of solarcells with shading effects

    Thin Film Solar Cells

  • 7/31/2019 Bernd Schmid-Solar Cells

    19/19

    Sources

    Sources

    Prof. Dr. Derck Schlettwein, Dunnschicht-Solarzellen - Alternativen zur klassischen Si-Technologie

    Photovoltaik Neue Horizonte, ForschungsVerbund Sonnenenergie, Berlin 2004

    H. Stroppe Physik fur Studenten der Natur- und Ingenieurwissenschaften, Fachbuchverlag Leipzig, Munchen 2005

    D.C.Giancoli Physik 3. Auflage, Pearson, Munchen 2006

    M. Lux-Steiner und G. Willeke, Physikalische Blatter 57, 47 (2001)

    http://www.iea-pvps.org/ar04/che.htm

    W.Jaegermann, D.Wohrle, M.Kunst, VW-Foundation

    TCO fur Dunnschicht- Solarzellen, ForschungsVerbund Sonnenenergie, Berlin 2001

    C.Brabec, A.Cravino, D.Meissner, N.S.Sariciftci, T.Fromherz, M.Rispens, L.Sanchez, J.C.Hummelen, Adv. Funct.Mat.11, 374 (2001)

    http://www.fz-juelich.de/ste/datapool/Energieplattform/Vortrag%20Energieplattform%202.pdf

    http://www.uni-saarland.de/fak7/fze/AKE Archiv/AKE2004F/AKE2004F Vortraege/AKE 2004F 05Glunz Photovoltaik uf.pdf

    http://epub.ub.uni-muenchen.de/1368/1/senior stud 2007 01 02.pdf

    http://www.halbleiter.org/waferherstellung/index?thema=dotieren

    http://www.imtek.de/anwendungen/content/upload/vorlesung/2005/mst t&p 04 duennschichttechnik (teil 3 vom 05.12.2005).pdf