Bravais Gitter Structure

Embed Size (px)

DESCRIPTION

Structure von Bravais Gitter

Citation preview

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Struktur von EinkristallenIdealer Kristall: unendliche Wiederholung von identischen Strukturelementen Struktureinheit wird als Basis bezeichnet und die Vorschrift fr die Aneinanderreihungresultiert in einem Raumgitter Kristall = Gitter + Basis

    Das Bravais-GitterUnendliches Gitter von Raumpunkten mit einer Anordnung und Orientierung, die exakt gleich aussieht, egal von welchem Gitterpunkt wir das Gitter betrachten

    R = n1a1 +n2 a22-dimensional

    R = n1a1 + n2 a2 + n3 a33-dimensional

    n1, n2, n3 : ganze Zahlena1, a2, a3: Basisvektoren (Gitterkonstanten)

    T = n1a1 + n2 a2 + n3 a3

    Bravais-Gitter invariant gegenber diskretenTranslationen um den Translationsvektor

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Crystal structure in 2D

    BravaisBravais lattice in two dimensionslattice in two dimensionsKristall = Gitter + Basis

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Crystal structure in 2D

    Not an unit cell

    The primitive unit cell

    Wigner-Seitz- unit cellIs a primitive cell

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Bravais-Gitter7 Kristallsysteme mit 14 Bravaisgittern

    Experimentalphysik IV; SoSe2008; Petra Tegeder

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Simple cubic The simple cubic structure is a Bravais lattice. The basis is one atom. So there is one atom per unit cell.

    a1 a2

    a3 A simple cubic structure is not a good idea for

    packing spheres (they occupy only 52% of the total volume).

    Only two elements crystallise in the simple cubic structure (F and O).

    1/8 atom

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    hcpABABAB...

    fccABCABCABC...

    The face-centred cubic (fcc) and hexagonal close-packed (hcp) structure have the same packing fraction

    Close-packed structures: fcc and hcp

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Kristallstrukturen

    Experimentalphysik IV; SoSe2008; Petra Tegeder

    kubisch raumzentriertes Gitter (bcc-Struktur) bcc: body centered cubic

    kubisch flchenzentriertes Gitter(fcc-Struktur) fcc: face centered cubic

    Festkrper, deren Basis nur aus einem Atom besteht

    z.B. Alkalimetalle, Metalle(Wolfram Tantal, Molybdn) z.B. Edelmetall, Edelgase

    Jedes Atom hat 8 nchste Nachbarn(Koordinationszahl 8)

    Jedes Atom hat 12 nchste Nachbarn(Koordinationszahl 12)

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Close-packed structures: hcp

    The hcp lattice is NOT a Bravais lattice. It can be constructed from a Bravais lattice with a basis containing two atoms.

    the packing efficiency is of course exactly the same as for the fcc structure (74 % of space occupied).

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Kristallstrukturen

    Experimentalphysik IV; SoSe2008; Petra Tegeder

    Natriumchlorid-Struktur Csiumchlorid-Struktur

    Beispiele: Beispiele:

    Festkrper, deren Basis nur aus zwei Atomen besteht

    Cl-

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Diamant-Struktur Zinkblende-Struktur

    Kristallstrukturen

    Experimentalphysik IV; SoSe2008; Petra Tegeder

    Beispiele: Beispiele:

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Gitterstrukturen der chemischen Elemente

    Experimentalphysik IV; SoSe2008; Petra Tegeder

    dhcp-Struktur (double hexagonal closed packed)Stapelfolge ABACABAC

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    X-ray diffraction

    The atomic structure of crystals cannot be determined by optical microscopy because the wavelength of the photons is much too long (400 nm or so).Thecrystals can be used to diffract X-rays (von Laue, 1912).

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Experimentelle Methoden zur Strukturbestimmung

    Beugung von Wellen an periodischen Strukturen

    Die Bragg-Bedingung:

    2d sin = n n= 1, 2, 3, . . . .

    William Henry Bragg (1862-1942) William Lawrence Bragg (1890-1971)Nobelpreis f. Physik (1915)

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Labelling crystal planes (Miller indices)1. determine the interceptswith the axes in units of the lattice vectors

    2. take the reciprocal of each number

    3. reduce the numbers to the smallest set of integers having the same ratio. These are then called the Miller indices.

    step 1: (2,1,2)step 2: ((1/2),1,(1,2))

    step 3: (1,2,1)

    S1 = m1 aS2 = m2 b

    S3 = m3 c

    h = p/m1k = p/m2l = p/m3

    Miller Indices: Triple (hkl) integer numbers

    p: smallest integer numberleading to integer hklnumbers

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Example

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The reciprocal lattice

    for a given Bravais lattice

    The reciprocal lattice is also a Bravais lattice

    the reciprocal lattice is defined as the set of vectors G for which

    a useful relation is

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The reciprocal lattice

    if we have

    The vectors G of the reciprocal lattice giveplane waves with the periodicity of the lattice.

    In this case G is the wave vector and 2pi/|G| the wavelength.

    then we can write

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The reciprocal latticeexample 1: in two dimensions

    |a1|=a|a2|=b

    |b2|=2pi/b

    |b1|=2pi/a

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Lattice waves

    real space reciprocal space

    a

    b

    2pi/a

    2pi/b(0,0)

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Lattice waves

    real space reciprocal space

    a

    b

    2pi/a

    2pi/b(0,0)

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The reciprocal lattice

    example 2:

    The fcc lattice is the reciprocal of the bcc lattice and vice versa.

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The reciprocal of the reciprocal latticeis again the real lattice

    |a1|=a|a2|=b

    |b2|=2pi/b

    |b1|=2pi/a

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Other applications of the reciprocal lattice

    example: charge density in the chain

    Fourier series

    alternatively

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Other applications of the reciprocal lattice

    1D reciprocal lattice

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    Die van Laue-Beugung

    Experimentalphysik IV; SoSe2008; Petra Tegeder

    Max von Laue (1879-1960)Nobelpreis fr Physik 1914

    van Laue-Bedingung:

    k k = k = G

    Bei der Streuung an einem Kristall wird nurdann konstruktive berlappung der Teilwellen erhalten, wenn die nderung k = k- k des Wellenvektors gleich einem Gittervektor G des reziproken Gitters ist

    Der Satz G der reziproken Gittervektoren bestimmt die mglichen Beugungsreflexe. Messanordnung Laue-Beugung:

    kontinuierliches Rntgenspektrum (variables );Beugung am Einkristall

  • SS 09 - 20 140: Experimentalphysik IV K. Franke & J.I. Pascual Structure of solids

    The Ewald construction

    Draw (cut through) the reciprocal lattice.

    Draw a k vector corresponding to the incoming x-rays which ends in a reciprocal lattice point.

    Draw a circle around the origin of the k vector.

    The Laue condition is fulfilled for all vectors k for which the circle hits a reciprocal lattice point.

    Laue condition if G is a rec. lat. vec.Elastic scattering