80
Tierärztliche Hochschule Hannover Institut für Tierökologie Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches INAUGURAL - DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften - Doctor rerum naturalium - (Dr. rer. nat.) vorgelegt von Hans-Jürgen Osigus Aurich, Deutschland Hannover 2019

Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

TierärztlicheHochschuleHannover

InstitutfürTierökologie

Comparativemitochondrialgenomicsinbasalmetazoans:new

phylogeneticandfunctionalapproaches

INAUGURAL-DISSERTATION

zurErlangungdesGradeseinesDoktorsder

Naturwissenschaften

-Doctorrerumnaturalium-

(Dr.rer.nat.)

vorgelegtvon

Hans-JürgenOsigusAurich,Deutschland

Hannover2019

Page 2: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

WissenschaftlicheBetreuung: Prof. Dr. Bernd SchierwaterInstitut für Tierökologie, StiftungTierärztlicheHochschuleHannover

1.Gutachter: Prof.Dr.BerndSchierwater Institut für Tierökologie, Stiftung

TierärztlicheHochschuleHannover2.Gutachter: Prof.Dr.DieterSteinhagen Abteilung Fischkrankheiten und

Fischhaltung, Stiftung TierärztlicheHochschuleHannover

TagdermündlichenPrüfung: 15.05.2019Diese Doktorarbeit wurde von der DeutschenForschungsgemeinschaft, der StudienstiftungdesDeutschenVolkes,dem Böhringer Ingelheim Fonds sowie der Stiftung TierärztlicheHochschuleHannoverunterstützt.

Page 3: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

Thisthesisisdedicatedtomyparents

Page 4: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The
Page 5: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

I

TableofcontentsListofabbreviations IISummary IVZusammenfassung VListofpreviouslypublishedchapters VI1.Generalintroduction 012.Chapters I. Chasingtheurmetazoon:strikingablowforqualitydata? 14 II. MitogenomicsatthebaseofMetazoa 15 III. GlobaldiversityofthePlacozoa 16 IV. DeepRNAsequencingrevealsthesmallestknown mitochondrialmicroexoninanimals:Theplacozoancox1 singlebasepairexon 17 V. Trichoplaxgenomesrevealprofoundadmixtureand suggeststablewildpopulationswithoutbisexual reproduction 18 VI. Comparativegenomicsandthenatureofplacozoan species 19 VII. Polyplacotomamediterraneaisanewramifiedplacozoan species 20 VIII. AccumulationofGC-richhairpinsinlargeplacozoan mitochondrialgenomes 21 IX. Newinsightsintocomplexmitochondrialgenome evolutionwithintheHoilungia-group(phylumPlacozoa) 403.Generaldiscussion 604.Statement 695.Acknowledgements 706.Digitalappendix

Page 6: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

II

Listofabbreviations

5` fiveprime

3` threeprime

A adenine

Ala alanine

Arg arginine

Asn asparagine

Asp aspartate

ATP adenosinetriphosphate

B CorGorT(IUPACnucleotidecode)

BA Bayesiananalyses

BLAST BasicLocalAlignmentSearchTool

bp basepair

C cytosine

cDNA complementarydeoxyribonucleicacid

CDS codingsequence

COB cytochromeb

COX cytochromecoxidase

Cys cysteine

CYTB cytochromeb

DNA deoxyribonucleicacid

ds double-stranded

e.g. exempligratia(“forexample”)EST expressedsequencetag

etal. etalii/ etaliae(“andothers”)Fig. figure

frag. fragment

G guanine

gen. genus

Glu glutamate

Gln glutamine

Gly glycine

H haplotype

His histidine

i.e. idest(“thatis”)Ile isoleucine

k-mer nucleotidestringoflengthkkb kilobase(1000basepairs)

LAG LAGLIDADGhomingendonuclease

LBA longbranchattraction

LCA lastcommonancestor

Page 7: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

III

LCMA lastcommonmetazoanancestor

Leu leucine

Lys lysine

Met methionine

mito mitochondrial

ML MaximumLikelihood

mm millimeter

mRNA messengerribonucleicacid

mt mitochondrial

N “anybase”(IUPACnucleotidecode)

NAD nicotinamideadeninedinucleotide

NCBI NationalCenterofBiotechnologyInformation

NJ NeighborJoining

nov. novaORF openreadingframe

PCR polymerasechainreaction

Phe phenylalanine

PolB DNApolymeraseB

Pro proline

rDNA ribosomaldeoxyribonucleicacid

Refseq NCBIReferenceSequenceDatabase

RNA ribonucleicacid

RNAseq ribonucleicacidsequencing

rRNA ribosomalribonucleicacid

RT reversetranscriptase

S Svedbergunit

Ser serine

spec. species

sp. species

ss single-stranded

suppl. supplementary

T thymine

Thr threonine

ToL TreeofLife

trn transferribonucleicacid

tRNA transferribonucleicacid

Trp tryptophan

Tyr tyrosine

U uracil

V AorCorG(IUPACnucleotidecode)

Val valine

vs. versus

Page 8: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

IV

SummaryHans-JürgenOsigus

Comparative mitochondrial genomics in basal metazoans: new

phylogeneticandfunctionalapproaches

The phylum Placozoa is crucial for understanding the early evolutionarypathwaysofanimalmitochondrialgenomes.Thestudiesconductedinthisthesistarget early metazoan mitochondrial phylogenetics, placozoan mitochondrialmRNA processing and comparative placozoanmitochondrial genomics and itsimplicationsforplacozoantaxonomy. Inorder to test theeffectof taxonsamplingonmetazoanmitochondrialphylogenies,fivecomprehensivewholemitochondrialdatasetsweregeneratedand analyzed. The outcomes of the analyses support some well-knowntopologies, but also reveal some problematic taxa. In sum, with respect tophylogenetics,mitochondrialdatasetsperformbestbelowthephylum-level,ascurrent evolutionarymodels strugglewithdataheterogeneity and long-branchattractionartifacts. Deep RNA sequencing revealed the existence of a single base pair cox1microexonbutdoesnotsupportmRNAeditinginPlacozoa.Thiscox1microexonisthefirstmitochondrialsinglebasepairexonreportedfromananimal. Thecomparativeanalysesofninenewplacozoanmitochondrialgenomesrevealed an unexpected diversity and complex evolutionary history ofmitochondrial DNA characteristics within Placozoa. Complemented by nucleargenome data, this mtDNA diversity yielded the formal description of the newplacozoan genus Polyplacotoma. The analyses also provided new importantinsights into enrichment patterns of GC-rich hairpins, the evolution of geneordersandcomplexfragmentationpatternsofplacozoanmitochondrialgenes.

Page 9: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

V

ZusammenfassungHans-JürgenOsigus

VergleichendemitochondrialeGenomanalysen inbasalenMetazoen:neue

phylogenetischeundfunktionelleAnsätze

Der Tierstamm Placozoa spielt eine Schlüsselrolle für die Rekonstruktion derfrühen Evolution tierischer mitochondrialer Genome. Die vorliegende Arbeitbeschäftigte sichmitmitochondrialen phylogenetischenAnalysen an der BasisderMetazoa, mitmitochondrialermRNA Prozessierung in Placozoa sowiemitvergleichenden mitochondrialen Genomanalysen und deren Einfluss auf dieTaxonomieinnerhalbderPlacozoa. Anhand von fünf Datensätzen wurde in dieser Arbeit der Einfluss derTaxonauswahl auf mitochondriale phylogenetische Analysen untersucht. DieErgebnisse unterstützen einerseits bekannte Verwandtschaftsbeziehungenzwischen ursprünglichen Vielzellern und identifizieren darüber hinausproblematische Taxa. Mitochondriale Daten erscheinen insbesondere fürgenealogische Analysen unterhalb des Tierstamm-Niveaus hilfreich, da dieaktuell verfügbaren evolutionären Modelle aufgrund von Datenheterogenitätund analysebedingten Artefakten bei höheren taxonomischen Ebenen an ihreGrenzenstoßen. Die indieserArbeitdurchgeführtehochabdeckendeRNA-Sequenzierungergab,dassdascox1GenderPlacozoaanstatteinermRNAEditierungspositioneinultrakurzes1-Basenpaar-Mikroexonenthält.DiesesMikroexon istdaserstemitochondriale1-Basenpaar-Exon,dasjemalsimTierreichgefundenwurde. Die Analyse von neun neuen mitochondrialen Genomen förderte eineunerwartete genetische Vielfalt und komplexemtDNAEvolution innerhalb derPlacozoa zutage. Unterstützt durch Kerngenomdaten führte diesemitochondrialeVielfaltzurformellenBeschreibungderneuenPlacozoa-GattungPolyplacotoma.WeiteremtDNAAnalysengabendarüberhinausneueEinsichtenin die Anreicherung von GC-reichen Haarnadelstrukturen, die Evolution derGenanordnungsowiedieGenfragmentierunginnerhalbderPlacozoa.

Page 10: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

VI

ListofpreviouslypublishedchaptersThe following chapters have previously been published in international peer-reviewedscientificjournals:ChapterIH.J.Osigus,M.Eitel,B.Schierwater,Chasingtheurmetazoon:strikingablowforquality data?, Mol Phylogenet Evol 66(2) (2013) 551-7. doi:10.1016/j.ympev.2012.05.028ChapterIIH.J. Osigus, M. Eitel, M. Bernt, A. Donath, B. Schierwater, Mitogenomics at thebase of Metazoa, Mol Phylogenet Evol 69(2) (2013) 339-51. doi:10.1016/j.ympev.2013.07.016ChapterIIIM.Eitel,H.J.Osigus,R.DeSalle,B.Schierwater,Globaldiversityof thePlacozoa,PlosOne8(4)(2013)e57131.doi:10.1371/journal.pone.0057131ChapterIVH.J.Osigus,M.Eitel,B. Schierwater,DeepRNAsequencing reveals the smallestknownmitochondrialmicroexoninanimals:Theplacozoancox1singlebasepairexon,PlosOne12(5)(2017)e0177959.doi:10.1371/journal.pone.0177959ChapterVK.Kamm,H.J.Osigus,P.F.Stadler,R.DeSalle,B.Schierwater,Trichoplaxgenomesrevealprofoundadmixtureandsuggeststablewildpopulationswithoutbisexualreproduction,SciRep8(1)(2018)11168.doi:10.1038/s41598-018-29400-yChapterVIM.Eitel,W.R.Francis,F.Varoqueaux,J.Daraspe,H.J.Osigus,S.Krebs,S.Vargas,H.Blum,G.A.Williams,B.Schierwater,G.Wörheide,Comparativegenomicsandthenature of placozoan species, Plos Biol 16(7) (2018) e2005359. doi:10.1371/journal.pbio.2005359ChapterVIIH.J. Osigus, S. Rolfes, R. Herzog, K. Kamm, B. Schierwater, Polyplacotomamediterraneaisanewramifiedplacozoanspecies,CurrBiol29(5)(2019)R148-R149.doi:10.1016/j.cub.2019.01.068

Page 11: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

1

1.Generalintroduction

TheoriginofMetazoaandrelationshipsbetweennon-bilaterianphyla

ThereconstructionoftheoriginandtheearlydiversificationofMetazoaisoneof

themajor challenges in the field of evolutionary biology (1). The phylogenetic

relationships between the four extant non-bilaterian phyla Placozoa, Porifera,

CnidariaandCtenophoraaswellasthehighersystematicswithinthesetaxaare

controversiallydiscussed (2).WhileChoanoflagellataaregenerally acceptedas

thesistergrouptoMetazoa(3),thequestionabouttheclosestextantmetazoan

relative of the hypothetical last common metazoan ancestor (LCMA) is still

unresolved(4).Forseveraldecades,comparativeapproachestoreconstructthe

relationships between early branching metazoans were mainly based on

morphological data (see e.g. 5,6, and references therein). Such morphology-

based scenarios suggested either Placozoa or Porifera as the first branching

animal phylum, while cnidarians and ctenophores have been considered as

rather derived non-bilaterian animals, due to their multiple complex

morphologicaltraitslikeforinstanceanervoussystem(seealso7).

Sincetheestablishmentofhigh-throughputDNAsequencingtechnologies,

large multi-gene data sets have been used to address the question of the

branchingorderofnon-bilaterians.Theoutcomeofsuchmolecularapproaches

ishighly inconsistentand inmanyrespectsevenhighlycontradictory (4,8-11),

andresultingtreetopologieshaveshowntobesensitivetoparametersliketaxon

sampling, outgroups or evolutionary models (12). The majority of recent

analysesbasedonnuclearencodedgenessupporteitherPoriferaorCtenophora

asasistertoallotheranimals(e.g.8,9),whileplacozoansfrequentlycomeoutas

a sister toa clade formedbyCnidariaandBilateria (e.g.13,14,15). Incontrast,

earlystudiesusingmitochondrialdatasetssupportasistergrouprelationshipof

bilaterianandnon-bilateriananimals,withplacozoansastheearliestbranching

phylumwithinthenon-bilaterianclade(16,17).

ThephylumPlacozoa

Although the first placozoan species Trichoplax adhaerens has already been

describedin1883(18),thephylumPlacozoaisstillascientificenigmainseveral

Page 12: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

2

respects (19).Allplacozoans,which so farhavebeen sampled, share the same

general morphological bauplan, i.e. a three-layered body organization (e.g.

18,20). Complex structures like eyes or a nervous system as well as related

specialized cells are missing in placozoans (21). Despite their morphological

simplicity, placozoans exhibit a complex coordinated feeding behavior and the

ability to perceive light or gravitation (22-24). Up to now six different

morphologicalcelltypeshavebeendescribedinTrichoplaxadhaerens(25),and

studies on single cell transcriptomes or cellular neuropeptide content have

suggested the presence of various additional subpopulations of cell types

(26,27). However, the definite cellular composition and architecture is still

incompletely understood. In addition, observed ultrastructural differences

between genetic lineages do not conclusively match to molecular systematics

(20). Although sexual reproduction has been deduced by genetic approaches

(28), observations of placozoan sexual reproduction in the field are missing.

Under laboratory conditions, placozoans reproducemostly vegetatively, i.e. by

fission(29).Allapproachestoclosetheplacozoanlifecycleinthelaboratoryso

fardonotreachalevelbeyondthe128-cell-stageofembryos(30).Microscopic

and genetic studies have identified bacterial endosymbionts in placozoans,

which are transmitted via oocytes (30,31, and references therein). Little is

knownabouttheinteractionofplacozoanswithotherorganismsinthefield,as

wellas theirpreciseecologicalniches (reviewed in29).Nevertheless,different

gastropod species belonging to the genus Rhodopehave been observed while

feedingonplacozoans(32,andreferencestherein).

Despitethemacroscopicmorphologicaluniformityofplacozoans,several

recent genetic studies have revealed a remarkable genetic diversity, indicating

theexistenceofvariouscrypticspecies(33-35).Themolecularsystematicwithin

the phylum Placozoa is primarily based on themitochondrial 16S rDNA (33).

Samplingeffortsintropicalandsubtropicaloceansworldwidesofarhaveledto

16 genetic lineages described until 2010, although a much higher number of

different placozoan lineages in the field is to be expected (34). Based on

mitochondrial 16S rDNA phylogenies, known placozoan lineages are currently

subdivided into twogroupsAandB,withgroupAagainbeingsubdivided into

twosubgroupsA1andA2,respectively(34).Thegroupsharbordifferentgenetic

Page 13: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

3

clades,whichunifydifferent16SrDNA lineages(34).Althoughthepreliminary

classification of placozoans into different groups and clades is a practical

solution, an accepted Linnean systematic is still missing (19). Therefore, all

placozoans except Trichoplax adhaerens H1 (18) are currently provisionally

called “haplotype/lineage”, with newly identified lineages assigned to a

consecutive“H”-number(e.g.H2)(33).

Mitochondrialgenomicsinearlydivergingmetazoans

Mitochondriaaresmalleukaryoticcellorganelles,whichplayafundamentalrole

incellularprocesseslikeoxidativephosphorylationorapoptosis(36).Asarelict

of theiralpha-proteobacterialorigin,mitochondria retained theirowngenome,

although most mitochondrial genes have been transferred into the nuclear

genome (37,38). Since the characterization of the first completemitochondrial

genome(i.e.thatofHomosapiens)in1981(39),ongoingsequencingeffortshave

yieldedatotalnumberofmorethan8,100completemetazoanmtDNAsequences

(Refseq, 01/2019). The most informative characters for comparative whole

mitochondrial genome analyses are genome size, genome architecture,

nucleotide composition, gene content, gene order and presence/absence of

intronsoropenreadingframesofunknownfunction,respectively(40).

MitogenomicdatafromChoanoflagellata(theoftenassumedsistergroup

ofMetazoa, see above) are of outstanding importance to understand the early

evolution of metazoan mitochondrial genomes (41). Several choanoflagellate

genome sequencing projects are currently in progress, but the only available

complete choanoflagellatemitogenome still is that ofMonosigabrevicollis(42).

Incontrast tomostanimalmitochondrialgenomes, thecircularmitogenomeof

Monosigabrevicollis is a largemolecule, which codes for several open reading

frames (ORFs) of unknown function. In addition, introns can be found in the

Monosigacox1andnad5gene,respectively.Themostremarkabledeviationfrom

animal mitochondrial genomes, however, is the presence of mitochondrial

encoded ribosomal proteins (42). Although the precise characteristics of the

hypotheticalurmetazoanmitochondrialgenomeareunknown,itisreasonableto

suppose that the urmetazoan mtDNA shares several traits with extant

choanoflagellatemitogenomes(41,42).

Page 14: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

4

Early comparative studies on animal mitochondrial genome evolution

suffer from data scarcity from non-bilaterian phyla (43). The resulting strong

biastowardsbilaterianmitogenomeshasmisledseveralauthorstoprematurely

postulate that animal mitochondrial genomes in general are highly uniform,

compact molecules (43). This picture, however, has been refuted since more

non-bilaterian mitogenome sequences have become available (40). Given the

actualmitogenome size variation between andwithin non-bilaterian phyla, anoverallsizespecificationisproblematic.However,themajorityofnon-bilaterian

mitogenomes is in a range of 15-23 kb (44). While most non-bilaterian

mitochondriapossess a circular chromosome,multipartite linearmitogenomes

have nevertheless been reported from some sponges and cnidarians,

respectively(reviewedin40).Non-bilaterianmtDNAshaveaGC-contentbelow

40%, with few exceptions found in Placozoa as well as some sponge and

cnidarian species (NCBI, Organelle Genome Resources, 01/2019). The typical

mitochondrial encoded gene set in non-Bilateria comprises 14 protein coding

genes (cox1-3,cob,nad1-6,nad4L,atp6,atp8,atp9), 2 rRNAs (12Sand16S) as

well as approximately 24 tRNAs (40). However, the number of mitochondrial

encodedtRNAgenescanbedramaticallyreduced,asoccasionallyseeninallnon-

bilaterian phyla except Placozoa (44). Independent intron/ORF gain or loss

events have likewise been reported, further highlighting the high dynamic of

mitogenomeevolutionatthebaseofMetazoa(40).Thisdynamicisalsoreflectedbysequenceevolutionrates,whichcansubstantiallydifferevenbetweenclosely

relatednon-bilateriantaxa(e.g.45).Finally,unusualmolecularmechanismslike

tRNA/mRNAeditingandtranslational frameshiftingemphasizetheoutstanding

role of non-bilaterians as model systems for studies on complex molecular

processesinMetazoa(46,47).

Placozoanmitogenomics

TheveryfirstGenbankentryofaplacozoanmitochondrialDNAsequence, i.e.a

partialTrichoplaxadhaerensH116SrDNAsequence,backdatestotheyear2003

(48).In2006,thefirstcompleteplacozoanmitochondrialgenomeofTrichoplax

adhaerens H1 has been published (16), followed by in sum four additional

placozoan mitochondrial genomes, which have been described afterwards in

Page 15: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

5

2007and2012,respectively(17,49).ThemitochondrialgenomesofTrichoplax

adhaerens H1 (clade I), haplotype H3 (clade II), haplotype H4 (clade V),

haplotype H8 (clade III) and haplotype H15 (clade V) share several general

characteristics (17,49).All theseplacozoanmitochondrial genomeshavea size

above30kb,largeintergenicspacerregionsandanunevendistributionofgenes

on both strands. Furthermore, they contain several introns as well as open

reading frames of unknown function. Other shared characteristics are the

absenceofatp8/atp9andthepresenceofaconservedsetof24tRNAs.Asingle

controlregion,whichisknowne.g.frombilaterianmitochondrialgenomes(50),

couldnot be identified yet, asmultiple largenon-coding candidate regions are

present in placozoan mitogenomes. Despite overall similarities, the order of

typical mitochondrial genes is different in each of the so far characterized

placozoan16Sclades(17).Thesehighrearrangementdynamicsareexceptional

amonganimalsandmakecompleteplacozoanmitogenomesanidealdatasetnot

onlytofurtherilluminateplacozoanrelationships,butalsotobetterunderstand

thegeneticradiationoffastevolvingmetazoanmtDNAs(17).However,giventhe

small number of available complete mitogenome sequences, the ancestral

mitochondrialgeneorderinplacozoanscouldnotbereliablyreconstructeduntil

today. Furthermore, the molecular mechanisms underlying the observed

rearrangementsareunknown(17).

Anotherremarkableplacozoanfeatureistheunusualcox1genestructure.

In detail, the splitting of the cox1gene into up to eight exons (some of them

encodedondifferentstrands)requires trans-splicing togenerateaconsecutive

mRNAtranscript(16,17,49).Thiscox1genefragmentationcombinedwithtrans-

splicing is exceptional among animals (51). In this context, a remarkable

hypothesis postulated by Burger and co-workers in 2009 (51) even suggests

mitochondrial mRNA editing in the placozoan cox1 gene. In this scenario, the

cox1 mRNA is edited at a specific position from “U” to “C” to maintain an

evolutionary conservedhistidine.Theorigin andmechanismsof theplacozoan

cox1mRNAediting,however,arestillawaitingfurtherinvestigation(51).

Page 16: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

6

Aimsandscope

Non-bilaterianmitogenomics is a rapidly growing research field, sincemodern

high-throughput sequencing technologies allow the fast and cost-efficient

generation of largemolecular data sets, even for non-model organisms. In the

courseofthisthesis,intensivemitochondrialgenomesequencingeffortsofother

researchgroupsalready coveredabroad rangeof taxa fromPorifera,Cnidaria

and Ctenophora. The main focus of this thesis is therefore on mitochondrial

genomesfromthefourthnon-bilaterianphylum,i.e.thePlacozoa.

Resolving placozoan mitogenomics is crucial to a broad spectrum of

questions:1)Mitochondrial geneticmarkers are commonlyused in studies on

placozoan biodiversity and inner systematics.2)Mitochondrial protein coding

genes are an important resource for deep metazoan phylogenetic approaches

targetingthebaseofthemetazoantreeoflife.3)Theunusualandincompletely

understood placozoan mitochondrial cox1mRNA editing mechanism calls for

further investigation using state-of-the-art RNA sequencing technologies. 4)

AdditionalplacozoanmtDNAsequencedataareessentialtofurtherunderstand

the complex history of placozoan mitogenome evolution and to improve

scenarios on the early evolution of metazoan mitogenomes. 5)Mitochondrial

genome data are an important complement for comparative studies on

placozoan nuclear genomes to minimize errors caused by potential genome-

relatedanalysesartifacts.

Theaimofmy thesis is toaddress theabove-mentioned topicsand this

waytocontributetoabetterunderstandingofmitochondrialgenomeevolution

pathwaysatthebaseofMetazoa.

Thesisoutlineandauthorcontributions

ThiscumulativethesisissubdividedintoninedifferentchaptersI-IX.ChaptersI-

VII have already been published in peer-reviewed scientific journals. Chapters

VIIIandIXlikewisearegoingtobesubmittedinthepresentorslightlymodified

versionstopeer-reviewedscientificjournals.Thecontributionsoftheauthorsto

therespectivechaptersaredescribedinthefollowingsection:

Page 17: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

7

ChapterIH.J.Osigus,M.Eitel,B.Schierwater,Chasingtheurmetazoon:strikingablowfor

qualitydata?,MolPhylogenetEvol66(2)(2013)551-7.

Conceptualization:HJOMEBS.

Visualization:HJOMEBS.

Writing:HJOMEBS.

Fundingacquisition:BS.

ChapterIIH.J. Osigus, M. Eitel, M. Bernt, A. Donath, B. Schierwater, Mitogenomics at the

baseofMetazoa,MolPhylogenetEvol69(2)(2013)339-51.

Conceptualization:HJOMEBS.

Datacuration:HJOMEMBAD.

Formalanalysis:HJOMEMBAD.

Fundingacquisition:BS.

Investigation:HJOMEMBADBS.Methodology:HJOMEMBADBS.Projectadministration:BS.

Resources:MBADBS.

Supervision:BS.

Validation:HJOMEMBADBS.

Visualization:HJO.

Writing–originaldraft:HJOMEBS.

Writing–review&editing:HJOMEMBADBS.ChapterIIIM.Eitel,H.J.Osigus,R.DeSalle,B.Schierwater,Globaldiversityof thePlacozoa,

PlosOne8(4)(2013)e57131.

Conceivedanddesignedtheexperiments:MEHJOBS.

Performedtheexperiments:MEHJO.

Analyzedthedata:MEHJORDBS.

Contributedreagents/materials/analysistools:BS.

Wrotethepaper:MEHJORDBS.

ChapterIVH.J.Osigus,M.Eitel,B. Schierwater,DeepRNAsequencing reveals the smallest

knownmitochondrialmicroexoninanimals:Theplacozoancox1singlebasepairexon,PlosOne12(5)(2017)e0177959.

Datacuration:HJOBS.

Formalanalysis:HJOME.

Fundingacquisition:BS.

Investigation:HJO.

Methodology:HJOMEBS.

Page 18: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

8

Projectadministration:BS.Resources:BS.Supervision:BS.Validation:HJOMEBS.Visualization:HJO.Writing–originaldraft:HJO.Writing–review&editing:HJOMEBS.ChapterVK.Kamm,H.J.Osigus,P.F.Stadler,R.DeSalle,B.Schierwater,Trichoplaxgenomesrevealprofoundadmixtureandsuggeststablewildpopulationswithoutbisexualreproduction,SciRep8(1)(2018)11168.KK coordinated the project, assembled the genome and the transcriptomes,analyzed the data and wrote the manuscript; BS Initiated, funded andcoordinated the project and wrote the manuscript; RD wrote the manuscript;HJOcoordinatedanimalmaterialandIlluminasequencingofthegenomeandthetranscriptomes and provided general expertise regarding placozoans; PFSprovided computational resources and data curation. All authors reviewed,discussedandapprovedthefinalversionofthemanuscript.ChapterVIM.Eitel,W.R.Francis,F.Varoqueaux,J.Daraspe,H.J.Osigus,S.Krebs,S.Vargas,H.Blum,G.A.Williams,B.Schierwater,G.Wörheide,Comparativegenomicsandthenatureofplacozoanspecies,PlosBiol16(7)(2018)e2005359.Conceptualization:MEWRFSVBSGW.Datacuration:MESKSVHBGW.Formalanalysis:MEWRFSV.Fundingacquisition:MEGAWBSGW.Investigation:MEWRFFVJDHJOSKSVHBBSGW.Methodology:MEWRFSVHBGAW.Projectadministration:MEGW.Resources:MEHBGAWBSGW.Software:WRF.Supervision:SVBSGW.Validation:MEWRFSVGW.Visualization:MEWRFFVJDSKSV.Writing–originaldraft:MEWRFGW.Writing–review&editing:MEWRFHJOSVGAWBSGW.ChapterVIIH.J. Osigus, S. Rolfes, R. Herzog, K. Kamm, B. Schierwater, Polyplacotomamediterraneaisanewramifiedplacozoanspecies,CurrBiol29(5)(2019)R148-R149.

Page 19: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

9

Conceptualization:HJOBS.Datacuration:HJOKKBS.Formalanalysis:HJOKKBS.Investigation:HJOSRRHKKBS.Fieldwork:SRRHBS.Resources:BS.Fundingacquisition:BS.Writing:HJOSRRHKKBS.Visualization:HJOKKBS.Supervision:BS.Projectadministration:BS.ChapterVIIIH.J.Osigus,M.Eitel,K.Kamm,S.Rolfes,M.Tessler,A.Narechania,R.DeSalle,B.Schierwater,AccumulationofGC-richhairpinsinlargeplacozoanmitochondrialgenomes,unpublished.Conceptualization:HJOBS.Datacuration:HJOMEMTANRDBS.Formalanalysis:HJO.Fundingacquisition:RDBS.Investigation:HJOMEKKSRBS.Methodology:HJOMEBS.Projectadministration:RDBS.Resources:RDBS.Supervision:BS.Validation:HJOMEKKSR.Visualization:HJO.Writing–originaldraft:HJOBS.ChapterIXH.J.Osigus,M.Eitel, S.Rolfes,K.Kamm,M.Tessler, J.S.Neumann,R.DeSalle,B.Schierwater,NewinsightsintocomplexmitochondrialgenomeevolutionwithintheHoilungia-group(phylumPlacozoa),unpublished.Conceptualization:HJOBS.Datacuration:HJOMTJSNRDBS.Formalanalysis:HJO.Fundingacquisition:RDBS.Investigation:HJOMEKKSRBS.Methodology:HJOMEBS.Projectadministration:RDBS.Resources:RDBS.Supervision:BS.Validation:HJOKKSR.

Page 20: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

10

Visualization:HJO.Writing–originaldraft:HJOBS.References1. Schierwater,B.andDeSalle,R.(2007)Canweeveridentifythe

Urmetazoan?IntegrCompBiol,47,670–676.2. Schierwater,B.,Holland,P.W.H.,Miller,D.J.,Stadler,P.F.,Wiegmann,B.M.,

Wörheide,G.,Wray,G.A.andDeSalle,R.(2016)NeverEndingAnalysisofaCenturyOldEvolutionaryDebate:“Unringing”theUrmetazoonBell.FrontiersinEcologyandEvolution,4.

3. King,N.andRokas,A.(2017)EmbracingUncertaintyinReconstructingEarlyAnimalEvolution.CurrentBiology,27,R1081-R1088.

4. Schierwater,B.,Eitel,M.,Jakob,W.,Osigus,H.J.,Hadrys,H.,Dellaporta,S.L.,Kolokotronis,S.O.andDesalle,R.(2009)Concatenatedanalysisshedslightonearlymetazoanevolutionandfuelsamodern"urmetazoon"hypothesis.PLoSBiol,7,e20.

5. Ax,P.(1996)MulticellularAnimals.AnewapproachtothePhylogeneticOrderinNature.Springer-Verlag,Berlin,Heidelberg.

6. Gruner,H.(1993)Einführung,Protozoa,Placozoa,Porifera.,Jena.7. Syed,T.andSchierwater,B.(2002)TheEvolutionofthePlacozoa:Anew

morphologicalmodel.Senckenbergianalethaea,82,315-324.8. Dunn,C.W.,Hejnol,A.,Matus,D.Q.,Pang,K.,Browne,W.E.,Smith,S.A.,

Seaver,E.,Rouse,G.W.,Obst,M.,Edgecombe,G.D.etal.(2008)Broadphylogenomicsamplingimprovesresolutionoftheanimaltreeoflife.Nature,452,745-749.

9. Hejnol,A.,Obst,M.,Stamatakis,A.,Ott,M.,Rouse,G.W.,Edgecombe,G.D.,Martinez,P.,Baguna,J.,Bailly,X.,Jondelius,U.etal.(2009)Assessingtherootofbilateriananimalswithscalablephylogenomicmethods.Proceedings,276,4261-4270.

10. Philippe,H.,Derelle,R.,Lopez,P.,Pick,K.,Borchiellini,C.,Boury-Esnault,N.,Vacelet,J.,Renard,E.,Houliston,E.,Queinnec,E.etal.(2009)PhylogenomicsRevivesTraditionalViewsonDeepAnimalRelationships.CurrentBiology,19,706-712.

11. Nosenko,T.,Schreiber,F.,Adamska,M.,Adamski,M.,Eitel,M.,Hammel,J.,Maldonado,M.,Muller,W.E.G.,Nickel,M.,Schierwater,B.etal.(2013)Deepmetazoanphylogeny:Whendifferentgenestelldifferentstories.MolecularPhylogeneticsandEvolution,67,223-233.

12. Philippe,H.,Brinkmann,H.,Lavrov,D.V.,Littlewood,D.T.,Manuel,M.,Worheide,G.andBaurain,D.(2011)Resolvingdifficultphylogeneticquestions:whymoresequencesarenotenough.PLoSBiol,9,e1000602.

13. Pisani,D.,Pett,W.,Dohrmann,M.,Feuda,R.,Rota-Stabelli,O.,Philippe,H.,Lartillot,N.andWorheide,G.(2015)Genomicdatadonotsupportcombjelliesasthesistergrouptoallotheranimals.PNatlAcadSciUSA,112,15402-15407.

Page 21: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

11

14. Feuda,R.,Dohrmann,M.,Pett,W.,Philippe,H.,Rota-Stabelli,O.,Lartillot,N.,Worheide,G.andPisani,D.(2017)ImprovedModelingofCompositionalHeterogeneitySupportsSpongesasSistertoAllOtherAnimals.CurrentBiology,27,3864-+.

15. Simion,P.,Philippe,H.,Baurain,D.,Jager,M.,Richter,D.J.,DiFranco,A.,Roure,B.,Satoh,N.,Queinnec,E.,Ereskovsky,A.etal.(2017)ALargeandConsistentPhylogenomicDatasetSupportsSpongesastheSisterGrouptoAllOtherAnimals.CurrentBiology,27,958-967.

16. Dellaporta,S.L.,Xu,A.,Sagasser,S.,Jakob,W.,Moreno,M.A.,Buss,L.W.andSchierwater,B.(2006)MitochondrialgenomeofTrichoplaxadhaerenssupportsplacozoaasthebasallowermetazoanphylum.ProcNatlAcadSciUSA,103,8751-8756.

17. Signorovitch,A.Y.,Buss,L.W.andDellaporta,S.L.(2007)Comparativegenomicsoflargemitochondriainplacozoans.PLoSGenetics,3,e13.

18. Schulze,F.E.(1883)Trichoplaxadhaerens,nov.gen.,nov.spec.ZoologischerAnzeiger,6,92-97.

19. Schierwater,B.(2005)Myfavoriteanimal,Trichoplaxadhaerens.Bioessays,27,1294-1302.

20. Guidi,L.,Eitel,M.,Cesarini,E.,Schierwater,B.andBalsamo,M.(2011)UltrastructuralanalysessupportdifferentmorphologicallineagesinthephylumPlacozoaGrell,1971.JMorphol,272,371-378.

21. Schierwater,B.andDeSalle,R.(2018)Placozoa.CurrBiol,28,R97-R98.22. Mayorova,T.D.,Smith,C.L.,Hammar,K.,Winters,C.A.,Pivovarova,N.B.,

Aronova,M.A.,Leapman,R.D.andReese,T.S.(2018)CellscontainingaragonitecrystalsmediateresponsestogravityinTrichoplaxadhaerens(Placozoa),ananimallackingneuronsandsynapses.PLoSOne,13,e0190905.

23. Smith,C.L.,Pivovarova,N.andReese,T.S.(2015)CoordinatedFeedingBehaviorinTrichoplax,anAnimalwithoutSynapses.PlosOne,10.

24. Srivastava,M.,Begovic,E.,Chapman,J.,Putnam,N.H.,Hellsten,U.,Kawashima,T.,Kuo,A.,Mitros,T.,Salamov,A.,Carpenter,M.L.etal.(2008)TheTrichoplaxgenomeandthenatureofplacozoans.Nature,454,955-960.

25. Smith,C.L.,Varoqueaux,F.,Kittelmann,M.,Azzam,R.N.,Cooper,B.,Winters,C.A.,Eitel,M.,Fasshauer,D.andReese,T.S.(2014)NovelCellTypes,NeurosecretoryCells,andBodyPlanoftheEarly-DivergingMetazoanTrichoplaxadhaerens.CurrentBiology,24,1565-1572.

26. Varoqueaux,F.,Williams,E.A.,Grandemange,S.,Truscello,L.,Kamm,K.,Schierwater,B.,Jekely,G.andFasshauer,D.(2018)HighCellDiversityandComplexPeptidergicSignalingUnderliePlacozoanBehavior.CurrBiol,28,3495-3501e3492.

27. Sebe-Pedros,A.,Chomsky,E.,Pang,K.,Lara-Astiaso,D.,Gaiti,F.,Mukamel,Z.,Amit,I.,Hejnol,A.,Degnan,B.M.andTanay,A.(2018)Earlymetazoancelltypediversityandtheevolutionofmulticellulargeneregulation.NatEcolEvol,2,1176-1188.

28. Signorovitch,A.Y.,Dellaporta,S.L.andBuss,L.W.(2005)MolecularsignaturesforsexinthePlacozoa.ProceedingsoftheNationalAcademyofSciencesUSA,102,15518-15522.

Page 22: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

12

29. Voigt,O.andEitel,M.(2018)InSchmidt-Rhaesa,A.(ed.),MiscellaneousInvertebrates.DeGruyter,Berlin,Boston,pp.41-54.

30. Eitel,M.,Guidi,L.,Hadrys,H.,Balsamo,M.andSchierwater,B.(2011)Newinsightsintoplacozoansexualreproductionanddevelopment.PLoSOne,6,e19639.

31. Driscoll,T.,Gillespie,J.J.,Nordberg,E.K.,Azad,A.F.andSobral,B.W.(2013)BacterialDNASiftedfromtheTrichoplaxadhaerens(Animalia:Placozoa)GenomeProjectRevealsaPutativeRickettsialEndosymbiont.GenomeBiolEvol,5,621-645.

32. Cuervo-González,R.(2017)Rhodopeplacozophagus(Heterobranchia)anewspeciesofturbellarian-likeGastropodathatpreysonplacozoans.ZoologischerAnzeiger-AJournalofComparativeZoology,270,43-48.

33. Voigt,O.,Collins,A.G.,Pearse,V.B.,Pearse,J.S.,Ender,A.,Hadrys,H.andSchierwater,B.(2004)Placozoa--nolongeraphylumofone.CurrBiol,14,R944-945.

34. Eitel,M.andSchierwater,B.(2010)ThephylogeographyofthePlacozoasuggestsataxon-richphylumintropicalandsubtropicalwaters.MolEcol,19,2315-2327.

35. Signorovitch,A.Y.,Dellaporta,S.L.andBuss,L.W.(2006)Caribbeanplacozoanphylogeography.BiologicalBulletin,211,149-156.

36. Tao,M.,You,C.P.,Zhao,R.R.,Liu,S.J.,Zhang,Z.H.,Zhang,C.andLiu,Y.(2014)Animalmitochondria:evolution,function,anddisease.CurrMolMed,14,115-124.

37. Martijn,J.,Vosseberg,J.,Guy,L.,Offre,P.andEttema,T.J.G.(2018)Deepmitochondrialoriginoutsidethesampledalphaproteobacteria.Nature,557,101-+.

38. Roger,A.J.,Munoz-Gomez,S.A.andKamikawa,R.(2017)TheOriginandDiversificationofMitochondria.CurrentBiology,27,R1177-R1192.

39. Anderson,S.,Bankier,A.T.,Barrell,B.G.,Debruijn,M.H.L.,Coulson,A.R.,Drouin,J.,Eperon,I.C.,Nierlich,D.P.,Roe,B.A.,Sanger,F.etal.(1981)SequenceandOrganizationoftheHumanMitochondrialGenome.Nature,290,457-465.

40. Lavrov,D.V.andPett,W.(2016)AnimalMitochondrialDNAasWeDoNotKnowIt:mt-GenomeOrganizationandEvolutioninNonbilaterianLineages.GenomeBiolEvol,8,2896-2913.

41. Lavrov,D.V.(2010)InDeSalle,R.andSchierwater,B.(eds.),Keytransitionsinanimalevolution.CRCPress,pp.34-53.

42. Burger,G.,Forget,L.,Zhu,Y.,Gray,M.W.andLang,B.F.(2003)Uniquemitochondrialgenomearchitectureinunicellularrelativesofanimals.ProcNatlAcadSciUSA,100,892-897.

43. Lavrov,D.V.(2007)Keytransitionsinanimalevolution:amitochondrialDNAperspective.IntegrCompBiol,47,734-743.

44. Desalle,R.,Schierwater,B.andHadrys,H.(2017)MtDNA:Thesmallworkhorseofevolutionarystudies.FrontBiosci(LandmarkEd),22,873-887.

45. Stampar,S.N.,Maronna,M.M.,Kitahara,M.V.,Reimer,J.D.andMorandini,A.C.(2014)Fast-evolvingmitochondrialDNAinCeriantharia:areflectionofhexacoralliaparaphyly?PLoSOne,9,e86612.

Page 23: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

13

46. Lavrov,D.V.,Adamski,M.,Chevaldonne,P.andAdamska,M.(2016)

ExtensiveMitochondrialmRNAEditingandUnusualMitochondrial

GenomeOrganizationinCalcaroneanSponges.CurrBiol,26,86-92.47. Haen,K.M.,Pett,W.andLavrov,D.V.(2014)EightnewmtDNAsequences

ofglassspongesrevealanextensiveusageof+1frameshiftingin

mitochondrialtranslation.Gene,535,336-344.48. Ender,A.andSchierwater,B.(2003)Placozoaarenotderivedcnidarians:

evidencefrommolecularmorphology.MolBiolEvol,20,130-134.49. Miyazawa,H.,Yoshida,M.A.,Tsuneki,K.andFuruya,H.(2012)

MitochondrialgenomeofaJapaneseplacozoan.ZoologSci,29,223-228.50. Bernt,M.,Braband,A.,Schierwater,B.andStadler,P.F.(2013)Genetic

aspectsofmitochondrialgenomeevolution.MolPhylogenetEvol,69,328-338.

51. Burger,G.,Yan,Y.,Javadi,P.andLang,B.F.(2009)GroupI-introntrans-

splicingandmRNAeditinginthemitochondriaofplacozoananimals.

TrendsGenet,25,381-386.

Page 24: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

14

2.ChaptersChapterI

H.J.Osigus,M.Eitel,B.Schierwater,Chasingtheurmetazoon:strikingablowfor

qualitydata?,MolPhylogenetEvol66(2)(2013)551-7.

https://www.sciencedirect.com/science/article/pii/S1055790312002060?via%

3Dihub

doi:10.1016/j.ympev.2012.05.028

Abstract

Theever-lingeringquestion: "Whatdid theurmetazoan look like?"hasnot lost

itscharm,appealorelusivenessforoneandahalfcenturies.Asolidamountof

organismaldatagivewhatsome feel isaclearanswer(e.g.Placozoaareat the

baseofthemetazoantreeoflife(ToL)),butadiversityofmodernmoleculardata

gives almost as many answers as there are exemplars, and even the largest

molecular data sets could not solve the question and sometimes even suggest

obvious zoological nonsense. Since the problems involved in this phylogenetic

conundrum encompass a wide array of analytical freedom and uncertainty it

seemsquestionablewhetherafurtherincreaseinmoleculardata(quantity)can

solvethisclassicaldeepphylogenyproblem.Thisreviewthusstrikesablowfor

evaluating quality data (includingmorphological,moleculemorphologies, gene

arrangement,andgenelossversusgenegaindata)inanappropriatemanner.

Page 25: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

15

ChapterIIH.J. Osigus, M. Eitel, M. Bernt, A. Donath, B. Schierwater, Mitogenomics at thebaseofMetazoa,MolPhylogenetEvol69(2)(2013)339-51.https://www.sciencedirect.com/science/article/pii/S1055790313002935?via%3Dihubdoi:10.1016/j.ympev.2013.07.016Abstract

Unraveling thebaseofmetazoanevolution isof crucial importance for rootingthemetazoan Tree of Life. This subject has attracted substantial attention formorethanacenturyandrecentlyfueledaburstofmodernphylogeneticstudies.Conflictingscenariosfromdifferentstudiesandincongruentresultsfromnuclearversus mitochondrial markers challenge current molecular phylogeneticapproaches. Here we analyze the presently most comprehensive data sets ofmitochondrial genomes from non-bilaterian animals to illuminate thephylogenetic relationships amongearlybranchingmetazoanphyla.The resultsof our analyses illustrate the value of mitogenomics and support previouslyknown topologies between animal phyla but also identify several problematictaxa,whicharesensitivetolongbranchartifactsormissingdata.

Page 26: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

16

ChapterIIIM.Eitel,H.J.Osigus,R.DeSalle,B.Schierwater,Globaldiversityof thePlacozoa,PlosOne8(4)(2013)e57131.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057131doi:10.1371/journal.pone.0057131Abstract

The enigmatic animal phylum Placozoa holds a key position in the metazoan

Treeof Life.A simplebauplanmakes it appear tobe themostbasalmetazoan

knownandgeneticevidencealsopoints toapositionclose to the lastcommon

metazoanancestor.Trichoplaxadhaerens is theonly formallydescribedspecies

in thephylum todate,making thePlacozoa theonlymonotypicphylum in the

animal kingdom. However, recent molecular genetic as well as morphological

studieshaveidentifiedahighlevelofdiversity,andhenceapotentialhighlevel

of taxonomicdiversity,within this phylum.Different taxa, possibly at different

taxonomic levels,areawaitingdescription. In this reviewwe firstlysummarize

knowledge on the morphology, phylogenetic position and ecology of the

Placozoa.Secondly,wegiveanoverviewofplacozoanmorphologicalandgenetic

diversity and finallypresent anupdateddistributionofplacozoanpopulations.

We conclude that there is great potential and need to erect new taxa and to

establishafirmsystemforthistaxonomictabularasa.

Page 27: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

17

ChapterIVH.J.Osigus,M.Eitel,B. Schierwater,DeepRNAsequencing reveals the smallestknownmitochondrialmicroexoninanimals:Theplacozoancox1singlebasepairexon,PlosOne12(5)(2017)e0177959.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177959doi:10.1371/journal.pone.0177959Abstract

ThephylumPlacozoaholdsakeypositionforourunderstandingoftheevolution

ofmitochondrial genomes inMetazoa. Placozoans possess largemitochondrial

genomeswhichharborseveralremarkablecharacteristicssuchasafragmented

cox1geneand trans-splicingcox1 introns.Apreviousstudyalsosuggested the

existence of cox1mRNA editing inTrichoplaxadhaerens, yet the only formally

describedspeciesinthephylumPlacozoa.WehaveanalyzedRNA-seqdataofthe

undescribedsisterspecies,Placozoasp.H2("Panama"clone),withspecialfocus

on the mitochondrial mRNA. While we did not find support for a previously

postulated cox1 mRNA editing mechanism, we surprisingly found two

independent transcripts representing intermediate cox1mRNA splicing stages.

Both transcripts consist of partial cox1 exon as well as overlapping intron

fragments. The data suggest that the cox1 gene harbors a single base pair

(cytosine)micro exon. Furthermore, conserved group I intron structures flank

this uniquemicro exon also in other placozoans.We discuss the evolutionary

originofthismicroexoninthecontextofaself-splicingintrongaininthecox1

geneofthelastcommonancestorofextantplacozoans.

Page 28: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

18

ChapterV

K.Kamm,H.J.Osigus,P.F.Stadler,R.DeSalle,B.Schierwater,Trichoplaxgenomesrevealprofoundadmixtureandsuggeststablewildpopulationswithoutbisexual

reproduction,SciRep8(1)(2018)11168.

https://www.nature.com/articles/s41598-018-29400-y

doi:10.1038/s41598-018-29400-y

Abstract

The phylum Placozoa officially consists of only a single described species,

Trichoplaxadhaerens, although several lineages canbe separatedbymolecular

markers,geographicaldistributionsandenvironmentaldemands.Theplacozoan

16S haplotype H2 (Trichoplax sp. H2) is the most robust and cosmopolitan

lineageof placozoans found todate. In this study, its genomewas found tobe

distinct but highly related to the Trichoplax adhaerens reference genome, for

remarkably unique reasons. The pattern of variation and allele distribution

between the two lineages suggests that both originate from a single

interbreeding event in thewild, dating back at least several decades ago, and

bothseemnot tohaveengaged insexualreproductionsince.Weconclude that

populations of certain placozoan haplotypes remain stable for long periods

without bisexual reproduction. Furthermore, allelic variation within and

between the two Trichoplax lineages indicates that successful bisexual

reproductionbetweenrelatedplacozoanlineagesmightservetoeithercounter

accumulated negative somatic mutations or to cope with changing

environmentalconditions.Ontheotherhand,enrichmentofneutralorbeneficial

somatic mutations by vegetative reproduction, combined with rare sexual

reproduction, could instantaneously boost genetic variation, generating novel

ecotypesandeventuallyspecies.

Page 29: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

19

ChapterVIM.Eitel,W.R.Francis,F.Varoqueaux,J.Daraspe,H.J.Osigus,S.Krebs,S.Vargas,H.Blum,G.A.Williams,B.Schierwater,G.Wörheide,Comparativegenomicsandthenatureofplacozoanspecies,PlosBiol16(7)(2018)e2005359.https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005359doi:10.1371/journal.pbio.2005359Abstract

Placozoansareaphylumofnonbilaterianmarineanimalscurrentlyrepresented

by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans

arguably show the simplest animal morphology, which is identical among

isolates collected worldwide, despite an apparently sizeable genetic diversity

withinthephylum.Here,weuseacomparativegenomicsapproachforadeeper

appreciationofthestructureandcausesofthedeeplydiverginglineagesinthe

Placozoa.Wegeneratedahigh-qualitydraftgenomeof thegenetic lineageH13

isolatedfromHongKongandcomparedit tothedistantlyrelatedT.adhaerens.

Weuncoveredsubstantialstructuraldifferencesbetweenthetwogenomesthat

pointtoadeepgenomicseparationandprovidesupportthatadaptationbygene

duplication is likely a crucial mechanism in placozoan speciation. We further

provide genetic evidence for reproductively isolated species and suggest a

genus-leveldifferenceofH13toT.adhaerens,justifyingthedesignationofH13as

a new species,Hoilungia hongkongensis nov. gen., nov. spec., now the second

described placozoan species and the first in a new genus. Our multilevel

comparativegenomicsapproachis,therefore,likelytoprovevaluableforspecies

distinctions in other cryptic microscopic animal groups that lack diagnostic

morphologicalcharacters,suchassomenematodes,copepods,rotifers,ormites.

Page 30: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

20

ChapterVII

H.J. Osigus, S. Rolfes, R. Herzog, K. Kamm, B. Schierwater, Polyplacotomamediterraneaisanewramifiedplacozoanspecies,CurrBiol29(5)(2019)R148-R149.

https://www.cell.com/current-biology/fulltext/S0960-9822(19)30097-1

doi:10.1016/j.cub.2019.01.068

Abstract

The enigmatic phylum Placozoa is harboring an unknown number of cryptic

species and has become a challenge for modern systematics. Only recently, a

second species has been described [1], while the presence of more than a

hundred additional species has been suggested [2]. The original placozoan

speciesTrichoplaxadhaerens[3],thesecondspeciesHoilungiahongkongensis[1]

and all yet undescribed species are morphologically indistinguishable (i.e. no

species diagnostic characters are available [4]). Here, we report on a new

placozoan species, Polyplacotoma mediterranea gen. nov., spec. nov., which

differsfromotherplacozoansinitscompletelydifferentmorphologicalhabitus,

includinglongpolytomousbodybranchesandamaximumbodylengthofmore

than 10mm.Polyplacotomamediterranea also necessitates a different view of

placozoan mitochondrial genetics. P. mediterranea harbors a highly compact

mitochondrialgenomewithoverlappingmitochondrialtRNAandproteincoding

genes.Furthermore,thenewspecies lackstypicalplacozoanfeatures, including

thecox1microexonandcox1barcodeintron.Asphylogeneticanalysessuggesta

sister group relationship of P. mediterranea to all other placozoans, this new

speciesmayalsoberelevantforstudiesaddressingtherelationshipsatthebase

ofthemetazoantreeoflife.

Page 31: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

21

ChapterVIII

H.J. Osigus1, M. Eitel3, K. Kamm1, S. Rolfes1, M. Tessler2, A. Narechania2, R.DeSalle2, B. Schierwater1, Accumulation of GC-rich hairpins in large placozoanmitochondrialgenomes,unpublished1 Stiftung TierärztlicheHochschuleHannover, ITZ, Ecology& Evolution, Bünteweg 17d, 30559Hannover,Germany.2AmericanMuseumofNaturalHistory,SacklerInstituteforComparativeGenomicsandDivisionofInvertebrateZoology,NewYork,NY,USA.3 Ludwig-Maximilians-UniversitätMünchen, Department of Earth and Environmental Sciences,PaleontologyandGeobiology,München,Germany

Abstract

Placozoans are an important model system to understand the evolution of

mitochondrial genomes in early branching metazoans. The size of placozoan

mitochondrialgenomesreaches40kbandmore,mostlyduetothepresenceof

introns,largeintergenicspacersandopenreadingframesofunknownfunction.

We here present complete mitochondrial genomes from two members of the

Trichoplax 16S clade I, namely haplotype H17 “Keio” and haplotype H2

“Panama”,which are sister lineages toTrichoplaxadhaerensH1 “Grell”.With a

size of 43.183 bp the H17 mitochondrial genome is slightly larger than its

counterpartinT.adhaerens(43.079bp).TheH2mtDNA(44.210bp)represents

the largest known placozoan mitochondrial genome. While the overall gene

orderisidenticalinallthreelineages,majordifferencesareseenwithrespectto

thenumberofpredictedopenreadingframes.Amoststrikingfeaturesharedby

allthreegenomesistheunusualhighabundanceofhairpinsbelongingtothe5’-

GGVBCC-(N)3-GGVBCC-3’hairpin family,whicharepresentevenwithinprotein

coding genes. Hairpins located in intergenic regions are also discussed in the

evolutionary context of having played a potential role in mitogenome

rearrangements. The enrichment of derived characteristics in clade I mtDNAs

also provides new evidences for secondary mitogenome size amplification in

Placozoa.

Page 32: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

22

Introduction

Placozoans are among the earliest branching metazoans and are of crucial

importance for understanding the early evolution of animal mitochondrial

genomes (1-4). The phylum Placozoa so far consists of only three described

species (Trichoplax adhaerens H1 (5), Hoilungia hongkongensis H13 (6) and

PolyplacotomamediterraneaH0(7)).However,numerousstudieshaverevealed

aremarkablyhigherdiversity in thisphylum,comprisingat least17additional

geneticlineages(foroverview,seee.g.8).

Complete mitochondrial genomes have been described for P.

mediterraneaH0,T.adhaerensH1,H.hongkongensisH13aswell ashaplotypes

H3,H4,H8andH15(6,7,9-11).ThemitochondrialgenomeofP.mediterraneaH0

is a highly compact molecule (23.5 kb), which derives from a different

evolutionarypaththantheTrichoplaxandHoilungiamitogenomes(7).Wehere

mainly focus on mitochondrial genomes from the former placozoan groups A

(nowHoilungia-group)andB(nowTrichoplax-group)(12).Withasizeofupto

more than 40 kb, mitochondrial genomes from these groups are among the

largestknowncircularmtDNAsfromnon-bilateriananimals(3).Theyencode12

protein coding genes (nad1-nad6, nad4L, cob, cox1-3, atp6), 2 ribosomal RNAs

(12S and 16S), 24 tRNAs, and also harbor remarkable features like numerous

introns, a cox1 micro exon, large intergenic regions and variable numbers of

openreadingframesofunknownfunction(foroverview,seee.g.13).Whilethe

proteincodingsequenceevolutionrate is low(compared toe.g.Ctenophoraor

Bilateria(13)),thereisahightendencyformtgenomerearrangements(11).The

molecular mechanisms underlying such rearrangements are unknown for

placozoans,butstudiesfromdistanteukaryotictaxahavesuggestedthathairpin

formingelementsmightbe involved insuchprocesses (seee.g.14,15). Innon-

bilaterian animals, hairpin forming elements have been reported e.g. from

spongemitochondrialgenomes(16,17),andalsohavebeenmentionedinstudies

onplacozoans(see11,12,18).However,incaseofPlacozoa,thesemitochondrial

hairpinshavenotyetbeenanalyzedinanevolutionarycontext.

In order to better understand the evolution and maintenance of large

mitochondrial genomes inplacozoans,weanalyzed the completemitogenomes

ofhaplotypesH17“Keio”andH2“Panama”(19),both fromtheTrichoplax16S

Page 33: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

23

cladeI,respectively(8).HaplotypeH17hasoriginallybeendescribedbasedonasample from Monterey Bay, California, USA (20), and afterwards has beenreported from the coastof Japan, indicatingabroaddistributionofH17 in thePacific Ocean (21).Members of haplotypeH2 are abundant in all tropical andsub-tropical marine waters, but can also be found in temperate marineecosystems (8). So far, the mitochondrial lineage H2 has been the mostfrequentlysampledplacozoanlineage,whichalsoshowsthebroadestlatitudinaldistribution(2,8).

MaterialandMethods

AnimalmaterialTheH17“Keio”clonehasbeencollectedin2010byDr.HiroyukiKanekoandDr.RitsuKuraishi in Japan and a clonal lineage has beenmaintained inHannoversince 2014 as already described (12). The genetic lineage H2 ‘Panama` haslikewise been cultured in Hannover as previously described (12,22). For bothlineages totalDNAwasextracted fromclonalanimalsusingstandardprotocols(23).DNAsequencing,dataprocessingandsequenceanalysesSequencing of total DNA from haplotype H17 “Keio” was performed on anIllumina HiSeq2500 machine (2x125 bp) at the New York Genome Center. Intotal, 147.067.540 paired-end reads were generated. The H17 “Keio”mitochondrial genome was assembled in Geneious version 8.x (24) using aniterativemapping approach (see e.g. 25)with the 16S rDNA sequence of H17(20)as“seed”.

The H2 “Panama” total DNA was sequenced on (A) an Illumina GAIIxsequencer (72 bp fragments) and (B) an IlluminaHiSeq 2500 system (151 bpfragments).Thetwosequencingapproachesresultedinatotalof85.390.360and56.428.444 paired-end reads, respectively (22). Draft versions of themitochondrial genomeofH2 “Panamawere independently generated from thetwo data sets using the following pipelines: A) Error correction of the 72 bpreadswasconductedwiththestandaloneerrorcorrectionscriptofALLPATHS-LG (26,27). The assembly of the 72 bp reads was afterwards done using the

Page 34: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

24

ABySSassembler(28)withsubsequentreassemblyofreadsusingCAP3(29).B)

Thedenovoassemblyofthe151bpreadswasperformedasalreadydescribed

(22). C) The 151 bp reads were mapped on the 16S rDNA sequence of H2

‘Panama’ (19) with subsequent bidirectional extension in multiple iteration

steps. Resulting draft mitochondrial genome sequences were inspected, and

poorly resolved GC-rich repetitive regions were reanalyzed and approved by

mappingofreadsagainstrespectiveregionsandsubsequentmanualcorrections

inGeneious(24).

Mitochondrialprotein codingand ribosomalRNAgeneswereannotated

usingavailableplacozoanmitochondrialgenomesasreference(9,11).Predicted

geneboundariesweresubsequentlyconfirmedviablast-search(30).Inaddition,

mitochondrial tRNA geneswere predicted using tRNAscan-SE (31). Thewhole

mitochondrial genome sequences were screened for additional open reading

framesviaORFfinder(https://www.ncbi.nlm.nih.gov/orffinder/)usingstringent

parameters(minimalORFlength>300bp,only“ATG”startcodonpermitted).K-

mer searches were performed using wordcount

(http://www.bioinformatics.nl/cgi-bin/emboss/wordcount). Direct repeat

searches and screening for intact and rudimental GC-rich hairpins were

afterwardsconductedinGeneious(24).

For pairwise genetic distance calculations, single gene nucleotide and

amino acid alignments were generated with MAFFT (32) as implemented in

Geneious (24). In detail, nucleotide and amino acid sequences have been

extracted from the already published mitochondrial genome of Trichoplax

adhaerensH1 (NC_008151) (9) and afterwards added to the data sets which

alreadycomprisenucleotideandaminoacidsequences fromH2“Panama”and

H17 “Keio”, respectively. Genetic distances were afterwards calculated in

Geneious (24). For overall sequence similarity calculations, single gene

alignmentshavebeenconcatenatedandlikewiseanalyzedaccordingly.

Nucleotide sequencesof themitochondrial trnSer (uga) genehavebeen

extracted from previously published mitochondrial genomes (9-11) and have

been added to trnSer (uga) gene sequences from the new placozoan

mitochondrialgenomes(ChaptersVI,VII,VIIIandIX).Thenucleotidesequence

Page 35: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

25

alignment has likewise been generated in MAFFT (32) as implemented in

Geneious(24).

ResultsandDiscussion

GeneralcharacteristicsofH2andH17mitochondrialgenomes

ThemitochondrialgenomeofH2 ‘Panama’ isacircularmoleculewithasizeof

44.210bp,thussofarbeingthelargestknownplacozoanmitochondrialgenome.

It ismore than1 kb larger than themitochondrial genomeofT.adhaerensH1

(43.079bp)(9)andevenalmost12kblargerthanthemitochondrialgenomeof

haplotypeH8(32.661bp)(11).ThecircularmitochondrialgenomeofH17is,ata

size of 43.183 bp, just slightly larger than the mitochondrial genome of T.

adhaerens H1. In general, a mitogenome size of >40 kb is a shared feature

betweenH1,H2andH17,andthereforelikelyasynapomorphyofcladeI.

TheobservedgeneorderinH2andH17isoverallidenticalcomparedto

thereferencemitochondrialgenomeofT.adhaerensH1(9),butsmallsequence

insertions/deletions are distributed across all clade I mt genomes. The most

notabledifferenceinH2relatestotheintergenicregionbetweentrnP(ugg)and

cox2,which issubstantially larger thanseen inH1andH17, respectively. This

variable intergenic spacer shows at least very low sequence similarity to the

haplotype H4 (clade V) mitogenome (11). Like all placozoan mitochondrial

genomes, the H2 and H17 mitogenomes encode 12 mitochondrial respiratory

chaingenes(nad1-nad6,nad4L,cob,cox1-3andatp6)and lackgenescodingfor

atp8andatp9.Inadditionto2ribosomalRNAgenes(12Sand16S),asetof24

mttRNAgenesisseeninH2andH17,respectively.Theexon/intronstructureof

cox1,nad5and16SinH2/H17isidenticaltothecorrespondinggenestructures

in T. adhaerensH1 (including the cox1micro exon; (33)). All protein coding

genesofH2andH17(exceptnad4L,whichhasaGTGstartcodon)possesanATG

startcodonandcompletestopcodons(TAAorTAG,respectively).

The analysis ofmitochondrial protein coding genes revealed an overall

high sequence similarity (onboth, thenucleotide (nt) and the amino acid (aa)

level)betweenthethreecladeIplacozoans(Figure1).Theproteincodinggene

similarity values between T. adhaerens H1 and H17 generally match the

similarityvalueofthediagnostic16SrDNAfragment(19)(99,6%),althoughthe

Page 36: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

26

cox3geneisanoutlierinthiscomparison.Ontheoppositesite,the16Sfragment

similarity values between T. adhaerens H1 vs. H2 (96,6%) and H17 vs. H2

(96,3%)generallyoverestimatetheactualsequencedivergencesontheprotein

codingsequencelevel(withthemajorexceptionofthenad2gene).

A conservative prediction of mitochondrial open reading frames in

introns/intergenic regions using the NCBI ORFfinder reveals a higher than

expected number of open reading frames in the Trichoplax clade I (see also

ChapterIXinthisthesisandDigitalappendix).Whilepreviousstudiespredicted

up to eightopen reading frames in theT.adhaerensH1mitochondrial genome

(9), our reanalysis revealed up to 13 predicted open reading frames. In

comparison, the closely relatedH17mitogenomepossesses 15 predicted open

readingframes,andeven18predictedopenreadingframesarefoundintheH2

mitogenome.ItshouldbehighlightedthatthetotalnumberofpredictedORFsin

allmitogenomescouldbeevenhigheriflessstringentsearchparameterswould

beapplied.However, except for aputative reverse transcriptaseandahoming

endonuclease,noneof the stringentlypredictedopen reading framesyieldany

reliable blast hit in the database. Therefore, the functionality of any other

hypothetical ORF, which would have been predicted under more relaxed

parameters, would be evenmore speculative. The deviant number of ORFs in

closelyrelatedplacozoanlineages,however,indicatesahighsequenceevolution

rateinintron/intergenicspacerregionsincladeImitogenomes(11).Potentially,

the differences in mitochondrial ORF content might somehow relate to

speciationprocessesinplacozoans(11).

GC-contentandsequencemotifs

In order to better understand the evolutionary pathways of large placozoan

mitochondrial genomes, we compared available mt genomes with respect to

nucleotide composition and overrepresented sequence motifs (see Digital

appendix).With aGC-content of 48% theH2mitochondrial genomepossesses

the highest known GC-content among placozoans. Compared to the

mitochondrialgenomeofP.mediterranea(32,9%GC-content),theGG-contentin

H2 is substantially (i.e. 15%) higher. The lowest GC-content outside

Polyplacotoma can be found inH8 (39.2%) (11),which is 9%below the value

Page 37: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

27

observed in H2, but still more than 6% higher than in H0. With 47,1%, the

mitochondrial genome of H17 has an almost identical GC-content like the

mitogenomeofT.adhaerensH1(47%).SimilarlyGC-richmitochondrialgenomes

havemostlybeenknownfromhighermetazoans(e.g.birdsandfishes,Organelle

Genome Resources, 2019, https://www.ncbi.nlm.nih.gov/genome/organelle/)

and only as sporadic exceptions from some Cnidaria and Porifera (e.g. 17,34).

Thus we hypothesize that the high GC-content (especially observed in T.

adhaerens H1, H2 and H17, respectively) might be a potentially derived

characterandasynapomorphyoftheplacozoancladeI.

Thesystematic screening foroverrepresentedsequencemotifs (k-mers)

revealed a differential distribution of specific hexamer sequences between

placozoan clades (see Digital appendix). In clade V mitochondrial genomes,

mononucleotide motifs (poly-“A”, -“T”, -“G” or -“C”) are particularly frequent

amonghexamersequences. IncladeIII,poly-“G”andpoly-“C”stretchesareless

abundantamong the tenmost frequenthexamermotifs, althoughclade III and

cladeVarecloselyrelated(8).Possibleexplanationsforthelowerabundanceof

poly-“G” and poly-“C” stretches in clade III are either a higher sequencemotif

heterogeneityamongGC-richhexamersand/or theoverall lowerGC-content in

themitogenome.IntheTrichoplax-group,thepictureislikewisecomplex.TheH3

mitochondrial genome (clade II) (11) also mainly possesses AT-rich hexamer

motifs(similartocladeIIIandV),whilepoly-“G”andpoly-“C”stretchesareless

abundant(asseenincladeIII,butincontrasttocladeVmitogenomes).However,

twocomplexGC-richmotifsstillcanbefoundinH3amongthetenmostfrequent

hexamers. In contrast to the clade II/III/V mitogenomes, the three clade I

mitochondrial genomes (i.e. fromT. adhaerens H1, H2 and H17) show a clear

overrepresentationofGC-richcomplexhexamers.Amongthetenmostfrequent

hexamersinthesethreeplacozoans,therearethreemotifs(i.e.5’-GGCGCC-3’,5’-

GGATCC-3’, and 5’-GGGCCC-3’), which potentially form hairpin structures if a

secondcopyofthismotifislocatednearbyonthesamestrandasadirectrepeat.

These three specific motifs can likewise be found in all other placozoan

mitochondrialgenomes(exceptfor5’-GGCGCC-3’inH0),albeitwithafarlower

abundance.

Page 38: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

28

GC-richhairpinstructures

Aglobalscreening for thedistributionof the threecandidatehairpinmotifs5’-

GGCGCC-3’, 5’-GGATCC-3’, and 5’-GGGCCC-3’ in placozoan mitochondrial

genomesrevealsthatthesemotifsfrequentlyoccurasdirectrepeatsonthesame

DNA strand. Despite some deviations, the majority of these direct repeats

comprise a 3 bp spacer (see Digital appendix). The resulting 15-mers (i.e. 5’-

GGCGCC-(N)3-GGCGCC-3’, 5’-GGATCC-(N)3-GGATCC-3’, and 5’-GGGCCC-(N)3-

GGGCCC-3’)thereforedepictamultipleofatriplet.These15-merhairpinseven

frequentlyoccurwithinproteincodinggenes(Figure2).Exceptionallyoccurring

hairpinlengthdeviationswithinproteincodingsequences(i.e.notamultipleofa

triplet)aremostlyfoundinanywayvariableregions,whichfinallypreservethe

openreadingframe.

Thestrongnumericalbiastowards15-merhairpinsevenoutsideprotein

coding sequences may indicate a global selective pressure on these 15-mer

hairpins due to functional constraints. Nevertheless, motif and/or secondary

structure disrupting point mutations can be found, indicating simultaneously

actinghairpin-lossprocesses.Surprisingly,differenthairpinslocatedatthesame

homologousmitogenomelocuscanoccurscatteredfor instance inT.adhaerens

H1,H2andH17,indicatingsporadictransformationsofhairpins.Togetherwith

thestrikingsequencesimilarity,thisobservationsupportsthehypothesisthatall

threehairpinsbelongtothesamehairpin family, i.e. theplacozoan5’-GGVBCC-

(N)3-GGVBCC-3’hairpinfamily,whichweherewithdefineinthisstudy.

The evolutionary origin of placozoan hairpin structures is unclear.

Hairpin structureshavepreviouslybeen reported e.g. in spongemitochondrial

genomes(16,17),buttheirdivergingsequencesdonotindicateacommonorigin

withthehairpinsfoundinplacozoans.Asplacozoanmitochondrialhairpinsare

GC-rich, it generally does not seem likely that they are of metazoan

mitochondrialorigin,butratheraremobilenon-metazoangeneticelements(see

also discussion in 16). However, it remains speculative if they originally have

been integrated into themitogenome as isolated hairpins, or togetherwith an

intronoropenreadingframe.

Like the unknown origin of GC-rich hairpins, the point of emergence of

thesehairpinsinplacozoanmitogenomesremainselusive.Themereabsenceof

Page 39: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

29

intact5’-GGVBCC-(N)3-GGVBCC-3’hairpinsinP.mediterraneaH0(7)suggestson

the first sight that these hairpins might have been introduced into placozoan

mitogenomesafterthesplit-offofP.mediterranea.However,adetailedanalysis

ofthetrnSer(uga)genepredatesthisscenario:Asharedfeatureofallplacozoan

mitochondrialtrnSer(uga)genesisthepresenceofanadditionalvariablestem-

loop,which isnotconservedamongmetazoans(seee.g.35). IncladeVandVII

placozoans, this variable loop consists of a perfect 5’-GGCGCC-(N)3-GGCGCC-3’

hairpin.Over clade IV, III, II and Iup toP.mediterranea,this stem-loop region

shows decreasing sequence similarity to the original hairpin, although the

respective stem-loop sequences remain GC-rich (Figure 3). As multiple

independent invasions seemunlikely,we instead deduce a single evolutionary

originofthisspecifictRNAstem-loop.Indetail,wehypothesizethataperfect5’-

GGCGCC-(N)3-GGCGCC-3’hairpinhasbeenintegratedintothetrnSer(uga)gene

of the last common ancestor of all extant placozoans and that this hairpin

sequence subsequently evolved differentially in different placozoan taxa.

However, it remains unknown if the trnSer (uga) hairpin has been introduced

fromoutsidethemitogenome(maybeevenastheoriginal“founder”hairpin)or

ifthisspecifichairpinintegrationwastheresultofanintra-mitogenomichairpin

proliferation event (implying that the hairpin itselfwas already established at

anotherlocusinthemitogenome).

Themolecularmechanisms,which either influence the grade of hairpin

proliferationorloss,respectively,areunclear.Themerepresenceofhairpinsin

mitochondrialgenomesitselfdoesnotseemtoleadtoanexcessiveenrichment

of these structures. The enrichment of hairpins potentiallymight be linked to

specific mitochondrial open reading frames, which are (or temporary were)

present in some placozoan mitochondrial genomes. Another future approach

shouldalsofocusonnuclearencodedmitochondrialgeneswhicharerelatedfor

instance to mitochondrial DNA replication processes. Especially the nuclear

genome of haplotypeH3might be a valuable resource for such a comparative

approach, as H3 is the sister to the hairpin-rich placozoan clade I (8,12), but

itselfdoesnotpossessanincreasedmitochondrialhairpincontent.

Concerning their potential function, hairpin structures generally have

beenassignedtotheregulationofreplicationand/ortranscriptionprocessesin

Page 40: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

30

mitochondrial genomes, especially in the mitochondrial D-loop/control region

(36). However, there are several aspects, which contradict this hypothesis for

placozoans: 1. The complete absence of intact 5’-GGVBCC-(N)3-GGVBCC-3’

hairpins in P. mediterranea; 2. An overrepresentation of hairpins in clade I

placozoans;3.The integrationofhairpinstructuresevenwithinproteincoding

sequences.Ontheoppositesite,theobviousstrongnumericalbiasonintact15-

mer hairpin structures even outside protein coding sequences indicates a still

acting selective pressure and functional constraints on these specific hairpin

secondarystructures.

Ithasalsopreviouslybeenassumed thatDNAsecondarystructures like

(double) hairpins might favor mitochondrial genome rearrangements (e.g.

14,15).We found evidence for this scenario in placozoans for instance in the

placozoan clade V mitogenomes. The major difference between clade V

haplotype H4 and H15 mitogenomes is the translocation of a fragment

containingthePolBgene+ORF126(10).Remarkably,oneexcisionsiteboundary

and one insertion site boundary in H15, respectively, still possesses hairpin

structures and/or imperfect hairpin motifs. Thesemolecular signatures might

represent relicts of the previous rearrangement event, which potentially was

catalyzedbythesehairpins.Wethereforepostulatethehypothesis,thatthelong-

termestablishmentofCG-richhairpinswasa startingpoint for rearrangement

eventsinplacozoanmitochondrialgenomes.However,itislikelythatadditional

molecularmechanismsareinvolvedinrearrangement/insertion/deletionevents

andthereforehavelikewiseshapedplacozoanmitogenomes.

An updated working hypothesis on mitogenome evolution in early diverging

metazoans

If compared to other placozoan mitochondrial genomes (i.e. from the

Polyplacotoma-,theHoilungia-,andeventocladeIIfromtheTrichoplax-group),

the insights gained from clade I mitogenomes call for a revised scenario of

placozoan mtDNA evolution. In order to establish an improved evolutionary

working hypothesis, three informative characteristics, which are most

prominent in clade I mitogenomes, should be highlighted. First, a remarkably

high degree of gene fragmentation (illustrated in extreme by the intron gain

Page 41: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

31

which leads to the isolation of the cox1micro exon); second, an exceptionallyhigh frequency of (either intact or secondarily disrupted) ORFs and third, anaccumulationofhairpinstructures.Allofthesederivedcharacteristicssupportascenario of secondary mtDNA size amplification in clade I. As the threepreviously mentioned characteristics are less pronounced in clade II-VII,mitogenomes from these clades canbe seen as intermediate size stages,whilethe highly compactPolyplacotomamtDNAmaintainedmost of the presumablyancestralcharacteristics.Asummaryofdeducedoverallevolutionarypathwaysofderivedmitogenomesinthefournon-bilaterianphylaisillustratedinFigure4,but see also related scenarios discussed for instance in (3,37,38).With specialfocus onPlacozoa, it should be highlighted, however, that the inferred generaltendency for size amplification in placozoan mtDNAs is sometimes at leastpartiallycompensatedbysporadiclossesof intronsand/orORFs.Furthermore,all currentapproaches to infermitogenomecharacteristicsof the last commonmetazoanancestorstillsufferfromlimiteddataavailabilityfromcloselyrelatednon-metazoan outgroups (i.e. especially from choanoflagellates (39)), andthereforeshouldbetakenwithcaution.ImplicationsonsystematicsandtaxonomywithintheTrichoplax-groupThenewmitochondrial genomes from clade I stimulate furtherdiscussions onthetaxonomicstatuswithintheTrichoplax-group.ApreviouscomparativestudyonthenucleargenomesofTrichoplaxadhaerensH1“Grell”andTrichoplaxsp.H2“Panama”revealedahighdegreeofallelesharingbetweenbothlineages(22).AhighdegreeofallelesharingbetweendifferentH1andH2lineageswaslikewisereported in an independent study restricted on nuclear-encoded ribosomalproteins (6). The mitochondrial and endosymbiont (Kamm et al., in prep.)genomes fromTrichoplaxadhaerensH1“Grell”andTrichoplaxsp.H2“Panama”areoverallsimilaraswell,butneverthelessshowsubstantialdifferencesbeyondthesinglenucleotidepolymorphismlevel.Insum,bothplacozoanlineagesshowclear signatures for an ongoing diversification process, a picture, which islikewisesupportedbydifferencesinthetemperature/pHsensitivity(40)aswellas theirdifferential global abundance in the field (2).However, it still remains

Page 42: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

32

unclearifH1andH2areonlytwodifferentsubspeciesofTrichoplaxadhaerens,

oralternatively,ifH2alreadyrepresentsanewTrichoplaxspecies.

IncontrasttoTrichoplaxsp.H2“Panama”,theanalysesofwholenuclear

aswell as endosymbiont genome data from the lineageH17 “Keio” are still in

progress. Nevertheless, the analysis of the complete mitochondrial genome of

H17revealedanexceptionalhighdegreeofsequencesimilaritytothecomplete

mitochondrial genome of Trichoplax adhaerensH1 “Grell” (i.e. 96,5%). As the

similarity of concatenated protein coding nucleotide sequences from both

lineagesisevenhigher(i.e.99,6%),itisreasonabletoassumethatH17“Keio”is

justasecondhaplotypeof the formallydescribedspeciesTrichoplaxadhaerens

H1“Grell”,andnotadistinctplacozoanspecies.

Thetaxonomicstatusofthesecond16ScladewithintheTrichoplax-group

(i.e.cladeII)remainslikewiseuncertain.However,followingtheconceptapplied

tocladeI,theonlyhaplotypewithincladeII(i.e.H3)mightrepresentsatleasta

different Trichoplax species. Future whole nuclear genome approaches are

neverthelessneededtogainfurthersupportforthishypothesis.

Conclusions

The twomitochondrial genomes of haplotype H2 and H17 provide important

insights into the evolution of large placozoan mitogenomes. The comparative

mitogenomeanalyseswithspecialfocusonderivedcharacteristicslikehairpins

provide evidence for secondary size amplification in Trichoplax clade I

mitochondrial genomes. Additional molecular data, however, are needed to

furtherunderstandtheunderlyingmechanisms.Itisfurthermoresuggestiveand

quite intriguing to discuss the maintaining of costly large mt genomes in the

contextofecologicalradiation,sincehaplotypeH2(whichpossessesthelargest

mitochondrialgenomesandthehighestnumberofGC-richhairpins)isbyfarthe

most frequently sampled lineage in the field and apparently inhabits the

broadestecologicalnicheamongallknownplacozoans.

Page 43: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

33

Acknowledgements

HJO acknowledges a doctoral fellowship of the Studienstiftung des DeutschenVolkes. We acknowledge support from the German Science Foundation (DFGSchi-277/26,Schi-277/27,Schi-277/29).WethankDr.HiroyukiKanekoandDr.Ritsu Kuraishi (Research and Education Center for Natural Sciences, KeioUniversity, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan)forprovidingliveanimalsofhaplotypeH17“Keio”.Digitalappendix

FurtherinformationrelatedtothischaptercanbefoundintheDigitalappendixofthisthesis.

Page 44: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

34

A)H1�vs.�H17 H1�vs.�H2 H17�vs.�H2

atp6 99,5 97,4 97,4cox1 99,9 99,7 99,6cox2 99,7 99,2 99,2cox3 98,4 99,1 97,7cob 100 99 99nad1 99,9 98,6 98,7nad2 99,2 94,6 94,3nad3 99,7 99,7 100nad4 99,9 98,3 98,4nad4L 100 100 100nad5 99,8 98,3 98,5nad6 99,3 98 97,6concat 99,6 98,1 98,0

B)H1�vs.�H17 H1�vs.�H2 H17�vs.�H2

atp6 99,6 96,5 96,9cox1 100 100 100cox2 99,6 99,2 98,8cox3 98,4 99 97,4cob 100 99 99nad1 100 98,3 98,3nad2 99,1 92 91,8nad3 100 100 100nad4 99,8 97,8 97,8nad4L 100 100 100nad5 100 98,4 98,4nad6 99,3 97,5 96,9concat 99,6 97,6 97,4

C)H1�vs.�H17 H1�vs.�H2 H17�vs.�H2

16S�frag. 99,6 96,6 96,3

Nucleotide�identity�(%)

Protein�identity�(%)

Nucleotide�identity�(%)

Figure1

MitochondrialgeneticsimilaritiesbetweenTrichoplaxadhaerensH1,Trichoplax

sp.H2andhaplotypeH17.

Pairwise nucleotide (A) and amino acid (B) similarity values ofmitochondrial

protein coding genes for the three clade I placozoan lineages. The respective

lowestsimilarityvalueishighlightedineachpairwisecomparison.Thesimilarity

valuesforconcatenatedgenesequencesaregivenatthebottomoftherespective

table. The pairwise nucleotide similarity values of the diagnostic 16S rDNA

fragmentforthethreecladeIplacozoanlineagesaregivenin(C).

Page 45: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

35

A) GGCGCCNNNGGCGCC GGATCCNNNGGATCC GGGCCCNNNGGGCCC Total�number�of�mt�hairpinsSize

43.079 H1 122 56 20 19843.183 H17 126 48 17 19144.210 H2 163 56 20 23936.699 H3 15 6 5 26

32.661 H8 5 26 1 3237.194 H4 31 27 1 5936.676 H15 27 24 1 5236.537 H13 33 25 1 59

B) GGCGCCNNNGGCGCC GGATCCNNNGGATCC GGGCCCNNNGGGCCC Total�number�of�mt�hairpins�in�CDSSize

43.079 H1 nad2(4),�nad5(2),nad6(4) atp6�(1),�nad1�(1),�nad2�(2),�nad5�(1) nad2�(1) 1643.183 H17 nad2(3),�nad5(2),nad6(4) atp6�(1),�nad1�(1),�nad2�(2),�nad5�(1) nad2�(1) 1544.210 H2 atp6(1),�nad1(1), nad2(4),nad4(1),�nad5(2),�nad6(3) nad2�(2),�nad5�(1) nad2�(1) 1636.699 H3 nad1(1) nad2�(1) nad2�(1),�nad5�(1) 4

32.661 H8 0 cox2�(2),�cox3�(1),�nad1�(1),�nad2�(4),�nad4�(1)� 0 937.194 H4 nad6(1) nad1�(1),�nad2�(1),�nad5�(2) 0 536.676 H15 nad6(1) nad1�(1),�nad2�(1),�nad5�(1) 0 436.537 H13 nad6(1) nad1�(1),�nad2�(1),�nad5�(1) 0 4

Figure2

Frequency of occurrence of the three 5’-GGVBCC-(N)3-GGVBCC-3’ hairpins in

placozoanmitogenomes.Placozoanlineageswhichbelongtothesame16Sclade

arehighlightedbyidenticalcolors.

A)Totalnumbersofintact5’-GGVBCC-(N)3-GGVBCC-3’hairpinsinthemtDNAsof

differentplacozoanlineages.

B) Numbers of intact 5’-GGVBCC-(N)3-GGVBCC-3’ hairpins in mitochondrial

protein coding sequences of respective placozoan lineages. The number of

respectivehairpinsinspecificproteincodinggenesisgiveninbrackets.

H0H1H2

H17H3H8H23H19H4H13

H15-ShiH15-M2

H25H24

GGCGCC-hairpin

variable stem-loopU

U

U

A

C

GU

U

UU

U

UU

U

U

UU

U

U

U

U

U

U

U

C

C

CC C

C

C

CC

C

C

CC

C

CC

CC C

C

U

C

CC

C

A

AA A

A

A

AA

AA

A

A

AA

A

A

G

GG

G

G

G

G

G

G

G

GGG

G

A

G

G

G

G

G

G

G

G

G

G

G

variable stem-loop

Figure3

NucleotidecomparisonoftheplacozoanmitochondrialtRNA-serine(uga).

The nucleotide sequences of the mitochondrial trnSer (uga) from 14 highly

diverseplacozoanlineageshavebeenaligned.Theverticalcolorbarsnexttothe

haplotype numbers are corresponding to the respective 16S clade. Colored

nucleotides within the alignment are in agreement with the 50%-majority

consensussequence.Thevariablestem-loopregion(position49-65)isindicated

by a black bar on top of the alignment. The intact 5’-GGCGCC-(N)3-GGCGCC-3’

hairpininH4,H13,H15,H24andH25,respectively, ishighlightedbyaredbox

withinthealignment.ThetRNAsecondarystructure(aspredictedbytRNAscan-

Page 46: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

36

SE)ontherightsidecorrespondstothetrnSer(uga)inHoilungiahongkongensis

H13.Thevariablestem-loop(i.e.anintact5’-GGCGCC-(N)3-GGCGCC-3’hairpin)is

highlightedbyrednucleotides.

Choanoflagellata

Placozoa

Porifera

Ctenophora

Cnidaria

Bilateria

LCMA

Figure4

Working hypothesis on the evolution of mitochondrial genomes in early

divergingmetazoans.

Inthisscenario,acompactionof themitochondrialgenomehasoccurredalong

the stem leading from the hypothetical urmetazoon to the last common

metazoan ancestor (LCMA), mostly due to the transfer of mitochondrial

ribosomal proteins into the nuclear genome. A shared compact state of the

mtDNA was afterwards the starting point for independent (but sometimes

parallel) evolution of mitogenomes in non-Bilateria. The sizes of circular

mitochondrial chromosomes are only relative approximations and are not

directly to scale. The size of scissors corresponds to the overall frequency of

mitogenome fragmentation in respective taxa. Please note that fragmentations

might imply (multipartite) linear or multipartite circular mitochondrial

chromosomes,respectively.

Page 47: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

37

References

1. Schierwater,B.andDeSalle,R.(2018)Placozoa.CurrBiol,28,R97-R98.2. Voigt, O. and Eitel,M. (2018) In Schmidt-Rhaesa, A. (ed.),Miscellaneous

Invertebrates.DeGruyter,Berlin,Boston,pp.41-54.3. Lavrov,D.V.andPett,W.(2016)AnimalMitochondrialDNAasWeDoNot

Know It: mt-Genome Organization and Evolution in NonbilaterianLineages.GenomeBiolEvol,8,2896-2913.

4. DeSalle, R., Schierwater, B. and Hadrys, H. (2017) MtDNA: The smallworkhorseofevolutionarystudies.FrontBiosci-Landmrk,22,873-887.

5. Schulze, F.E. (1883) Trichoplax adhaerens, nov. gen., nov. spec.ZoologischerAnzeiger,6,92-97.

6. Eitel,M.,Francis,W.R.,Varoqueaux,F.,Daraspe, J.,Osigus,H.J.,Krebs,S.,Vargas, S., Blum, H., Williams, G.A., Schierwater, B. et al. (2018)Comparativegenomicsandthenatureofplacozoanspecies.PLoSBiol,16,e2005359.

7. Osigus, H.J., Rolfes, S., Herzog, R., Kamm, K. and Schierwater, B. (2019)Polyplacotomamediterranea is a new ramified placozoan species. CurrBiol,29,R148-R149.

8. Eitel, M., Osigus, H.J., DeSalle, R. and Schierwater, B. (2013) GlobaldiversityofthePlacozoa.PLoSOne,8,e57131.

9. Dellaporta,S.L.,Xu,A.,Sagasser,S.,Jakob,W.,Moreno,M.A.,Buss,L.W.andSchierwater, B. (2006) Mitochondrial genome of Trichoplax adhaerenssupports Placozoa as the basal lowermetazoan phylum. Proceedings oftheNationalAcademyofSciencesUSA,103,8751-8756.

10. Miyazawa, H., Yoshida, M.A., Tsuneki, K. and Furuya, H. (2012)MitochondrialgenomeofaJapaneseplacozoan.ZoologSci,29,223-228.

11. Signorovitch, A.Y., Buss, L.W. and Dellaporta, S.L. (2007) Comparativegenomicsoflargemitochondriainplacozoans.PLoSGenetics,3,e13.

12. Eitel,M.andSchierwater,B.(2010)ThephylogeographyofthePlacozoasuggestsataxon-richphylumintropicalandsubtropicalwaters.MolEcol,19,2315-2327.

13. Osigus, H.J., Eitel, M., Bernt, M., Donath, A. and Schierwater, B. (2013)MitogenomicsatthebaseofMetazoa.MolPhylogenetEvol,69,339-351.

14. Paquin,B.,Laforest,M.J.andLang,B.F.(2000)Double-hairpinelementsinthemitochondrialDNAofallomyces:evidenceformobility.MolBiolEvol,17,1760-1768.

15. Kim,J.I.,Yoon,H.S.,Yi,G.,Shin,W.andArchibald,J.M.(2018)Comparativemitochondrialgenomicsofcryptophytealgae:geneshufflinganddynamicmobilegeneticelements.BMCGenomics,19,275.

16. Erpenbeck, D., Voigt, O., Worheide, G. and Lavrov, D.V. (2009) Themitochondrial genomes of sponges provide evidence for multipleinvasionsbyRepetitiveHairpin-formingElements(RHE).BMCGenomics,10,591.

17. Lavrov, D.V. (2010) Rapid proliferation of repetitive palindromicelements in mtDNA of the endemic Baikalian sponge Lubomirskiabaicalensis.MolBiolEvol,27,757-760.

Page 48: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

38

18. Signorovitch, A.Y., Dellaporta, S.L. and Buss, L.W. (2006) Caribbeanplacozoanphylogeography.BiologicalBulletin,211,149-156.

19. Voigt,O., Collins,A.G.,Pearse,V.B., Pearse, J.S., Ender,A.,Hadrys,H. andSchierwater,B. (2004)Placozoa --no longeraphylumofone.CurrBiol,14,R944-945.

20. Pearse,V.B.andVoigt,O.(2007)Fieldbiologyofplacozoans(Trichoplax):distribution,diversity,bioticinteractions.IntegrCompBiol,47,677-692.

21. Miyazawa,H. andNakano,H. (2018)Multiple surveys employing a newsample-processingprotocol reveal thegeneticdiversityofplacozoans inJapan.EcolEvol,8,2407-2417.

22. Kamm,K.,Osigus,H.J.,Stadler,P.F.,DeSalle,R.andSchierwater,B.(2018)Trichoplax genomes reveal profound admixture and suggest stablewildpopulationswithoutbisexualreproduction.SciRep,8,11168.

23. Ender,A.andSchierwater,B.(2003)Placozoaarenotderivedcnidarians:evidencefrommolecularmorphology.MolBiolEvol,20,130-134.

24. Kearse,M.,Moir,R.,Wilson,A.,Stones-Havas,S.,Cheung,M.,Sturrock,S.,Buxton, S., Cooper, A., Markowitz, S., Duran, C. et al. (2012) GeneiousBasic: an integrated and extendable desktop software platform for theorganization and analysis of sequence data. Bioinformatics, 28, 1647-1649.

25. Herzog,R.,Osigus,H.J.,Feindt,W.,Schierwater,B.andHadrys,H.(2016)The complete mitochondrial genome of the emperor dragonfly Anaximperator LEACH, 1815 (Odonata : Aeshnidae) via NGS sequencing.MitochondrialDNAPartB,1,783-786.

26. Gnerre,S.,Maccallum, I.,Przybylski,D.,Ribeiro,F.J.,Burton, J.N.,Walker,B.J.,Sharpe,T.,Hall,G.,Shea,T.P.,Sykes,S.etal.(2011)High-qualitydraftassemblies of mammalian genomes from massively parallel sequencedata.ProcNatlAcadSciUSA,108,1513-1518.

27. Ribeiro, F.J., Przybylski, D., Yin, S., Sharpe, T., Gnerre, S., Abouelleil, A.,Berlin,A.M.,Montmayeur,A.,Shea,T.P.,Walker,B.J.etal.(2012)Finishedbacterial genomes from shotgun sequence data.GenomeRes,22, 2270-2277.

28. Simpson, J.T.,Wong,K., Jackman, S.D., Schein, J.E., Jones, S.J. andBirol, I.(2009)ABySS:aparallelassemblerforshortreadsequencedata.GenomeRes,19,1117-1123.

29. Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assemblyprogram.GenomeRes,9,868-877.

30. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990)Basiclocalalignmentsearchtool.JMolBiol,215,403-410.

31. Lowe,T.M.andChan,P.P.(2016)tRNAscan-SEOn-line:integratingsearchand context for analysis of transfer RNA genes. Nucleic Acids Res, 44,W54-57.

32. Katoh,K.andStandley,D.M.(2013)MAFFTmultiplesequencealignmentsoftwareversion7:improvementsinperformanceandusability.MolBiolEvol,30,772-780.

33. Osigus, H.J., Eitel, M. and Schierwater, B. (2017) Deep RNA sequencingreveals the smallest known mitochondrial micro exon in animals: Theplacozoancox1singlebasepairexon.PlosOne,12.

Page 49: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

39

34. Chi, S.I. and Johansen, S.D. (2017) Zoantharian mitochondrial genomescontainuniquecomplexgroupI intronsandhighlyconservedintergenicregions.Gene,628,24-31.

35. Haen, K.M., Lang, B.F., Pomponi, S.A. and Lavrov, D.V. (2007) Glasssponges and bilaterian animals share derived mitochondrial genomicfeatures: a common ancestry or parallel evolution? Mol Biol Evol, 24,1518-1527.

36. Sbisa, E., Tanzariello, F., Reyes, A., Pesole, G. and Saccone, C. (1997)Mammalian mitochondrial D-loop region structural analysis:identification of new conserved sequences and their functional andevolutionaryimplications.Gene,205,125-140.

37. Lavrov,D.V.(2007)Keytransitions inanimalevolution:amitochondrialDNAperspective.IntegrCompBiol,47,734-743.

38. Lavrov, D.V. (2010) In DeSalle, R. and Schierwater, B. (eds.), Keytransitionsinanimalevolution.CRCPress,pp.34-53.

39. Burger, G., Forget, L., Zhu, Y., Gray, M.W. and Lang, B.F. (2003) Uniquemitochondrial genome architecture in unicellular relatives of animals.ProcNatlAcadSciUSA,100,892-897.

40. Schleicherova, D., Dulias, K., Osigus, H.J., Paknia, O., Hadrys, H. andSchierwater, B. (2017) The most primitive metazoan animals, theplacozoans, showhigh sensitivity to increasing ocean temperatures andacidities.EcologyandEvolution,7,895-904.

Page 50: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

40

ChapterIXH.J. Osigus1, M. Eitel4, S. Rolfes1, K. Kamm1, M. Tessler2, J.S. Neumann2,3, R.DeSalle2, B. Schierwater1, New insights into complex mitochondrial genomeevolutionwithintheHoilungia-group(phylumPlacozoa),unpublished

1Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559Hannover,Germany.2AmericanMuseumofNaturalHistory,SacklerInstituteforComparativeGenomicsandDivisionofInvertebrateZoology,NewYork,NY,USA.3AmericanMuseumofNaturalHistory,RichardGilderGraduateSchool,NewYork,NY,USA.4Ludwig-Maximilians-Universität München, Department of Earth and Environmental Sciences,PaleontologyandGeobiology,München,Germany

Abstract

The lineage-rich Hoilungia-group is one of the three major branches in the

phylumPlacozoa.Despitepreviousefforts,theevolutionofmitogenomeswithin

this group is still poorlyunderstood.Weheredescribe fivenewmitogenomes,

coveringfourdifferent16Sclades.Withonly31,8kb,theH19mitogenomeisthe

smallest Hoilungia-group mtDNA reported until today. The order of typical

mitochondrial genes is surprisingly conserved within the Hoilungia-group,

although the number of encoded ORFs is variable. However, one major

rearrangementofanmtDNAfragmentspanninghalfoftheentiremitogenomeof

H25 challenges our understanding ofmitogenome evolution in closely related

placozoan lineages.We also discuss independent intron loss scenarios for the

placozoancox1,nad5and16SrDNAgenes indistantlyrelated lineages. Insum,

ourdatarevealcomplexpatternsofmitogenomeevolutionwithintheHoilungia-

group and support the hypothesis of fast genetic radiation of particular

placozoanclades.

Introduction

Placozoansarean idealmodel systemtostudycomplexmitogenomeevolution

processes at the non-bilaterian phylum level (1-3). The phylum Placozoa

currently consists of 20 haplotypes, which can be arranged into the

Polyplacotoma-group (H0) (4), the Trichoplax-group (H1-H3, H17) and the

Hoilungia-group(H4-H16,H18-H19),respectively(5).

Page 51: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

41

The mitochondrial genomes from the Polyplacotoma-group and the

Trichoplax clade seem to follow remarkably different evolutionary pathways

thanmitogenomes fromclade II, IIIandV (see4,6,7,8,andChapterVIII in this

thesis).Theevolutionarypathwaysofmitogenomes in theHoilungia-groupare

poorly understood.Only 4 out of 15mitogenomes (i.e. fromH4,H8,Hoilungia

hongkongensisH13andH15)havesofarbeencharacterizedinthisgroup(5,6,8).

Thesemitogenomesbelongtomembersofonlytwooutoffiveknownclades(i.e.

cladeIIIandcladeV)(9).AsthetaxonomywithintheHoilungia-groupislikewise

controversial (5), wholemitochondrial genome analysesmight also be helpful

forabettersystematicunderstanding.

SinceHoilungia hongkongensis H13 (clade V, (5)) is the only described

species in theHoilungia-group,weuse itsmitogenomeas a reference genome.

The overall gene order in the Hoilungia hongkongensis H13 mitogenome is

similar to the geneorder as observed inhaplotypeH15 “Shirahama” (cladeV)

(8).However,despitetheircloserelationship,aninversionofanapprox.840bp

long non-coding region is themajor difference between the two lineages. The

major differences between the H13 mitogenome and the mitogenome of

haplotype H4 (likewise clade V) are the translocation of the same non-coding

region as seen between H13 and H15 “Shirahama”, as well as the

translocation+inversionofthePolBopenreadingframe(5,6,8).Takentogether,

all three clade V lineages are separated from each other by at least one

mitogenomerearrangementevent.ThemajordifferencebetweentheHoilungia

hongkongensisH13(cladeV)andthehaplotypeH8(cladeIII)mitogenome(6)is

theinversionofafragmentcomprisingtwotRNAgenes,aswellastheabsenceof

thePolBopenreadingframeinH8.

Totesttheideaofahighdynamicofopenreadingframeevolutioninthe

Hoilungia-group,wehere isolateandanalyzecompletemitochondrialgenomes

ofhaplotypesH15(cladeV),H19(cladeIV),H23(cladeIII),H24(cladeVII)and

H25 (clade V). H23, H24 and H25 represent previously unknown 16S rDNA

haplotypes.

Page 52: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

42

MaterialandMethods

Animalmaterial

Theclonalstrain“M2/11”(haplotypeH15,cladeV)originatesfromHongKong

(22.352728N114.251733E)andhasbeensampledbyMichaelEitelin2012.The

clonalstrain“BigMama”(haplotypeH19,cladeIV)hasbeenpublishedformerly

(9).In2015,theclonalstrainH23“Oberjatzas-OJGamma”(cladeIII)hasbeen

provided by Ulrike and Günter Oberjatzas (Hannover, Germany) from their

private seawater aquarium, which contains marine samples of unknown

geographic origin. The totalDNA sample of haplotypeH24 “Aq2-1” (cladeVII)

originates from the DNA collection of the Institute of Animal Ecology (TiHo

Hannover). The geographic origin of haplotype H24 “Aq2-1” is unknown as it

originates from an aquarium, which contains multiple seawater samples of

unknownorigin.TheclonalstrainH25“Cuba”(cladeV)hasbeenextractedfrom

rock samples from Cuba by SachaHanig in 2012. All clonal strains have been

culturedintheInstituteofAnimalEcologyunderstandardlaboratoryconditions

as previously described (10). For H15, H19, H23 and H25, total DNA was

extracted from these clonal animal cultures using standard phenol-chloroform

protocols (11) for subsequent sequencing. The total DNA from haplotypeH24

has been amplified before sequencing using the REPLI-g Mini Kit (Qiagen)

followingthemanufacturer’srecommendations.

DNAsequencing,dataprocessingandsequenceanalyses

The sequencing of total DNA fromH23 andH24was conducted as previously

described (4). The paired-end library preparation (TruSeq, PCR-free, 450 bp

insert size)andsequencingof totalDNA fromH15,H19andH25was likewise

conducted on an Illumina HiSeq2500 (2x125, High Output) at the New York

GenomeCenter.Thesequencingresultedinthefollowingtotalnumberspaired-

end reads: 159.778.438 (H15), 147.087.050 (H19), 150.218.874 (H23),

142.156.322(H24)and149.611.550(H25).

Thecompletemitochondrialgenomeswereassembledfromthesepaired-

end read data sets in Geneious version 8.x (12) using an iterative mapping

approachusingpreviouslyextracted16SrDNAsequencesasstartingpoint(see

e.g. 13). The quality of draft mitochondrial genomes has afterwards been

Page 53: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

43

improved by mapping back the entire paired-end data sets to the respective

mitogenomesequencesusingGeneious.

MitochondrialribosomalRNAgenesaswellasproteincodinggeneswere

annotated using previously published placozoan mitochondrial genomes as

guidance (6). Gene boundaries have afterwards been verified via Blast search

(14).MitochondrialencodedtRNAgeneswerepredictedwithtRNAscan-SE(15).

ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/) has been used to screen

allnewcompleteplacozoanmitochondrialgenomescharacterizedinthecourse

of this thesis for additional open reading frames using stringent parameters

(minimal ORF length >300 bp, only “ATG” start codon permitted). The

hypotheticalfunctionsofrespectiveORFshavebeenpredictedviaproteinBlast

searches. Previously published placozoan mitochondrial genomes (6-8) have

accordinglybeenre-analyzedwithrespect to theiropenreading framecontent

(seeDigitalappendix).

The new haplotypes H23, H24 and H25 have been assigned to existing

Hoilungia-group clades based on the analysis of their diagnostic 16S rDNA

fragment (16). In detail, 16S rDNA fragments of all publishedHoilungia-group

lineages(see9)havebeenalignedwithMAFFTv7.017(17)as implemented in

Geneious using the E-INS-i algorithm. Subsequent phylogenetic analyses were

conductedwithFastTree2.1.5 (18) (likewise implemented inGeneious)under

default settings.The resulting treehas afterwardsbeenmodified in INKSCAPE

(19).

For the analyses of cox1, nad5 and 16S gene structures, single gene

alignments have been generated in MAFFT (17) as implemented in Geneious

(12),usinggenesequencesfrompreviouslypublishedplacozoanmitochondrial

genomes (6-8) as well as from all new placozoan mitochondrial genomes

characterizedinthecourseofthisthesis.

ResultsandDiscussion

Theinitialcharacterizationofthediagnostic16SrDNAfragmentsrevealedthat

two out of five analyzed clonal lineages belong to previously published

placozoan haplotypes (i.e. H15 and H19, respectively) (see 9,10). In contrast,

three analyzed clonal lineages possess unique 16S sequences, which do not

Page 54: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

44

match to any described placozoan haplotype. As the haplotype numbers H20-

H22 have already been assigned to other lineages (Michael Eitel, pers.

communication), we here assign the haplotype numbers H23 (clade III), H24

(cladeVII)andH25(cladeV)tothenewplacozoanlineages(Figure1).

The five new mitochondrial genomes of H15, H19, H23, H24 and H25

share a series of characteristics with previously sequenced Hoilungia-group

mitogenomes(5,6,8).Sharedfeaturesareamitogenomesizebetween30kb–40

kb,themissingatp8/atp9genes,aconservedsetof24tRNAs, fragmented16S/

cox1/nad5genes,andacox1microexon.Furthermore,allnewHoilungia-group

mitogenomes possess only a moderate GC-content. The clade-specific

characteristicsarediscussedindetailbelow.Theopenreadingframecontentof

respectiveplacozoanmitogenomesissummarizedinFigure2.

CladeIII

The complete mitochondrial genome of haplotype H23 is a circular molecule

withasizeof32,980bp.16SrDNAsequencesclearlyidentifyH23asamember

of clade III (see Figure 1). Itsmitochondrial gene order is identical to that of

haplotypeH8(sameclade) (6).Whencompared to thereferencegenome from

Hoilungia hongkongensis (H13), H8 as well as H23 deviate by an inverted

mitogenomefragmentcodingfortrnT+trnK(seeFigure3).However,considering

the identical gene orders in the Trichoplax-group (6), the gene order of this

specific tRNA-locus in H8/H23 can be seen as the ancestral state within the

Hoilungia-group. Therefore, the inversion of the trnT+trnK locus is a

synapomorphyoftheHoilungia-subgroupA2(see10),assuggestedinaprevious

study by Signorovitch and co-workers (6). The trnT+trnK locus seems to be a

hotspot for changes in the mitochondrial gene order (see section on clade V

mitogenomes, below). With respect to additional open reading frames, both

cladeIIImitogenomesshareaplacozoan-specificLAGLIDADG-endonuclease(6)

located in a cox1 intron, while H23 possesses an additional LAGLIDADG-

endonuclease in another cox1 intron. Remarkably, both clade IIImitogenomes

lack a reverse transcriptase known from other placozoans (Figure 2). The

potentialfunctionoftheremainingpredictedORFsremainsunclear.

Page 55: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

45

CladeIV

ThemitochondrialgenomeofhaplotypeH19representsthefirstmitochondrial

chromosome, which has been characterized in clade IV. With a size of only

31,792 bp it is even smaller than the so far smallest Hoilungia-group

mitogenome(i.e. thatofH8,cladeIII,32,661bp,(6))andthereforenowmarks

the lower size boundary of Hoilungia-group mitogenomes. This observed

mitogenome size difference between H8 and H19 is mostly caused by the

absenceofonecox1introninH19,whichislikelytheresultofasecondaryintron

loss (seebelow).However, there still remains a size gapbetween the smallest

Hoilungia-groupmitogenomeandthelargestcircularmitogenomefromsponges

(Lubomirskiabaicalensis,29kb)(20).

The geneorder of conservedmitochondrial genes inH19 is identical to

the reference mitogenome of Hoilungia hongkongensis H13. The H19

mitogenome lacksaPolB openreading frameknown fromcladeV (6),while it

possesses one LAGLIDADG-endonuclease as well as a reverse transcriptase in

differentcox1 introns.Again, thepotential functionof the remainingpredicted

ORFsremainsunclear(Figure2).

CladeVII

ThefirstcompletemitogenomefromcladeVII(representedbyhaplotypeH24)

hasasizeof33,532bp.Therelativegeneorderoftypicalmitochondrialgenesis

identical to the gene order in the reference Hoilungia hongkongensis H13

mitogenome(5).Thisimpliesthatidenticalordersoftypicalmitochondrialgenes

can be found in different lineages from three out of four analyzedHoilungia-

group clades. With respect to additional open reading frames, the H24

mitogenome harbors a reverse transcriptase as well as two LAGLIDADG-

endonucleasegenes.TheoccurrenceofasecondLAGLIDADG-endonucleasenow

inthreeoutoffouranalyzedclades(seealsoH25incladeV,below)suggeststhat

this specific endonuclease originallywas present in allHoilungia-group clades

andhasbeenlostindependentlyinvariousdistantlyrelatedplacozoanlineages.

Interestingly,onlyoneadditionalopenreading frameofunknownfunctionhas

beenpredictedinH24(Figure2).

Page 56: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

46

CladeV

ThemtDNAanalysesofhaplotypeH15“M2/11”andhaplotypeH25revealeda

complexhistoryofmitogenomeevolutionwithincladeV.WhileH25representsa

previously unknown haplotype, the H15 “M2/11”mitogenome is of particular

interestasitisthesecondmitogenomefromthisspecifichaplotype(8),allowing

for the first time tostudy themtDNAevolution in twodifferentpopulationsof

thesamehaplotype.

The H15 “M2/11” mitogenome (36,521 bp) is highly similar to the

referencemitochondrial genome ofHoilungiahongkongensisH13. Surprisingly,

theinversionofaspecificnon-codingregion,whichisoneofthemajorstructural

differences between H15 “Shirahama” (36,676 bp) (8) and Hoilungia

hongkongensisH13,cannotbefoundintheH15“M2/11”mtDNA.Thisinversion

thereforeisnotasynapomorphyofthehaplotypeH15,butratherindicatesthat

mitogenomerearrangementscanindependentlyoccurindifferentpopulationsof

H15.Thiscasestudyalsopointstocurrentlimitationsofthecommonlyused16S

fragment, which seems to fail to resolve such structural changes at the

population level.WhileHoilungiahongkongensis H13 potentially is endemic in

HongKong (5), theplacozoanhaplotypeH15hasbeen reportednotonly from

HongKong (clone “M2/11”, this study) and Japan (clone “Shirahama” (8)), but

also from the Philippines (10). The complete mitogenome sequence of the

Philippine H15 population therefore would help to reconstruct the dispersal

historyofH15inthePacific.However,basedonavailablemitogenomedata,any

predictionsonthesuccessionofemergenceofhaplotypesH13andH15inclade

V remain speculative at this point. With respect to predicted open reading

frames, both H15 mitogenomes share a reverse transcriptase, a LAGLIDADG-

endonucleaseandaPolBDNApolymerase(Figure2).Nevertheless,thenumber

of additionalORFsofunknown functiondiffersbetween the twodifferentH15

mitogenomes.

The mitogenome of H25 (35,364 bp) reveals a remarkable case of a

mitogenome rearrangementwithin clade V (Figure 3).While the relative gene

orderoftypicalmitochondrialgenes(whichomitsadditionalORFsofunknown

functionorproteinswhicharenotrelatedtotherespiratorychain)isidenticalin

H4,H13andbothH15mitogenomes, thegeneorder inH25differs from these

Page 57: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

47

haplotypes by the inversion of a fragment, which spans half of the entire

mitogenome. This major mitogenome rearrangement is almost in a range as

observed for instance between members of different placozoan groups (e.g.

TrichoplaxadhaerensH1vs.haplotypeH8, (6)).Remarkably, theboundariesof

the invertedmitogenome fragment inH25 (i.e. trnT-nad1 and trnK-nad4L, see

Figure 3) exactly match the position of the PolB open reading frame in

haplotypesH4 andH13/H15, respectively. This indicates that the loci flanking

PolB inH4(nad1-PolB-nad4L)andH13/H15(trnT-PolB-trnK)maybehotspots

for rearrangement events (see also the section on clade III, above). The PolB

open reading frame itself, however, is absent in H25, whereas a reverse

transcriptase, twoLAGLIDADG-endonucleasegenesandtwoadditionalORFsof

unknownfunctioncanbefound(Figure2).

Generalaspects

The comprehensive analyses of complete mitogenomes from the Hoilungia-

grouprevealedahighconservationofgeneorderswithinthisgroup(Figure3).

In detail, the gene orders in clade IV, V (except for H25) and VII are overall

identicalwhenfocusedontypicalmitochondrialgenes.Theonlyexceptioninthis

groupiscladeIII,whichpossessesaslightlydeviatinggeneorderwithinatRNA-

richmitogenome locus. This different (possiblymore ancestral) gene order in

clade III, however, matches previous 16S phylogenies, which support a sister

grouprelationshipofcladeIIItothesubgroupA2(comprisingcladeIV,V,VIand

VII)(9).Withrespect to theoverallevolutionaryhistoryofmitochondrialgene

orderswithin theHoilungia-group, it seems that the radiation of subgroupA2

into clades IV-VII is characterized by a long period, in which no mitogenome

rearrangementshaveoccurred.Thisperiod,however,endedwiththeemergence

ofH25incladeV.

Previous studies suggested an overall correlation between sequence

divergenceandfrequency/fragmentsizeofrearrangementeventsatthegroup-

andclade-level, respectively (6,8).Themitochondrial genomeofH25 (cladeV)

depictsaremarkabledeviationfromthisgeneralpicture.Inthiscase,theorder

withinacladeismorevariablethanbetweenclades,althoughthedeviatinggene

order originates from just a single rearrangement event. Nevertheless, this

Page 58: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

48

observationmay indicate anaccelerated structural evolution rate (i.e. ahigher

tendency for rearrangements) in clade V, which has to be confirmed by

additionalmitogenomedatafromthisclade.

Cox1evolution

The five new placozoan mitogenomes allow us to further reconstruct the

evolutionary history of placozoan cox1 gene fragmentation (see Figure 4). In

Placozoa,thecox1geneisfragmentedintofivetonineexons,respectively,with

the smaller number of exons representing themore ancestral state (21,22). In

agreement with previous results (5,8), our data support the scenario that the

cox1exonstructureisidenticalindifferentlineagesofthesameclade.Onecase

ofa sharedcox1exonstructureevenbetweenmembersofdifferent cladeshas

previously been reported from the Trichoplax-group (i.e. between clade I and

clade II) (6).However,ournewdatashowfor the first timethat thecox1exon

structure also can be identical between members of different clades in the

Hoilungia-group(asseenbetweencladeVandcladeVII,Figure4).

Following previous studies (7,21) the placozoan cox1 gene can be

subdivided into three different blocks A, B and C, each showing differential

fragmentationpatterns(Figure4).Moststrikingly,blockB isconservedamong

all extant placozoans, indicating the split-off of this block already in their last

commonancestor.

On the opposite, thePolyplacotoma-, theTrichoplax- and theHoilungia-

groupsshowuniquefragmentationpatternsinblockA,respectively.Theoverall

evolutionarytendencyinthisblockisanincreasingfragmentationintouptofour

exons,asseenintheTrichoplax-group(cladeIandII).

AmorecomplexfragmentationpatterncanbeobservedinblockC.While

blockCcomprisesonlytwoexonsinH0,thisblockisevenfragmentedintoupto

five exons (including the shared micro exon) in other placozoans. The exon

patternofblockC in clades I, II and III, respectively, seems tomatch the exon

patternofthelastcommonancestoroftheTrichoplax-/Hoilungia-groups.While

clade III therefore still possesses this ancestral pattern within the Hoilungia-

group,an increasing fragmentation inblockCcanbeobserved incladesVand

VII. However, clade IV (i.e. haplotype H19) represents an exception in this

Page 59: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

49

scenario, as its block C does not possess an otherwise conserved exon-exon

boundary known from clades I, II, III, V and VII. Considering the 16S tree

topologywithintheHoilungia-group(9),themostparsimoniousexplanationfor

thispatternisthelossoftherespectiveintronincladeIV,whichresultedinthe

fusion of the previously separated exons. This is the first report of a putative

intron loss in the placozoan cox1gene. In sum, although there seems to be a

general evolutionary tendency for increasing gene fragmentation in placozoan

mitogenomes, sporadic exceptions, which at least partially reverse this trend,

can be found in some lineages. Future comparative approaches implementing

cox1introndatafromPorifera(e.g.23)andCnidaria(e.g.24)willhelptofurther

reconstructtheevolutionofcox1fragmentationatthebaseofMetazoa.

16SrDNAevolution

Asalreadyseeninthecox1gene,the16SrDNAgeneislikewisefragmentedinto

multiple exons in Placozoa (4-8). The total lengths of 16S genes substantially

differbetweenplacozoanlineagesduetomultiplevariableregionswithinexons.

However, based on sequence alignments and the positions of exons within

respective mitogenomes, the placozoan 16S gene can be separated into two

distinct blocks A and B (6,7) (Figure 5). The 16S block A is shared among all

placozoan lineages, includingH0. This indicates that the separation of block B

from block A has already occurred in the last common ancestor of all extant

placozoans.TheexonstructureofblockB,however,ismorecomplex.Theexon

structureofblockBisidenticalinH0aswellasincladeIandcladeII(thelatter

both from theTrichoplax-group). In all these lineages, the16SblockB is split

into two exons. This specific exonbreakpoint in blockB also can be found in

cladeIII(Hoilungia-group).However,incladeIII,the5`-exonofblockBisfurther

split,resultinginablockBthatconsistsofinsumthreeexons.Surprisingly,the

16SblockB in clades IV, V andVII consists of only one single exon.Given the

16S-based phylogeny (9), we deduce that the block B intron, which is shared

betweenH0andcladesI-III,hasbeenlostinthelastcommonancestor(LCA)of

cladesIV,VandVII(i.e.theLCAofsubgroupA2,(10)).

Page 60: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

50

Nad5evolution

Thenad5gene is the thirdplacozoanmitochondrialgene,whichcanharboran

intron (see 3 for overview). With the exception of P. mediterranea H0 and

haplotype H3, all placozoan lineages share an nad5 intron at a conserved

position(Figure6).Theabsenceofthenad5introninH0couldbeinterpretedas

primaryabsence,asphylogeneticanalysessupportH0as thesister toallother

extantplacozoans(4).However,asecondarylossscenarioofthenad5introncan

notbecompletelyexcludedforP.mediterraneaH0.IncontrasttoH0,haplotype

H3 is branching-off deeply within placozoan lineages (9), which all posses an

nad5 intron. Therefore, thenad5 intron inH3has likely been secondarily lost,

while all other Trichoplax-/Hoilungia-group mt genomes retained this nad5

intron, which has then been gained along the stem leading to both groups.

Another(lesslikely)scenariosuggestsaprimaryabsenceofannad5introninall

Trichoplax-/Hoilungia-group mt genomes and therefore would imply an

independentgainofannad5 intronincladeIaswellasintheHoilungia-group,

respectively.

Insum,whileallintron-containinggenes(i.e.nad5,cox1and16S)show

thegeneralevolutionarytendencyforincreasingfragmentation,sporadicintron

losseshavebeenfoundinallthreegenesindistantlyrelatedplacozoantaxa.We

would like to emphasize that the sporadic intron loss (and therefore the

secondary re-compaction of genes) does not necessarily predate the general

scenario of secondary size amplification of placozoan mitogenomes. The

sporadicallyobserved intron lossesmightratheremphasize thehighstructural

dynamics within placozoan mitogenomes, although further analyses have to

confirmthishypothesis.

Conclusions

The comparative analysesofmitochondrial genomes from theHoilungia-group

provide new insights into the genetic diversity and complex evolution of

placozoanmitogenomes.Futurestudiesonnucleargenomesaswellasfunctional

studies on mitochondrial DNA replication will help to better understand the

mechanisms underlying the genetic radiation processes in placozoan

mitochondria.Pendingcomprehensivephylogeneticanalysesbasedondifferent

Page 61: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

51

mitochondrialdatasetswillhelp to furtherclarify the taxonomicstatuswithintheHoilungia-group.Acknowledgements

HJO acknowledges a doctoral fellowship of the Studienstiftung des DeutschenVolkes. We acknowledge support from the German Science Foundation (DFGSchi-277/26,Schi-277/27,Schi-277/29).WethankUlrikeandGünterOberjatzas(Barsinghausen, Lower Saxony, Germany) for kindly providing live animals ofhaplotype H23.We also thank Sacha Hanig for kindly providing rock samplescontaininghaplotypeH25.Digitalappendix

FurtherinformationrelatedtothischaptercanbefoundintheDigitalappendixofthisthesis.

Page 62: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

52

H6

H8

H16

H23

H7

H18

H24

H12

H11

H5

H19

H4

H25

H9

H15

H10

H13

H14

clade III

clade VII

clade VI

clade IV

clade V

Figure1

PhylogeneticrelationshipsofplacozoanhaplotypeswithintheHoilungia-group.

Shown is an approximately Maximum Likelihood tree based on FastTree-

analyses of thediagnostic 16S rDNA fragment. ThehaplotypesH18,H19,H23,

H24andH25havebeencharacterizedinthecourseofthisthesis.Thecolorsof

the 16S clades III-VII correspond to colors already used in previous studies

(9,10).

Page 63: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

53

H0 + 0H1 + + 11H2 + + 16H17 + + 13

II H3 + + 3H8 + 2H23 + + 3

IV H19 + + 2H4 + + + 3H13 + + + 3

H15�Shi + + + 5H15�M2 + + + 2H25 + + + 2

VII H24 + + + 1

clade

LAGLIDADG�homing�

endonuclease�(Placozoa)

LAGLIDADG�homing�

endonuclease�(non-Placozoa)

DNA�polymerase�B

additional�ORFs

reverse�transcriptase/maturase

haplotype

I

III

V

Figure2

DistributionofmitochondrialopenreadingframesinPlacozoa.The figure shows the distribution of mitochondrial open reading frames indistantly related placozoan haplotypes. Some of the listed predicted ORFs ofunknown function partially overlapwith other ORFs, which possess the sametranscriptionaldirection.ListedORFs,whicharecompletelynestedwithinotherORFs,mustpossessanoppositetranscriptionalorientation.PleasenotethattheabsenceofspecificORFsinsomelineagesmightimplythatrudimentalfragmentsoftheseORFsarestilldetectableinrespectivemitogenomes.

Page 64: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

54

16S cox1 cox2 cox3 nad1 nad2 nad3 nad4 nad4L nad5 nad6 cob atp6 tRNA12S

clade V

clade IV

clade VII

clade III

§: RT +: LAG, Placozoa #: LAG, non-Placozoa *: PolB

H8 R W L D R N S K T S M G H F C P I M Q Y E V A L+

H23 R W L D R N S K T S M G H F C P I M Q Y E V A L+#

H19 R W L D R N S KT S M G H F C P I M Q Y E V A L+§

H25 R W L D R N S T KSMGHFCP I M Q Y E V A L

+

H4 R W L D R N S T K S M G H F C P I M Q Y E V A L+§ *

H13 R W L D R N S T K S M G H F C P I M Q Y E V A L+§*

H15 R W L D R N S T K S M G H F C P I M Q Y E V A L+§*

H24 R W L D R N S KT S M G H F C P I M Q Y E V A L+#

§

Figure3

PositionalalignmentoflinearizedmitochondrialgenomesfromHoilungia-group

placozoans.

Typicalmitochondrialcodinggenesareillustratedascolor-codedboxes(notto

scale).Geneswithoppositeorientation(i.e.3’-5’insteadof5’-3’)arelabeledwith

ablackbaratthebottomoftherespectivegeneicon.Accordingtothestandard

code, single letters name the corresponding amino acid of tRNA genes. Please

notethatsomeneighboringexonsofcox1,nad5and16S,respectively,havebeen

merged.Multiplecox1and16Siconsatdifferentloci,however,still indicatethe

fragmentation of these genes. Positions of potentially functional open reading

framesare labeledbyrespectivesymbols,whileORFsofunknownfunctionare

notshownforclarity.Geneorderswhichdeviatefromthereferencemitogenome

(i.e. fromHoilungiahongkongensisH13)arehighlightedwithdotted lineboxes.

(RT: reverse transcriptase/maturase, LAG: LAGLIDADG- homing endonuclease,

PolB:DNApolymeraseB).

Page 65: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

55

H0

I

II

IIIIVVVII

A B C

Figure4

Exonstructuresofthefragmentedcox1geneintheplacozoan16ShaplotypeH0

and the16S clades I-VII.Exonswith identicalboundarieshave the samecolor.

Neighboring exonshavebeen strung together.Thecox1gene is separated into

threedifferentblocksA,BandC.Thesizeofrespectiveexonsisapproximateto

scale,exceptforthecox1microexon,whichisindicatedbyablacklineinblockC

incladeI-VII,butwhichisabsentinH0.

Page 66: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

56

H0

I

II

III

IV

V

VII

A B

Figure5

Exonstructuresofthefragmented16Sgeneintheplacozoan16ShaplotypeH0

and the16S clades I-VII.Exonswith identicalboundarieshave the samecolor.

Neighboring exons have been strung together. The 16S gene is separated into

twodifferentblocksAandB.Exonsareonlyshownasrelativeapproximationsin

unifiedsize,andhomologousexonboundarieshavebeenaligned.

Page 67: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

57

H0

I

II

III

IV

V

VII

Figure6

Exonstructuresofthefragmentednad5geneintheplacozoan16ShaplotypeH0

and the16S clades I-VII.Exonswith identicalboundarieshave the samecolor.

Neighboringexonshavebeenstrungtogether.Exonsareapproximatetoscale.

References

1. Lavrov,D.V.andPett,W.(2016)AnimalMitochondrialDNAasWeDoNotKnow It: mt-Genome Organization and Evolution in NonbilaterianLineages.GenomeBiolEvol,8,2896-2913.

2. DeSalle, R., Schierwater, B. and Hadrys, H. (2017) MtDNA: The smallworkhorseofevolutionarystudies.FrontBiosci-Landmrk,22,873-887.

3. Osigus, H.J., Eitel, M., Bernt, M., Donath, A. and Schierwater, B. (2013)MitogenomicsatthebaseofMetazoa.MolPhylogenetEvol,69,339-351.

4. Osigus, H.J., Rolfes, S., Herzog, R., Kamm, K. and Schierwater, B. (2019)Polyplacotomamediterranea is a new ramified placozoan species. CurrBiol,29,R148-R149.

5. Eitel,M.,Francis,W.R.,Varoqueaux,F.,Daraspe, J.,Osigus,H.J.,Krebs,S.,Vargas, S., Blum, H., Williams, G.A., Schierwater, B. et al. (2018)Comparativegenomicsandthenatureofplacozoanspecies.PLoSBiol,16,e2005359.

6. Signorovitch, A.Y., Buss, L.W. and Dellaporta, S.L. (2007) Comparativegenomicsoflargemitochondriainplacozoans.PLoSGenetics,3,e13.

7. Dellaporta,S.L.,Xu,A.,Sagasser,S.,Jakob,W.,Moreno,M.A.,Buss,L.W.andSchierwater, B. (2006) Mitochondrial genome of Trichoplax adhaerens

Page 68: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

58

supports placozoa as the basal lowermetazoan phylum.ProcNatlAcadSciUSA,103,8751-8756.

8. Miyazawa, H., Yoshida, M.A., Tsuneki, K. and Furuya, H. (2012)MitochondrialgenomeofaJapaneseplacozoan.ZoologSci,29,223-228.

9. Eitel, M., Osigus, H.J., DeSalle, R. and Schierwater, B. (2013) GlobaldiversityofthePlacozoa.PLoSOne,8,e57131.

10. Eitel,M.andSchierwater,B.(2010)ThephylogeographyofthePlacozoasuggestsataxon-richphylumintropicalandsubtropicalwaters.MolEcol,19,2315-2327.

11. Ender,A.andSchierwater,B.(2003)Placozoaarenotderivedcnidarians:evidence from molecular morphology.Molecular Biology and Evolution,20,130-134.

12. Kearse,M.,Moir,R.,Wilson,A.,Stones-Havas,S.,Cheung,M.,Sturrock,S.,Buxton, S., Cooper, A., Markowitz, S., Duran, C. et al. (2012) GeneiousBasic: an integrated and extendable desktop software platform for theorganization and analysis of sequence data. Bioinformatics, 28, 1647-1649.

13. Herzog,R.,Osigus,H.J.,Feindt,W.,Schierwater,B.andHadrys,H.(2016)The complete mitochondrial genome of the emperor dragonfly Anaximperator LEACH, 1815 (Odonata : Aeshnidae) via NGS sequencing.MitochondrialDNAPartB,1,783-786.

14. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990)Basiclocalalignmentsearchtool.JMolBiol,215,403-410.

15. Lowe,T.M.andChan,P.P.(2016)tRNAscan-SEOn-line:integratingsearchand context for analysis of transfer RNA genes. Nucleic Acids Res, 44,W54-57.

16. Voigt,O., Collins,A.G.,Pearse,V.B., Pearse, J.S., Ender,A.,Hadrys,H. andSchierwater,B. (2004)Placozoa --no longeraphylumofone.CurrBiol,14,R944-945.

17. Katoh,K.andStandley,D.M.(2013)MAFFTmultiplesequencealignmentsoftwareversion7:improvementsinperformanceandusability.MolBiolEvol,30,772-780.

18. Price,M.N.,Dehal,P.S.andArkin,A.P. (2010)FastTree2--approximatelymaximum-likelihoodtreesforlargealignments.PLoSOne,5,e9490.

19. INKSCAPE.(2017).0.92.2ed.20. Lavrov, D.V. (2010) Rapid proliferation of repetitive palindromic

elements in mtDNA of the endemic Baikalian sponge Lubomirskiabaicalensis.MolBiolEvol,27,757-760.

21. Burger,G.,Yan,Y., Javadi,P. andLang,B.F. (2009)Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals.TrendsGenet,25,381-386.

22. Osigus, H.J., Eitel, M. and Schierwater, B. (2017) Deep RNA sequencingreveals the smallest known mitochondrial micro exon in animals: Theplacozoancox1singlebasepairexon.PLoSOne,12,e0177959.

23. Schuster,A.,Lopez, J.V.,Becking,L.E.,Kelly,M.,Pomponi,S.A.,Worheide,G.,Erpenbeck,D.andCardenas,P.(2017)EvolutionofgroupIintronsinPorifera: new evidence for intron mobility and implications for DNAbarcoding.BMCEvolBiol,17,82.

Page 69: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

59

24. Chuang,Y.Y.,Kitahara,M.,Fukami,H.,Tracey,D.,Miller,D.J.andChen,C.A.(2017)LossandGainofGroupIIntronsintheMitochondrialCox1GeneoftheScleractinia(Cnidaria;Anthozoa).ZoolStud,56.

Page 70: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

60

3.GeneraldiscussionPlacozoanmitogenomicdataareavaluableresourcefortargetingmultiplefields

of research at the base of Metazoa. Major open questions relate to the

phylogeneticpositionofplacozoanswithinMetazoa, theplacozoanbiodiversity

and inner systematic as well as to the molecular evolution of placozoan

mitochondrialgenomes.Thesequestionshavebeenaddressedinthisthesis.

Mitochondrialmetazoanphylogenetics

Previous phylogenetic analyses using concatenated mitochondrial respiratory

chain genes have indicated thatmitochondrial protein coding sequences are a

valuabledata set to reconstruct relationships at thebaseofMetazoa (e.g. 1,2).

However, previous studies suffer from incomplete taxon sampling and/or the

usage of inadequate evolutionary substitution models and have led to

contradictory results (e.g. 3,4). To overcome these shortcomings five

comprehensivemetazoandata setswithpropernon-metazoanoutgroupshave

been generated, and subsequent phylogenetic analyses have been conducted

usingappropriatesubstitutionmodels(ChapterII).Theoutcomeoftheanalyses

generally support a sister group relationship of bilaterian and non-bilaterian

animals. Thisprincipal topologyhasbeenobserved inpreviousmitochondrial

(1,2,5)aswellastotal-evidencebasedanalyses(6).However,thistopologyhas

not been recovered for instance in a nuclear genebasedphylogenetic analysis

(ChapterVI),whichinsteadsupportsasistergrouprelationshipofspongestoall

otheranimals,withPlacozoaasasistertoacladeformedbyCnidaria+Bilateria.

To investigate these discrepancies, a closer look at the mitochondrial-based

analyses is justified. It turns out that mitochondrial sequence evolution rates

varysubstantiallybetweenandwithinnon-bilaterianphyla(7).Primarytargets

forlong-branchattraction(LBA)artifacts(8)arethephylumCtenophora(9-11)

and the two poriferan classes Hexactinellida (12) and Calcarea (13). Another

striking example for a problematic taxon is the cnidarian class Anthozoa

(Hexacorallia+Octocorallia),whichcomesoutparaphyleticinourmitochondrial

dataanalyses(ChapterII)aswellasinpreviousstudies(e.g.14).Despitethese

problematic taxa, severalwell-supported nodes likemonophyletic Placozoa or

Demospongiae (phylum Porifera) highlight the resolution ofmitogenome data

Page 71: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

61

analysestoresolvetopologiesathighertaxonomiclevels.Metazoanphylogenetic

analyses reflect a trade-off between broad taxon sampling and the depth of

subsequentanalyses(15,16).Ontheonehand,broadtaxonsamplingisgenerally

consideredtoimprovetheoutcomeofphylogeneticanalyses(seee.g.17),while

on the other hand, adding more data increases the amount of compositional

heterogeneity across sites and/or lineages (see e.g. 18). The handling of large

heterogenicdatasetsrequirescomplexevolutionarysubstitutionmodels,which

are computationally highly demanding (e.g. 19,20,21). It seems that currently

availablemodelsandcomputationalresourcesareseverelylimitedtodealwith

theseissues,especiallyformitochondrialdata.

RNAsequencingdatauncovertheplacozoancox1microexon

Deep RNA sequencing (RNAseq) is a modern technique to understand

mitochondrialtranscriptprocessinginearlybranchingmetazoans(e.g.22).Asa

complement to placozoan mtDNA data, the placozoan mitochondrial RNAseq

data generated in this thesis reveal new insights into the unique mRNA

processingandgenestructureevolutionoftheplacozoancox1gene(ChapterIV).

Indetail,apreviouslypostulatedcox1mRNAeditingmechanism,whichhasbeen

deducedfromexpressedsequencetag(EST)datainTrichoplaxadhaerensH1(4),

isnotsupportedbyTrichoplaxsp.H2RNAseqdata.Incontrast,RNAseqaswell

as mtDNA intron predictions from Trichoplax sp. H2 reveal the existence of a

previouslyoverseensinglebasepaircox1microexoninplacozoans.This isthe

firstreportofanultra-shortsinglebasepairmitochondrialexoninanimals.The

unusual cox1 micro exon originates from an intron insertion event, which

separated the singlenucleotide from the remainingexon.This intron insertion

must have occurred after the split-off of Polyplacotoma, as the micro exon in

PolyplacotomamediterraneaH0 is stillmergedwith theoriginal exon (Chapter

VII).Theexistenceofasinglebasepairmicroexonisaremarkableexampleof

extreme mitochondrial gene fragmentation in a non-bilaterian animal and

highlightsthecrucialroleofPlacozoaasageneticmodelsystem.Thiscasestudy

also highlights the importance of high coverage RNAseq data to identify rare

transcriptsandintermediatesplicingstages.

Page 72: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

62

BiodiversityandinnersystematicofPlacozoabasedonmitochondrialand

nucleargenomedata

Comparative studies on the early evolution of metazoan traits require a

representativechoiceofplacozoantaxatominimizepotentialanalysesartifacts

(ChapterI).Inordertoaddressthistask,worldwidefieldsampling(23)hasbeen

conducted to maximize the probability of collecting highly diverse placozoan

lineages (Chapter III, VII,VIII and IX). Sixnewplacozoan lineages identified in

thisthesishavesubstantiallywidenedourknowledgeonplacozoanbiodiversity

butatthesametimecallfornewapproachestoformallydescribenewplacozoan

species.

Thetraditionalbiologicalspeciesconceptcouldbeanappropriatespecies

concept for placozoans, although sexual reproduction experiments on

placozoansunder laboratoryconditionsare stillproblematic (24).The indirect

proof of reproductive isolation by the grade of allele sharing between two

placozoan lineages (see also 25), however, is a practical solution to overcome

this issue (Chapter VI). Although future economic approaches should focus on

mtDNA,thehaploidnatureofmitogenomesrequiresthe initial implementation

ofnucleargenomedatatotestforreproductiveisolation.Suchapproacheshave

been applied to the placozoan lineages H2 (Chapter V) and H13 (Chapter VI),

respectively,whichareclosely(H2)anddistantly(H13)relatedtotheonlysofar

named species Trichoplax adhaerens H1 (23). While the H2 nuclear genome

reveals a high degree of allele sharing with H1, the allele content of the H13

nuclear genome suggests a long time of independent evolution due to

reproductiveisolationfromH1.Thesegeneralsimilaritypatternshavealsobeen

found inwholemitogenomecomparisonsaswell as in16Sbasedphylogenetic

analyses (Chapter III, VI, VIII and IX). Consequently, molecular diagnostic

characters extracted from the 16S marker have been used in a taxogenomic

approach combinedwith thewhole nuclear genome data to formally describe

HoilungiahongkongensisH13gen.nov.,spec.nov.(ChapterVI).

The formal description of the genus Hoilungia has been of substantial

importanceforsubsequenttaxonomicapproachestoplacozoans.Thereference

mitochondrial genomes of Trichoplax adhaerens H1 (1) and Hoilungia

hongkongensis H13 can serve as landmarks and allow for the first time

Page 73: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

63

taxonomiccalibrationsofcomparativemitochondrialgenomeanalyses.Indetail,

theH1andH13mitogenomesrepresentamaximumofmitogenomicseparation

betweenrespectivegenera.Thesharedcharacteristicshavebeenusedtodefine

mitochondrial genome synapomorphies for the entire Trichoplax/Hoilungia

clade. The new placozoan lineage H0, which possesses a unique ramified

morphological habitus, separates itself from both genera by substantial

deviationsfromthesemitogenomesynapomorphies(ChapterVII).Phylogenetic

analyses of both, mitochondrial and nuclear markers, support a sister group

relationship of H0 to a clade formed by all other placozoans. Thus H0 was

described as a new species, Polyplacotoma mediterranea, in a new genus

(ChapterVII).

The three genera Trichoplax, Hoilungia and Polyplacotoma represent a

new(andfirst)systematicframeworkforfuturetaxonomicapproaches.Alarge

number of genetically still incompletely characterized placozoan lineages are

awaiting a systematic classification and adumbrate the existence of further

generaorevenhighertaxonomicrankswithinthephylumPlacozoa(ChapterIII).

FuturecomparativestudiesontheearlyevolutionofMetazoawillclearlybenefit

fromtheimplementationoftaxafromatleastthesethreeplacozoangenera.

Comparativeplacozoanmitogenomics

TheevolutionofmitochondrialgenomesinthephylumPlacozoahaspreviously

been inferred from a limited number of two Trichoplax-group and three

Hoilungia-groupmtDNAs(1,2,26).Thedescriptionofthefirstmitogenomefrom

the new placozoan genus Polyplacotoma (Chapter VII) as well as the

characterizationof in sum8newplacozoanmitogenomes fromtheTrichoplax-

/Hoilungia-group inthis thesis(ChapterVI,VIIIandIX)morethandoubles the

number of completely sequenced placozoan mitogenomes. This substantially

enlargeddatasetimprovedtheresolutionofcomparativemitogenomeanalyses

andrevealedseveralremarkableindependentevolutionarypathways.

The highly compact mitochondrial genome of Polyplacotoma

mediterraneaH0challengesinmanyrespectsthetextbookknowledgeof‘typical’

placozoanmitochondrialgenome traits (ChapterVII).Aputativemitochondrial

control region, a deviating number of tRNA genes or the missing cox1micro

Page 74: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

64

exon, are only some examples of the exceptional mtDNA characteristics of

haplotypeH0. Compared toTrichoplax- andHoilungia-groupmitogenomes, the

mitochondrialgenomeofP.mediterraneaseemstobelesssusceptibleforhairpin

proliferation, gain of ORFs or fragmentation of genes. It therefore retained

severalpotentiallymoreancestralplacozoanmtDNAfeatures.Futurestudieson

the nuclear encoded mitochondrial genes of H0 as well as on molecular data

fromotherPolyplacotomaspecieswillhelptoreconstructtheunderlyingfactors,

whichledtothesubstantialmtDNAdifferencesinthisgenus.

Withasizeofmorethan43kb, themitochondrialgenomeofTrichoplax

adhaerensH1(clade I)representsanexceptionally largeplacozoanmtDNA(1).

The characterization of two additional clade I mitogenomes in this thesis

(ChapterVIII)supportsthehypothesis,thatanmtDNAsizeofmorethan40kbis

a synapomorphy of this clade. A previously neglected feature, i.e. the

accumulationofGC-richhairpins,substantiallycontributestotheremarkablemt

genomesize.AlthoughsuchhairpinsarefoundinallTrichoplax-andHoilungia-

groupmitogenomes,anenrichmentofthemapparentlyhasonlybeenoccurred

in clade I. The resultingdifferential distributionpatternwithin theTrichoplax-

group (i.e. theenrichmentofhairpins in clade I,butnot in clade II) suggestsa

further subdivision of this group into two distinct taxa. In addition,molecular

signaturesindicatethathairpinsmighthaveplayedaroleinpreviousplacozoan

mitogenome rearrangement events at least within the Hoilungia-group. The

precise molecular mechanisms, however, which lead to the enrichment of

hairpins or to mitogenome rearrangements, are target for future studies for

instanceonplacozoanmtDNAreplication.

The characterization of six new Hoilungia-group mtDNAs revealed a

complexpatternofgeneorderevolutionwithinthisgroup(ChapterVIandIX).

Despite possessing a variable number of additional ORFs, clades IV, VII and V

(except for H25, see below) nevertheless share a conserved order of typical

mitochondrialgenes.Incontrast,cladeIIIseemstopossessaclade-specificgene

orderwithintheHoilungia-group.WithspecialfocusoncladeV,thegeneorder

of lineageH25 surprisingly differs from the other cladeVmembers (including

HoilungiahongkongensisH13)duetotherearrangementofalargemitogenome

fragment.CladeVthereforeisthefirstcladewithinthephylumPlacozoa,which

Page 75: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

65

harborstwodifferentmitochondrialgeneorders.Theobservedexonpatternsin

the cox1, nad5 and the 16S genes likewise reveal a complex history of gene

fragmentation in Placozoa, which surprisingly even comprises sporadic intron

loss events indistantly related taxa.Theoverall observeddifferencesbetween

Hoilungia-group mitogenomes clearly indicate the existence of additional

species,whichareawaitingtheirformaldescription.

Improved working hypotheses on the early evolution of metazoan

mitochondrialgenomes

The constantly increasing number of complete mt genomes reveals a high

diversity of mitochondrial genomes in non-bilaterian phyla (7). This diversity

raisesthequestionaboutthecharacteristicsofthemitochondrialgenomeinthe

urmetazoonaswellasinthelastcommonmetazoanancestor(LCMA)(27).Inan

earlier stage of this thesis, a scenario on the evolution of metazoan

mitochondrialgenomeshasbeendiscussed(ChapterI),whichwassubsequently

revised (Chapter VIII). In both scenarios, however, the urmetazoan

mitochondrial genome potentially was a large circular molecule harboring a

large set of mitochondrial ribosomal proteins, while the mitogenome of the

LCMA might have been a more compact circular molecule lacking any

mitochondrialribosomalprotein(28).Thisrelativelycompactcircularmolecule

couldhavebeenaparsimoniousstartingpointfortheindependentevolutionof

mtDNAinPlacozoa,Porifera,Cnidaria,CtenophoraandBilateria,asallof these

taxa still possessmore or less compactmitogenomes at least in some subtaxa

(7). However, the grade of compaction from the urmetazoon up to the last

commonmetazoanancestorremainscontroversialinbothscenarios(29).

With focus on the more recent scenario (Chapter VIII), independent

evolutionary pathways in the four non-bilaterian phyla become evident. In

Porifera, the originally rather compact circular mitogenome as found e.g. in

demosponges,evolvedintomultiplelinearchromosomesforinstanceinCalcarea

(13). The same independent tendency for mt genome

linearization/fragmentationcanbeseen in theCnidaria. Indetail,whilealmost

all Anthozoa still possess a single compact circular mtDNA (but see 30),

linear/fragmented mitogenomes can be found in Medusozoa (e.g. 31). In

Page 76: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

66

contrast,mitochondrialgenomesinthephylumCtenophoraareanextremecase

of secondary size reductionofmtDNA (9-11). Finally, placozoanmitochondrial

genomespossessclearmolecularsignaturesforsecondarysizeamplificationdue

to the gain of introns, ORFs and hairpin structures after the split-off of

Polyplacotomamediterranea (whichstillpossessesacompactmtDNA)(Chapter

VII). However, it should be highlighted that improved placozoan or

choanoflagellate taxon sampling might lead to alternative evolutionary

hypotheses, like the scenario discussed in Chapter I. Furthermore, all of these

scenarios also depend to some extend on the phylogenetic trees, on which

respectivecharacteristicsaremapped.

Conclusions

Thegenerationofacomprehensiveplacozoanmitochondrialmoleculardataset

together with the in-depth analyses in the course of this thesis revealed new

important insights into the mtDNA evolution in the non-bilaterian phylum

Placozoa.Theresultsstressthepowerofcomparativemitogenomicstoaddress

questions onphylogenetic relationships,molecularmitochondrialmechanisms,

mitochondrialgenomeevolutionandradiationprocessesatthebaseofMetazoa.

Yet,knowledgeontheoverallmitochondrialgeneticdiversityinnon-bilaterians

aswellasinnon-metazoanoutgroupsisstillpatchyandfutureapproachesmust

intensifytaxonsamplingtofillthegapsincurrentdatasets.

References

1. Dellaporta,S.L.,Xu,A.,Sagasser,S.,Jakob,W.,Moreno,M.A.,Buss,L.W.andSchierwater, B. (2006) Mitochondrial genome of Trichoplax adhaerenssupports placozoa as the basal lowermetazoan phylum.ProcNatlAcadSciUSA,103,8751-8756.

2. Signorovitch, A.Y., Buss, L.W. and Dellaporta, S.L. (2007) Comparativegenomicsoflargemitochondriainplacozoans.PLoSGenetics,3,e13.

3. Lavrov, D.V., Wang, X. and Kelly, M. (2008) Reconstructing ordinalrelationshipsintheDemospongiaeusingmitochondrialgenomicdata.MolPhylogenetEvol,49,111-124.

4. Burger,G.,Yan,Y., Javadi,P. andLang,B.F. (2009)Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals.TrendsGenet,25,381-386.

Page 77: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

67

5. Wang, X. and Lavrov, D.V. (2007) Mitochondrial genome of the

homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals

unexpected complexity in the common ancestor of sponges and other

animals.MolecularBiologyandEvolution,24,363-373.6. Schierwater,B.,Eitel,M.,Jakob,W.,Osigus,H.J.,Hadrys,H.,Dellaporta,S.L.,

Kolokotronis, S.O. and Desalle, R. (2009) Concatenated analysis sheds

light on early metazoan evolution and fuels a modern "urmetazoon"

hypothesis.PLoSBiol,7,e20.7. Lavrov,D.V.andPett,W.(2016)AnimalMitochondrialDNAasWeDoNot

Know It: mt-Genome Organization and Evolution in Nonbilaterian

Lineages.GenomeBiolEvol,8,2896-2913.8. Felsenstein,J.(1978)CasesinWhichParsimonyorCompatibilityMethods

WillBePositivelyMisleading.SystZool,27,401-410.9. Pett,W.,Ryan,J.F.,Pang,K.,Mullikin,J.C.,Martindale,M.Q.,Baxevanis,A.D.

and Lavrov, D.V. (2011) Extreme mitochondrial evolution in the

ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear

genome.MitochondrialDNA,22,130-142.10. Kohn,A.B.,Citarella,M.R.,Kocot,K.M.,Bobkova,Y.V.,Halanych,K.M.and

Moroz, L.L. (2012) Rapid evolution of the compact and unusual

mitochondrialgenomeinthectenophore,Pleurobrachiabachei.MolecularPhylogeneticsandEvolution,63,203-207.

11. Arafat, H., Alamaru, A., Gissi, C. and Huchon, D. (2018) Extensive

mitochondrialgenerearrangementsinCtenophora:insightsfrombenthic

Platyctenida.BMCEvolBiol,18,65.12. Haen, K.M., Lang, B.F., Pomponi, S.A. and Lavrov, D.V. (2007) Glass

sponges and bilaterian animals share derived mitochondrial genomic

features: a common ancestry or parallel evolution? Mol Biol Evol, 24,1518-1527.

13. Lavrov, D.V., Pett, W., Voigt, O., Worheide, G., Forget, L., Lang, B.F. and

Kayal, E. (2013) Mitochondrial DNA of Clathrina clathrus (Calcarea,

Calcinea):sixlinearchromosomes,fragmentedrRNAs,tRNAediting,anda

novelgeneticcode.MolBiolEvol,30,865-880.14. Kayal, E., Roure, B., Philippe, H., Collins, A.G. and Lavrov, D.V. (2013)

Cnidarianphylogenetic relationships as revealedbymitogenomics.BMCEvolBiol,13,5.

15. Philippe, H., Brinkmann, H., Lavrov, D.V., Littlewood, D.T., Manuel, M.,

Worheide, G. and Baurain, D. (2011) Resolving difficult phylogenetic

questions:whymoresequencesarenotenough.PLoSBiol,9,e1000602.16. Philippe,H. andRoure,B. (2011)Difficult phylogeneticquestions:more

data,maybe;bettermethods,certainly.BmcBiol,9.17. Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K., Browne, W.E., Smith, S.A.,

Seaver, E., Rouse, G.W., Obst, M., Edgecombe, G.D. et al. (2008) Broadphylogenomic sampling improves resolution of the animal tree of life.

Nature,452,745-749.18. Yang,H.,Li,T.,Dang,K.andBu,W.(2018)Compositionalandmutational

rate heterogeneity in mitochondrial genomes and its effect on the

phylogeneticinferencesofCimicomorpha(Hemiptera:Heteroptera).BMCGenomics,19,264.

Page 78: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

68

19. Pisani,D.,Pett,W.,Dohrmann,M.,Feuda,R.,Rota-Stabelli,O.,Philippe,H.,Lartillot,N.andWorheide,G.(2015)Genomicdatadonotsupportcombjelliesas the sistergroup toallotheranimals.PNatlAcadSciUSA,112,15402-15407.

20. Simion, P., Philippe,H., Baurain,D., Jager,M., Richter,D.J.,Di Franco,A.,Roure,B.,Satoh,N.,Queinnec,E.,Ereskovsky,A.etal.(2017)ALargeandConsistentPhylogenomicDatasetSupportsSpongesastheSisterGrouptoAllOtherAnimals.CurrentBiology,27,958-967.

21. Feuda,R.,Dohrmann,M.,Pett,W.,Philippe,H.,Rota-Stabelli,O.,Lartillot,N., Worheide, G. and Pisani, D. (2017) Improved Modeling ofCompositional Heterogeneity Supports Sponges as Sister to All OtherAnimals.CurrentBiology,27,3864-+.

22. Shimpi, G.G., Vargas, S., Poliseno, A. and Worheide, G. (2017)Mitochondrial RNA processing in absence of tRNA punctuations inoctocorals.BmcMolecularBiology,18.

23. Eitel,M.andSchierwater,B.(2010)ThephylogeographyofthePlacozoasuggestsataxon-richphylumintropicalandsubtropicalwaters.MolEcol,19,2315-2327.

24. Eitel,M.,Guidi,L.,Hadrys,H.,Balsamo,M.andSchierwater,B.(2011)Newinsights intoplacozoansexualreproductionanddevelopment.PLoSOne,6,e19639.

25. Signorovitch, A.Y., Dellaporta, S.L. and Buss, L.W. (2005) MolecularsignaturesforsexinthePlacozoa.ProceedingsoftheNationalAcademyofSciencesUSA,102,15518-15522.

26. Miyazawa, H., Yoshida, M.A., Tsuneki, K. and Furuya, H. (2012)MitochondrialgenomeofaJapaneseplacozoan.ZoologSci,29,223-228.

27. Burger, G., Forget, L., Zhu, Y., Gray, M.W. and Lang, B.F. (2003) Uniquemitochondrial genome architecture in unicellular relatives of animals.ProcNatlAcadSciUSA,100,892-897.

28. Gray, M.W., Burger, G. and Lang, B.F. (1999) Mitochondrial evolution.Science,283,1476-1481.

29. Lavrov, D.V. (2010) In DeSalle, R. and Schierwater, B. (eds.), Keytransitionsinanimalevolution.CRCPress,pp.34-53.

30. Dubin,A.,Chi,S.I.,Emblem,A.,Moum,T.andJohansen,S.D.(2019)Deep-waterseaanemonewithatwo-chromosomemitochondrialgenome.Gene,692,195-200.

31. Kayal, E., Bentlage, B., Collins, A.G., Kayal, M., Pirro, S. and Lavrov, D.V.(2012) Evolution of linear mitochondrial genomes in medusozoancnidarians.GenomeBiolEvol,4,1-12.

Page 79: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

69

4.Statement

Erklärung

Hiermit erkläre ich, dass ich die Dissertation “Comparative mitochondrial

genomics in basal metazoans: new phylogenetic and functional approaches”selbstständig verfasst habe. Die jeweiligen Beiträge der Koautoren zu den

Chaptern I-IX wurden im Abschnitt „1. General introduction“ ausführlich

dargestellt.DarüberhinauswurdenjeglicheanderweitigenHilfenDritterinden

jeweiligenDanksagungendereinzelnenChapterkenntlichgemacht.Fernersind

indiebereitspubliziertenChapterI-VIIkritischeKommentarevonEditorenbzw.

unabhängigenGutachterneingeflossen.Ich habe keine entgeltliche Hilfe von Vermittlungs- bzw.

Beratungsdiensten (Promotionsberater oder anderer Personen) in Anspruch

genommen. Niemand hat von mir unmittelbar oder mittelbar entgeltliche

Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der

vorgelegtenDissertationstehen.

IchhabedieDissertationanderfolgendenInstitutionangefertigt:Institut

für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover,

Deutschland.

Die Dissertation wurde bisher nicht für eine Prüfung oder Promotion

oderfüreinenähnlichenZweckzurBeurteilungeingereicht.Ichversichere,dass

ich die vorstehenden Angaben nach bestem Wissen vollständig und der

Wahrheitentsprechendgemachthabe.

_____________________________________________________________________________________________

Ort,Datum eigenhändigeUnterschrift(Hans-JürgenOsigus)

Page 80: Comparative mitochondrial genomics in basal metazoans ......Hans-Jürgen Osigus Comparative mitochondrial genomics in basal metazoans: new phylogenetic and functional approaches The

70

5.AcknowledgementsFirstofall, Iwould liketothankmysupervisorand“academic father”Prof.Dr.BerndSchierwaterforgivingmetheopportunitytoworkonthisexcitingproject.Heprovidedmeafantasticscientificenvironmentformyworkandhisguidancewasalwaysagreathelpforme.

I also would like to thank Prof. Dr. Dieter Steinhagen who kindly agreed toreviewthisthesis.

AveryspecialthanksgoestoDr.MichaelEitelforhisfriendshipandforbeingmy“academicwingman”forsomanyyears.

Another special thanks goes toDr.Wolfgang Jakob for his friendship sincemyveryfirstdaysattheITZinAugust2006.

I alsowould like to thankPDDr.HeikeHadrys for her stimulating intellectualinputandforintroducingmeintothefascinatingworldofOdonataresearch.

A special thanks also goes to our present and former lab technicians andsecretaries.

Ialsowould like to thankallotherpresentand formermembersof the ITZ fortheirhelp,encouragementandthefriendlyatmosphereintheinstitute. Ireallyhadagreattimewithallofyou!

Iwould like to thankProf.Dr. StephenDellaporta for invitingme tohis lab atYaleUniversity,aswellasDr.MariaMorenoandDr.ChristopherHeffelfingerfortheirhelpduringmyvisitatYale.IalsowouldliketothankProf.Dr.RobDeSalle(AMNH,NewYork)forfruitfuldiscussions.

IgreatlyacknowledgethefinancialsupportbytheStudienstiftungdesDeutschenVolkes,theBöhringerIngelheimFondsandtheStiftungTierärztlicheHochschuleHannover. Ialsowould liketothanktheGermanScienceFoundation(DFG) forthegrantsgiventoProf.Dr.BerndSchierwater.

Finally, I would like to thank my parents, Sigrid and Hans-Jürgen Osigus, foralwayssupportingmethebestwayIcanimagine!Iloveyou!