14
DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator Assisted by Coupled Bragg Grating Resonators Omid Jafari , Sasan Zhalehpour*, Wei Shi, Sophie LaRochelle Centre d'optique, photonique et laser (COPL), Université Laval, Québec, QC, Canada *Huawei Technologies Canada, Québec, QC, Canada [email protected] 2021-06-08

DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator Assisted by Coupled Bragg Grating Resonators

Omid Jafari, Sasan Zhalehpour*, Wei Shi, Sophie LaRochelle

Centre d'optique, photonique et laser (COPL), Université Laval, Québec, QC, Canada

*Huawei Technologies Canada, Québec, QC, Canada

[email protected]

2021-06-08

Page 2: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

Typical all-silicon modulators

2

- 1Tb/s raw| 833 Gb/s net(32 QAM 100 Gbaud), stable performance

- Larger power consumption, larger footprint

Zhalehpour et al., OFC 2019

Mach-Zehnder modulators (MZM): Micro-ring modulator (MRM):

R. Dube et al., Optica 2016

- 80 Gb/s (PAM4 40 Gbaud), Eb= 6.5 fJ/bit

- Instability in operation, Non-linear response, chirpy pulse

Tradeoff between stability and efficiency

[email protected]

Page 3: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

Slow-light modulators

3

• Group index (ng) vs. optical bandwidth (Δλ)

Group index (ng) ~10

Optical bandwidth (Δλ) = C-band

Phase shifter length (L) = 200 μm

Y. Terada et al, Opt. Lett., vol. 42, no. 24, 2017

ng ~ 8×3.8

Δλ = 4 nm

L = 110 μm

Larger Δλ → Larger operating temperature range

ng ~ 8

Δλ = 1.3 nm

L = 500 μm

S. Romero-García et al. Opt. Lett., vol. 42, no. 1, 2017

Brimont, et al. Optics letters vol. 37, no. 17, 2012

Page 4: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

MZM assisted by coupled BGRs

4

• MZM assisted by coupled Bragg grating resonators (BGRs)

1480 1520 16001560

-30

-20

-10

0

-80

-40

Ph

ase

resp

on

se (

π )

Tra

nsm

issi

on (

dB

)

-120

NOR=6NOR=2 NOR=4

NOR=8 NOR=10 Transmission

3dB Optical BW= 3.15 nm0

NOP=15

Wavelength (nm)

NOR: number of resonators NOP: number of periods

O. Jafari, et al, “High-Efficiency Silicon Photonic Modulator Using Coupled Bragg Grating Resonators” JLT, 37 (9), 2019.

Wavelength (nm)

1545 1547 1549

60

20

40

Gro

up

in

dex

NOP=15

NOR=6

0

Tra

nsm

issi

on

(d

B)

-5

-10

Operating wavelength range

Slowing down optical waves up to ng = 20 over a nm-range optical bandwidth

Page 5: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

MZM assisted by coupled BGRs

5

Ideal grating After Litho. effects

Designed considering Litho. effects

fabricated in a standard 193 nm lithography process

Operating wavelength range

o Length phase shifter: 162 μm

o Operating wavelength range: 3.5 nm @ 30 Gb/s

o Phase modulation enhancement : 7

o Energy consumption: 84 fJ/bit

o Optical bandwidth: 2.9 nm

Design Simulated by FDTD&TMM Experiment

Single-drive push-pull driving scheme

• Experimental characterization of the modulator

O. Jafari et al., “Mach-Zehnder silicon photonic modulator assisted by phase-shifted Bragg gratings”, IEEE PTL, 32(8), 2020

o Six resonators in each arm

Page 6: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-less PAM4 slow-light all-silicon MZM

6

Fabricated in a standard 193 nm lithography process

• Segmented slow-light MZM for enabling high-speed PAM operation

o Optical DAC → Driven by two-binary RF signals

Si Substrate BOXSiO2 P++P+PNN+N++

M2

5.2 0.81 ΔXnΔXp0.83 10.4

10.13

0.09

M1

P+ P N N+ N++

M2

M1

M2

M1

0.25

GSG

S

GB2H6H5 H4B1 H1H3H2

DC probe

Fiber

array

RF probe

GSSGRF probe

GS

SL S-MZM-

BGR

a)

c)

d) e)

f)

Heater

Heater

BGR

Input Output1

Output2

b)

VRF1

VBias1

VRF2

VBias2

342μm 228μm22.8μm

VRF-GroundVDC-BiasVRF-Signal

Via1

Via2

[email protected]

Page 7: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-less PAM4 slow-light all-silicon MZM

7

LSB segment MSB segment

Top arm Bottom arm Both armsSchematic of test structure for transmission

Schematic of test structure for refection

• Experimental characterization of PAM4 slow light modulator

Examine each arm response separately:

[email protected]

Page 8: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-less PAM4 slow-light all-silicon MZM

8

1 2

2 3 4 5

10 9 8 7 6 12

11 12 13 14 15 16

21 20 19 18 17 24

22 23 24 25 26 30

30 29 28 27

31 36

• Experimental characterization of PAM4 slow light modulator

Design reliability test: Wafer-uniformity testing → Examine response of different dies

λBragg

ΔλBW

Each die: 315.8 mm2

[email protected]

Page 9: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-less PAM4 slow-light all-silicon MZM

9

Optical Spectrum:

- 3.2 nm optical bandwidth- 5.5 dB insertion loss

"0 0

"0 1

"1 0

"1 1

VMSB_T VLSB_T VMSB_B VLSB_B

0 0 -3.5 -3

0 -3 -3.5 0

-3.5 0 0 -3

-3.5 -3 0 0

DC characterization:

- Large signal Vπ×L of 0.51 Vcm

- Enhancement factor of γ = 6 in phase modulation

• Experimental characterization of PAM4 slow light modulator

[email protected]

Page 10: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

DAC-less PAM4 slow-light all-silicon MZM

10

1 5 10 20 40 60

Frequency (GHz)

-60

-50

-40

-30

-20

-10

0

EE

re

sp

on

se

(dB

)

S11 (LSB segment)

S11 (MSB segment)

Crosstalk

a) b)

1560 1560.5 1561 1561.5 1562 1562.5 1563 1563.5

Wavelength (nm)

30

35

40

45

3-d

B E

O b

an

dw

idth

MSB segment

LSB segment

b)c)

- RF crosstalk less than -40 dB

Electro-optic S-parameter measurement:RF characterization:

• Experimental characterization of PAM4 slow light modulator

- Both segments: S21> 40 GHz EO bandwidth- 2 nm optical bandwidth- Both segments:S11< -15 dB

Small signal measurements:

[email protected]

Page 11: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

BPG

SHF

12103 A

PC

Clock

OBF

SHF 41211 C

EDFA

~~~

Laser

PM fiber

Electrical path

Optical path

DC

source

LPFResampling

Downsampling

DD-MMSE

Demapping+Sync.

BER

RTO

Receiver side DSP

OBFEDFA

~~~

In line

attenuator

PA

DC block

DC blockPA PS

PS

DAC-less PAM4 slow-light all-silicon MZM

11

80 GSa/s 63 GHz

32 GHz

PA: RF amplifier (30 GHz and 40 GHz)

• Experimental characterization of PAM4 slow light modulator

Large signal response:

[email protected]

Page 12: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

7% FEC

20% FEC

DAC-less PAM4 slow-light all-silicon MZM

12

• Experimental characterization of PAM4 slow light modulator

Large signal response:

o Operating wavelength range: ~2 nm @ 90 Gb/s

o Operating temperature range:

ΔT = 50 C considering Δλ/ΔT

= 40 pm/C

o Energy consumption: 73 fJ/bit

( )

22 1

202

log ( ) 1

Mpp

b

i

CV iE M i

M M M

=

= −

Eye diagrams are retrieved from date captured by RTO

[email protected]

Page 13: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

CONCLUSION

13

Demonstrate DAC-less PAM-4 slow-light silicon photonic modulator providing

high efficiency and stability

o Length phase shifter: 570 μm

o Operating wavelength range: 2 nm @ 90 Gb/s → ΔT = 50 C assuming Δλ/ΔT = 40 pm/C

o Phase modulation enhancement: 6

o Estimated energy consumption: 73 fJ/bit

[email protected]

Page 14: DAC-Less PAM-4 Slow-Light Silicon Photonic Modulator

Acknowledgments

14

Thank you for your attention

[email protected]