20
doc.: IEEE 802.11-09/0302r0 March 2009 D ii i Ch lM d li f Deterministic Channel Modeling for 60 GHz WLAN Date: 2009-03-10 Date: 2009 03 10 Name Affiliations Address Phone email Authors: Martin Jacob TU Braunschweig, Germany Schleinitzstraße 22 38106 Braunschweig Germany +495313912451 [email protected] Thomas Kürner TU Braunschweig, Germany Schleinitzstraße 22 38106 Braunschweig Germany +495313912416 t.kuerner@tu-bs.de Philippe Thomson R&D 1 Av Belle Fontaine +33299277176 philippe.chambelin@ Philippe Chambelin Thomson R&D France 1 Av Belle Fontaine 35576 Cesson Sevigne +33299277176 thomson.net Submission Martin Jacob, TU Braunschweig Slide 1

DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

D i i i Ch l M d li fDeterministic Channel Modeling for 60 GHz WLAN

Date: 2009-03-10Date: 2009 03 10

Name Affiliations Address Phone emailAuthors:

Martin Jacob

TU Braunschweig, Germany

Schleinitzstraße 22 38106 Braunschweig Germany

+495313912451 [email protected]

Thomas Kürner

TU Braunschweig, Germany

Schleinitzstraße 22 38106 Braunschweig Germany

+495313912416 [email protected]

Philippe Thomson R&D 1 Av Belle Fontaine +33299277176 philippe.chambelin@Philippe Chambelin

Thomson R&D France

1 Av Belle Fontaine35576 Cesson Sevigne

+33299277176 p pp @thomson.net

Submission Martin Jacob, TU BraunschweigSlide 1

Page 2: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Abstract

• Applications of future multi-gigabit systems using frequencies at 60 GHzand beyond will cover also operational environments with non-line-of-sight conditions. Due to the high diffraction losses at millimetre-wavefrequencies and beyond establishing radio links in shadowing situationswill require beam forming in order to exploit scattering and reflectionprocesses. For the development and standardisation of these systemsdouble directional spatial channel models for non-line-of-sight situationshave to be derived. Double directional channel models containinformation both about angle of arrival at the receiver and angle ofdeparture at the transmitter. An attractive possibility currently pursuedboth in research projects and standardisation is to derive these channel

d l b d t i i l ti Thi t ti tmodels based on ray-tracing simulations. This presentation presentsresults from indoor channel measurements [1] and shows the potential ofray tracing for 60 GHz channel modeling which is a possible approach forthe TGad channel model [2]

Submission Martin Jacob, TU BraunschweigSlide 2

the TGad channel model [2].

Page 3: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Agenda

• Motivation and Approach

• Indoor Measurement Results

• Ray-Tracing

• Verification of Ray Tracing with Measurements

• Ray Tracing Results (5 m NLOS Analysis)

Submission Martin Jacob, TU BraunschweigSlide 3

Page 4: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Motivation

• Need for double-directional channel models covering, e. g.– NLOS situationsNLOS situations– Polarisation– Influence of moving people

• In principle two ways to derive these channel models– Based on extensive measurement campaignsp g

• time-consuming and expensive– Based on ray-tracing simulations

• quite flexible and allows to simulate large numbers of scenariosquite flexible and allows to simulate large numbers of scenarios• BUT: ray-tracing has to be verified in a first step

Submission Martin Jacob, TU BraunschweigSlide 4

Page 5: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Approach

• A three-step approach is applied:

– Step 1: Extensive measurement campaign in typical operational environments with the main goal to calibrate and verify the ray-tracing algorithmsalgorithms.

– Step 2: Ray-tracing is applied to simulate a very large number of realistic environments.

– Step 3: Ray-tracing results are used to derive statistical channel modelsp y g

Submission Martin Jacob, TU BraunschweigSlide 5

Page 6: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Measurement Setup– Vector Network Analyzer– External test heads– Frequency range: 67 to 110 GHz

Transfer Function

Frequency range: 67 to 110 GHz– Extremely wideband measurements– Transfer functions– PDP– PDP

• Derived from transfer functions via IFFT

– 3 different antenna configurations

IFFT

Channel Impulse Response3 different antenna configurations• Circular horn antennas

– (20 dBi gain; 10° HPBW)• Open ended waveguide

Channel Impulse Response

Open ended waveguide– (7 dBi gain; 80°/120° HPBW)

• Horn-Horn, Open-Horn, Open-Open

Submission Martin Jacob, TU BraunschweigSlide 6

Page 7: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Scenarios

• Fully furnished conference room– Transmitter at one fixed position, antenna

directed to the middle of the roomdirected to the middle of the room– 11 Receiver positions, Antennas pointed at TX– Distances between 1.70 and 5.70 m

• Corridor as reference scenario without any furniture

• Goal– Distance dependent path loss– Time Dispersion Parametersp– Angular dispersive channel characteristics– Verify Ray Tracing

Submission Martin Jacob, TU BraunschweigSlide 7

Page 8: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Path Loss and Shadowing - LOS

• Large Scale parameters based on an averaging of every measured transfer function for different frequency bandsfunction for different frequency bands

• Fitting: 010log10 PLdndBPL

– Path loss exponent n– Reference path loss PL0

– Shadowing factor PLg PL

• Good agreement with TG3c model (CM1) [3](CM1) [3]

– n = 1.53 vs. 1.5– PL0 = 75 vs. 74

= 1 5 vs 1 5

Submission Martin Jacob, TU BraunschweigSlide 8

– PL = 1.5 vs. 1.5

Page 9: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

A l di i h l h t i tiAngular dispersive channel characteristics

• Angular Power Spectrum 67 to 72 GHz• Angular Power Spectrum 67 to 72 GHz– Horn-Horn configuration– 360 degrees in steps of 5 and 10 degrees

C2

– C1: 15 clusters within 25 dB– C2: 10 clusters within 25 dB C1

C1 C2

Submission Martin Jacob, TU BraunschweigSlide 9

Page 10: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Ti Di i P t LOS/NLOS (1)Time Dispersion Parameters – LOS/NLOS (1)

• Time Dispersion ParametersC1C2

• Time Dispersion Parameters – Horn-Horn Configuration– Static Threshold (20 dB)

• RMS Delay Spread• RMS Delay Spread (RDS)

• Max. Excess Delay (MED)

• RDS and MED– Small values at cluster centers – At the cluster edges values

rapidly decrease

Submission Martin Jacob, TU BraunschweigSlide 10

Page 11: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Ti Di i P t LOS/NLOS (2)

N i ifi diff b h

Time Dispersion Parameters – LOS/NLOS (2)

• No significant differences between the two positions

• Strong increase at the beginning• Strong increase at the beginning

• RMS Delay Spread– 70 % < 2 ns%– 100 % < 20 ns

• Maximum Excess Delay– 70 % < 8 ns– 100 % < 60 ns

Beha io r is traced back to the high• Behaviour is traced back to the high directivity of the antennas

Submission Martin Jacob, TU BraunschweigSlide 11

Page 12: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Deterministic Channel Model – Ray Tracing (1)

• 3D Ray Tracing, based on theimage methodimage method

• Implemented in C++, controled byMatlab

• Input– 3D Indoor Scenario3D Indoor Scenario– Material parameters @ 60 GHz– Carrier frequency

di– Antenna diagrams

Submission Martin Jacob, TU BraunschweigSlide 12

Page 13: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Deterministic Channel Model – Ray Tracing (2)

AoD, AoA statistics Coverage mapsD

irect

Dte

d Impulse responses

Ref

lec

Submission Martin Jacob, TU BraunschweigSlide 13

Page 14: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Ray Tracing vs. Measurement

• 3D Conference Room Model Direct path

First Order Reflections

S d O d R fl i• Comparison in Angular Domain

– Very good agreement of cluster

Second Order Reflections

y g gpositions

– Very good agreement of pathloss

• Mean error. 0 dB• Standard deviation: 4 dB

• Ray Tracing Precision Verified

Submission Martin Jacob, TU BraunschweigSlide 14

Page 15: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

5m NLOS Analysis based on Ray-Tracing• Motivation

– Angular domain important for Beamformingapplications

– Little information about NLOS channels– Ray Tracing yields deeper understanding of the

channel characteristics than measurementRx

• Scenario– 200 Tx-Rx pairs inside the Conference Room– Tx and Rx at the same height (1 meter)

5 m

g ( )– 5 m distance– Empty Room Tx

• Results– NLOS Statistics of

• Path Loss (without antenna gain)A l di i t T d R

Submission Martin Jacob, TU BraunschweigSlide 15

• Angular dispersion at Tx and Rx

Page 16: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Path Loss Statistics

• NLOS availability – Number of Paths > 105 dB (95 dB)

• Mean value: 20 (12) paths

• Path Loss – Statistics of single paths

• Mean value: 93 8 dBMean value: 20 (12) paths• Standard deviation: 7 (4) paths

Mean value: 93.8 dB • Standard deviation: 4.4 dB

B h d di i d i d i f ll ili

Submission Martin Jacob, TU BraunschweigSlide 16

• Both depending on indoor environment and properties of walls, ceiling…

Page 17: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Angular Dispersion

• 0° LOS direction

• Elevation– Peak at 0°: Reflections in the horizontal

plane, because Tx and Rx are at thesame height

– Maximum Elevation Angle of 45°

• Azimuth– Peak at 0°: Reflections from floor and

ceiling– AoD > 0°: Uniformly distributed

Submission Martin Jacob, TU BraunschweigSlide 17

Page 18: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Next Steps

• Ray Tracing based channel models including:– Time domain (GRF) and– Angular Domain

• Dynamic Channel Simulationsy– Ray Tracing + Random-Walk-Mobility Model– Statistical analysis– Coverage probabilityg p y– Test Beamforming Capabilities

Submission Martin Jacob, TU BraunschweigSlide 18

Page 19: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

Discussion

• Which scenarios are the most relevant for thedevelopment of TGad channel models?development of TGad channel models?– Polarisation?– Moving people?Moving people?– Large rooms/small rooms?

• How can IEEE 802.11ad benefit from our results?– What are the properties of channel models TGad is looking for?– What are the priorities?

Submission Martin Jacob, TU BraunschweigSlide 19

Page 20: DiiiChlMdlifDeterministic Channel Modeling for 60 …...• Standard deviation: 4 dB • Ray Tracing Precision Verified Submission Slide 14 Martin Jacob, TU Braunschweig March 2009

doc.: IEEE 802.11-09/0302r0March 2009

References

• [1] M. Jacob, T. Kürner, „Radio Channel Characteristics for Broadband WLAN/WPAN Applications Between 67 and 110 GHz“, 3rd European Conference on Antennas and Propagation 23 27 March 2009 in Berlin Germany23-27 March 2009 in Berlin, Germany

• [2] A. Maltsev et al. „Channel Modeling for 60 GHz WLAN Systems“IEEE 802.11. document 11-08/0811r1

• [3] 15-07-0584-01-003c-tg3c-channel-modeling-sub-committee-final-report

Submission Martin Jacob, TU BraunschweigSlide 20