143
FEM im Massivbau (Bemessung mit CUBUS)

FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

Embed Size (px)

Citation preview

Page 1: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM

im

Mas

sivb

au

(Bem

essu

ng m

it CU

BUS)

Page 2: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

Skript FEM im Massivbau (Bemessung mit Cubus)

3. Auflage Oktober 2007

Technische Universität Berlin Fachgebiet Massivbau Sekretariat TIB 1 - B 2 Gustav-Meyer-Allee 25 13355 Berlin

Prof. Dr. sc. techn. Mike Schlaich Dipl.-Ing. Alexander Gaulke cand.-Ing. Falk Stapf

Tel +49 (0)30 314-721 30 Fax +49 (0)30 314-721 32 [email protected] www.massivbau.tu-berlin.de

Page 3: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Inhaltsverzeichnis 1 Einführung in die CUBUS-Software ..................................................................................1

1.1 Cubus Explorer .........................................................................................................1 1.2 CEDRUS-5................................................................................................................3 1.3 FAGUS-5...................................................................................................................3 1.4 STATIK-5 ..................................................................................................................3 1.5 PYRUS-5...................................................................................................................3

2 Deckenplatte auf Unterzügen, Stütze und Wänden..........................................................5

2.1 Konstruktion des Finite-Element-Modells..................................................................8 2.1.1 Eingabe der Struktur (Geometrie, Material, Lagerung) .........................................8 2.1.2 Durchstanzobjekte...............................................................................................14

2.2 Lasten .....................................................................................................................17 2.3 Netzgenerierung......................................................................................................20 2.4 Berechnung.............................................................................................................21 2.5 Resultate .................................................................................................................22

2.5.1 Verformungen......................................................................................................23 2.5.2 Momente..............................................................................................................24 2.5.3 Spannungen ........................................................................................................24 2.5.4 Bewehrungsermittlung.........................................................................................25 2.5.5 Durchstanznachweis ...........................................................................................26

2.6 Bewehrungsmodul ..................................................................................................26 2.7 Traglastmodul .........................................................................................................31 2.8 Import von DXF-Dateien .........................................................................................32

3 Übung zum Selbststudium: Deckenplatte .......................................................................34

3.1 Geometrie und Belastung .......................................................................................34

4 Vorgespannte Flachdecke ..............................................................................................35

4.1 Geometrie und Belastung .......................................................................................35 4.2 Vorbemessung ........................................................................................................35 4.3 Spannglieder ...........................................................................................................36 4.4 Belastung ................................................................................................................41 4.5 Berechnung.............................................................................................................41 4.6 Ergebnisse ..............................................................................................................42

5 Vorgespannter Dachträger mit Cedrus-5 ........................................................................43

5.1 Struktureingabe.......................................................................................................44

Technische Universität Berlin Fachgebiet Massivbau Seite I

Page 4: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

5.2 Definition der Vorspannung.....................................................................................45 5.3 Belastungseingabe und Netzgenerierung ...............................................................49 5.4 Berechnung .............................................................................................................50 5.5 Ergebnisse ..............................................................................................................50 5.6 Eigenfrequenz .........................................................................................................51

6 Fachwerkrahmen mit STATIK-5......................................................................................55

6.1 Struktureingabe .......................................................................................................56 6.2 Lasteingabe.............................................................................................................58

6.2.1 Dacheindeckung ..................................................................................................58 6.2.2 Schneelasten .......................................................................................................59 6.2.3 Windlast von links und von rechts .......................................................................60 6.2.4 Dokumentation der Lasteingabe..........................................................................61

6.3 Erweiterte Stabselektion..........................................................................................62 6.4 Teilsysteme .............................................................................................................63 6.5 Standardresultate ....................................................................................................64 6.6 Beeinflussung der Resultatausgabe........................................................................66 6.7 Das Register „Berechnung“.....................................................................................66

6.7.1 Resultatkombinationen ........................................................................................67 6.7.2 Grenzwertspezifikationen ....................................................................................68

6.8 Ausgabe der maßgebenden Lastfälle bei Grenzwerten ..........................................71

7 Übung zum Selbststudium: Halbrahmen mit Betonstütze...............................................72

7.1 Geometrie und Belastung........................................................................................72

8 Dreidimensionale Halle mit nichtlinearen Stäben und Stabilitätsgefährdung..................73

8.1 Struktureingabe .......................................................................................................74 8.2 Belastung ................................................................................................................78 8.3 Berechnung .............................................................................................................81 8.4 Ergebnisse ..............................................................................................................81

9 Vorgespannter Dachträger mit Statik-5...........................................................................85

9.1 Struktureingabe .......................................................................................................85 9.2 Eingabe der Spannglieder.......................................................................................87 9.3 Lasten......................................................................................................................89 9.4 Ergebnisse ..............................................................................................................89

10 Bauzustände, Stahlbetonanalysen und Dynamik............................................................91

10.1 Statisches System und Geometrie ..........................................................................91 10.2 Bauzustände ...........................................................................................................93

Seite II Fachgebiet Massivbau Technische Universität Berlin

Page 5: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

10.3 Lasteingabe.............................................................................................................94 10.4 Berechnungen.........................................................................................................97

10.4.1 Eigenwertberechnung..........................................................................................98 10.4.2 Antwortspektrenanalyse ......................................................................................99 10.4.3 Stahlbetonanalyse .............................................................................................100

10.5 Resultate ...............................................................................................................101 10.5.1 Antwortspektrenresultate...................................................................................101 10.5.2 Fagusanalyse ....................................................................................................102 10.5.3 Eigenschwingungen ..........................................................................................105 10.5.4 Ergebnisse im Bauzustand................................................................................105

11 Berücksichtigung von Langzeitauswirkungen ...............................................................106

11.1 Statisches System und Geometrie........................................................................106 11.2 Lasten ...................................................................................................................108 11.3 Berechnung...........................................................................................................109 11.4 Resultate ...............................................................................................................110

11.4.1 Langzeitanalysen...............................................................................................110

12 Klebebewehrung...........................................................................................................113

12.1 Statisches System und Geometrie........................................................................113 12.2 Lasten ...................................................................................................................115 12.3 Berechnung...........................................................................................................115 12.4 Ergebnisse ............................................................................................................116

13 Berechnung einer zweiteiligen Stütze...........................................................................118

13.1 Geometrie und Belastung .....................................................................................118 13.2 Struktureingabe.....................................................................................................119 13.3 Belastung ..............................................................................................................121 13.4 Gefährdungsbilder.................................................................................................122 13.5 Bemessung ...........................................................................................................123 13.6 Analyse .................................................................................................................124

14 Analyse eines Verbundquerschnitts..............................................................................126

14.1 Geometrie und Belastung .....................................................................................126 14.2 Struktureingabe.....................................................................................................126 14.3 Analysen ...............................................................................................................127

15 Analyse eines einbetonierten Stahlquerschnitts ...........................................................130

15.1 Struktureingabe.....................................................................................................130 15.2 Bewehrung ............................................................................................................130

Technische Universität Berlin Fachgebiet Massivbau Seite III

Page 6: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

15.3 Analysen................................................................................................................131

16 Analyse eines dünnwandigen Querschnitts ..................................................................135

16.1 Struktureingabe .....................................................................................................135 16.2 Analysen................................................................................................................136

17 Literatur .........................................................................................................................137

Seite IV Fachgebiet Massivbau Technische Universität Berlin

Page 7: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

1 Einführung in die CUBUS-Software Das Programmsystem CUBUS gliedert sich in mehrere Teilmodule für unterschiedliche Anwendun-

gen. Es gibt die Module CEDRUS, FAGUS, STATIK und PYRUS. Das Modul CEDRUS ist für die

Analyse von Flächentragwerken konzipiert. Vorrangig lassen sich damit Platten untersuchen.

FAGUS ist ein Untermodul, das aus den anderen Anwendungen aufgerufen werden kann, um

Querschnittswerte, wie z.B. Flächenträgheitsmomente oder Schubmittelpunkte, von beliebigen

Querschnitten zu ermitteln. FAGUS kann auch separat gestartet und unabhängig von den anderen

Programmen verwendet werden. Der Teil STATIK ist ein Stabwerksprogramm zur linear-elasti-

schen Analyse von zwei- und dreidimensionalen System nach Theorie I. und II. Ordnung. Das Pro-

gramm PYRUS schließlich eignet sich zur Bemessung von Stahlbetonstützen. Hier können mehr-

teilige Stützen unter zweiachsiger Biegung untersucht werden.

1.1 Cubus Explorer Um eine neue Berechnung für ein CUBUS-Modul anzulegen, muss zunächst der „CubusExlorer“

(siehe Bild 1) gestartet werden, was auch aus einem Modul selbst geschieht, wenn im Menü

„Datei“ auf „CubusExplorer…“ oder „Neu…“ geklickt wird. Dieser gleicht dem „Windows-Explorer“,

dient jedoch ausschließlich der Verwaltung von Berechnungen der verschiedenen CUBUS-Pro-

gramme.

Bild 1: CubusExplorer

Ist noch kein Arbeitsverzeichnis für Berechnungen angelegt, kann dies mit dem Symbol in der

aktuell gewählten Ebene (hier z. B. direkt auf dem Desktop) getan werden. Darin können nun neue

Berechnungen mit dem Symbol oder über das durch die rechte Maustaste aktivierbare Kontext-

menü erstellt werden (siehe Bild 2).

Technische Universität Berlin Fachgebiet Massivbau Seite 1

Page 8: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 2: Arbeitsverzeichnis „Desktop“ mit neu angelegter „Cedrus-5 Berechnung“

Durch einen Klick auf den Button „Bearbeiten“ (rechts unten) oder durch einen Doppelklick auf den

Berechnungsnamen wird die markierte Berechnung (hier: neue Berechnung) mit dem jeweils dem

Berechnungstyp zugeordnetem Programm (hier: CEDRUS-5) geöffnet (siehe Bild 3).

Bild 3: Programmfenster von CEDRUS-5 nach dem Start einer neuen Berechnung

Im mittigen Dialogfenster „Allgemeine Einstellungen“ sind vor jeder Berechnung dieser entspre-

chende Voreinstellungen einzugeben. Auf der linken Seite befindet sich die Werkzeugleiste des

Grafikeditors, zentral das Hauptfenster der Applikation mit aktivem Grafikeditorfenster, rechts die

Layerschaltflächen, oben die Menüleiste sowie das Steuerregister für die Applikationen (beein-

flusst die Werkzeugleiste und die Layerschaltflächen) und am unteren Rand sitzt die Statusleiste

der Applikation, welche Koordinaten- und Informationsfelder enthält.

Das Strukturregister wird im Normalfall von links nach rechts abgearbeitet. Abhängig von der aktu-

ellen Applikation sind Schaltflächen in der Werkzeugleiste aktiv und inaktiv sowie in der Layerleiste

(vom Benutzer individuell einstellbar) sichtbar und unsichtbar geschaltet.

Seite 2 Fachgebiet Massivbau Technische Universität Berlin

Page 9: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

1.2 CEDRUS-5 Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische

Analysen von Platten- und Scheibentragwerken durchgeführt werden. Es besteht die Möglichkeit

ganze Gebäude zu berechnen durch die Kopplung verschiedener Platten. Zudem lässt sich die

Bewehrung optimieren und die Traglastberechnen. Für die Berechnung von vorgespannten Platten

(z.B. Flachdecken) gibt es die Möglichkeit, Spannglieder in das Modell einzubinden. Auch an die

Bemessung von Platten die mit CFK-Lamellen saniert werden müssen wurde mit einer entspre-

chenden Option „Klebebewehrung“ gedacht.

Normen wie SIA/Swisscode, EC2, DIN, OeNorm u.a. werden unterstützt.

1.3 FAGUS-5 FAGUS-5 ist ein Programm zur Lösung vielfältiger Querschnittsanalysen, primär in den Bereichen

Stahl- und Spannbeton. Bei dünnwandigen Querschnitten werden auch der Schubmittelpunkt und

die Schubspannungsverteilungen aus Querkraft und Torsion ermittelt.

Auch FAGUS-5 unterstützt Normen wie z.B. SIA/Swisscode, EC2, DIN und OeNorm.

1.4 STATIK-5 Das Programm Statik-5 dient der Analyse von räumlichen und ebenen Stabwerken. Diese können

sowohl nach Theorie I. Ordnung als auch nach Theorie II. Ordnung untersucht werden. Das

Programm wird ebenso wie CEDRUS-5 über den CubusExplorer gestartet (siehe Bild 1). Für

STATIK-5-Berechnungen kann derselbe Ordner verwendet werden, wie für die CEDRUS-5-Daten

oder die Daten der anderen Module. Es empfiehlt sich jedoch einen neuen Ordner anzulegen,

beispielsweise „ST5Daten“. Nun kann über die Schaltfläche eine neue Berechnung angelegt

werden. In der folgenden Auswahl ist STATIK-5 zu wählen, worauf ein neuer Berechnungseintrag

mit dem Standardnamen „ST5-Berechnung“ erscheint. Dieser kann nun über den Button „Bear-

beiten“ unten rechts, bzw. durch einen Doppelklick auf den Eintrag geöffnet werden.

Nun erscheint das bereits aus CEDRUS-5 bekannte Dialogfenster, in das der Strukturtyp, die zu

verwendende Norm und der Bauwerkstyp, sowie eine kurze Beschreibung des Projekts einzuge-

ben ist. Diese Angaben werden entweder für die Rechnung benötigt oder sind Daten die später auf

dem Ausdruck erscheinen.

1.5 PYRUS-5 PYRUS-5 ist ein Programm zur Analyse und Bemessung von Stahlbetonstützen. Es können

sowohl einfache Hochbaustützen als auch komplexe Stützensysteme mit abgestuften und verän-

derlichen Querschnitten, Exzentrizitäten und Zwischenlagern unter ein- oder zweiachsialer Bie-

Technische Universität Berlin Fachgebiet Massivbau Seite 3

Page 10: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

gung untersucht werden. Die Berechnungen erfolgen im gerissenen Zustand (nichtlineare Material-

diagramme) und das Gleichgewicht wird im deformierten Zustand erfüllt (Theorie 2. Ordnung).

Seite 4 Fachgebiet Massivbau Technische Universität Berlin

Page 11: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

2 Deckenplatte auf Unterzügen, Stütze und Wänden Dieses Beispiel zeigt die Eingabe, Berechnung und Ergebnisaufbereitung einer einfachen Decken-

platte. Die folgende Bild 4 entspricht der Aufgabenstellung und enthält Angaben über die Abmes-

sungen der Geometrie, Materialeigenschaften und Lasten der Berechnung.

Material: Beton C 20/25

Betonstahl BSt 500 SA, Achsabstand vom Rand 3,0 cm

Querschnitte: Platte Plattendicke h = 20 cm

Unterzug als

Plattenbalken

(Randbalken

entsprechend

anpassen)

Lasten: ständige Einwirkung Eigengewicht und Ausbaulast 1,5 kN/m²

veränderliche Einwirkung Flächenlast 3 kN/m² (inklusiv)

Randlast 10 kN/m (inklusiv)

zwei Sonderlasten je 20 kN (exklusiv) mit einer

Aufstandsfläche von 10 x 10 cm

Bild 4: Aufgabenstellung

Technische Universität Berlin Fachgebiet Massivbau Seite 5

Page 12: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 5: Belastungsfelder, Ort der Randlast und Stellung der Sonderlasten

Bevor mit der Berechnung begonnen werden kann, wird zunächst der „CubusExplorer“ geöffnet,

um eine neue „Cedrus-5 Berechnung“ zu erstellen. Diese sollte einen zu dieser Übung passenden

Namen, wie z. B. „Deckenplatte“, erhalten. Jetzt kann die neu angelegte Berechnung in

CEDRUS-5 mit der Schaltfläche „Bearbeiten“ unten rechts im „CubusExplorer“ gestartet werden.

Das Programm CEDRUS-5 zeigt beim Öffnen einer neu angelegten Berechnung das Dialogfenster

„Allgemeine Einstellungen“ (s. Bild 6) in welchem wichtige Voreinstellungen, wie z. B. die nicht

mehr änderbare Festlegung des Strukturtyps (Ausnahme s. Handbuch), getätigt werden müssen.

Bild 6: Dialogfenster „Allgemeine Einstellungen“ beim Berechungsstart

Der Strukturtyp für diese Übung ist „Platte“. Die „DIN“ wird als Norm verwendet und der Bauwerks-

typ ist „Gebäude“. Die Beschreibungsangaben sind später auf den Seitenköpfen des Berech-

nungsausdrucks zu sehen. Nun muss m Menü Einstellungen die Anpassung der Baustoffe

vorgenommen werden (siehe Bild 7).

Seite 6 Fachgebiet Massivbau Technische Universität Berlin

Page 13: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 7: Dialogfenster für ausgewählte Baustoffe

Da in dieser Übung ein Beton C20/25 verwendet werden soll, muss evtl. noch die Vorgabeein-

stellung für den Beton geändert werden. Dies geschieht durch einen Doppelklick auf die im Bild 7

markierte Betonzeile. Ein Fenster für die Baustoffattribute (siehe Bild 8) wird geöffnet, in welchem

dann als Klasse für den Beton C20/25 eingestellt werden kann.

Bild 8: Dialogfenster mit Baustoffattributen, hier für Beton

In dem Bestätigungsfenster (s. Bild 9) akzeptieren, dass die Werte des C20/25 für den Beton ver-

wendet werden sollen und mit OK das Fenster aus Bild 8 schließen.

Hinweis: Bei Bedarf ist es natürlich auch möglich im Fenster aus Bild 8 mehrere Materialien

(z. B. Betone) unterschiedlicher Klassen einzuführen.

Bild 9: Bestätigungsaufforderung für Eigenschaftenübernahme

Nun sind alle notwendigen Voreinstellungen getätigt und es kann mit der Berechnung begonnen

werden. Man erhält das Hauptmenü des Programms CEDRUS-5 in Form eines Registers (siehe

Bild 10). Die Registerblätter sind von links nach rechts entsprechend dem Ablauf einer normalen

Berechnung angeordnet und enthalten eine Reihe von Applikationen.

Technische Universität Berlin Fachgebiet Massivbau Seite 7

Page 14: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 10: Menüleiste von CEDRUS-5 und Hauptmenu in Form eines Registers

2.1 Konstruktion des Finite-Element-Modells Zunächst wird die für die FE-Berechnung relevante Struktur erzeugt. Im Anschluss daran werden

die Lasten eingeprägt. Dann kann die Netzgenerierung mit der darauf folgenden Berechnung und

Ergebnissausgabe stattfinden.

2.1.1 Eingabe der Struktur (Geometrie, Material, Lagerung) Im Registerblatt Struktur (siehe Bild 10) wird als Erstes durch Klicken auf das Symbol mit der

Eingabe des Umrisses begonnen. Am linken Bildschirmrand werden Zeichnungswerkzeuge aktiv

(siehe Bild 11).

Bild 11: Zeichnungswerkzeuge des Grafikeditors (Umriss-Applikation aktiv)

Durch Auswahl des Polygonwerkzeugs kann nun mit der Eingabe der Geometrie auf zwei ver-

schiedene Arten vorgegangen werden. Die Eingabearten unterscheiden sich ausschließlich in

ihrem Koordinatenbezug.

Hinweis: Sollte während der Koordinateneingabe ein Fehler unterlaufen, so kann durch

drücken von <Esc> die Eingabe Punkt für Punkt rückgängig gemacht werden.

Die erste Möglichkeit ist die Koordinaten des Umrisses global bezogen auf den Null-Punkt des

abgebildeten Koordinatensystems einzugeben. Dann wären z. B. folgende Eingaben (x + <Enter>,

y + <Enter>) unten links im Bildschirm in den Koordinatenfeldern

notwendig:

Punkt 1 2 3 4 5 6 7 8 9 10 x 0 4,9 10,5 15,4 15,4 11,9 11,9 4,9 4,9 0 y 0 0 1,4 1,4 5,6 5,6 9,1 9,1 6,3 6,3

Seite 8 Fachgebiet Massivbau Technische Universität Berlin

Page 15: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Das Polygon wird geschlossen indem der Anfangspunkt (hier: x = 0, y = 0) angeklickt wird. Diese

Eingabeform ist hier aber eher unpraktisch.

Die zweite Möglichkeit besteht darin die Koordinaten relativ zum letzten Eingabepunkt anzugeben.

Dazu wird der erste Polygonpunkt frei im Achssystem durch Klicken gewählt (hier wieder den

Koordinatenursprung gewählt, um für weitere Eingaben einen bekannten Bezugspunkt zu

erhalten). Jeder weitere Umrisspunkt wird nun stets durch Drücken von <R> vor der Koordinaten-

eingabe in den Koordinatenfeldern relativ zum Vorgänger mit

den folgenden Koordinaten (dx + <Enter>, dy + <Enter>) eingegeben:

Punkt 2 3 4 5 6 7 8 9 10 dx 4,9 5,6 4,9 0 -3,5 0 -7 0 -4,9 dy 0 1,4 0 4,2 0 3,5 0 -2,8 0

Das Polygon wird auch hier durch Anklicken des ersten Umrisspunkts geschlossen.

Hinweis: Ein kleines rotes Dreieck markiert den Bezugspunkt für die Relativeingabe. Er ist

durch Klicken auf einen anderen schon erzeugten Punkt änderbar. Dies muss auf

jeden Fall geschehen, wenn ein Punkt fehlerhaft eingegeben und mit <Esc> einen

Eingabeschritt zurückgegangen wurde. In diesem Fall ist der Referenzpunkt nämlich

der zuvor falsch eingegebene Punkt!

Nach Drücken von <F2> und <F3> bzw. den Symbolen für „Neuzeichnen“ und für „Zentrie-

ren“ sollte der Bildschirm nun folgendes darstellen (siehe Bild 12).

Bild 12: Umrissdarstellung

Jetzt sollen der Deckenplatte ihre Materialeigenschaften zugewiesen werden. Dazu klickt wird das

Symbol für „Attributebox für Materialzone“ im noch offenen Struktur-Registerblatt angeklickt. In

der erscheinenden Box sind nun die Werte (siehe Bild 13) festzulegen.

Technische Universität Berlin Fachgebiet Massivbau Seite 9

Page 16: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 13: Attributebox für Materialzone und erzeugte Infobox

Ein Klick auf „Einführen“ fordert dazu auf einen Mittelpunkt für die Box zu wählen. Wurde dies

getan, so erscheint die Box (siehe Bild 13 rechts) und das Fenster „Attributebox für Materialzone“

kann geschlossen werden.

Jetzt werden die beiden Unterzüge konstruiert. In CEDRUS-5 sind Unterzüge eigene Objekte mit

einem orthotropem Materialmodell, d. h. Unterzugselemente haben in Längsrichtung die volle Stei-

figkeit aber für Quer- und Drillsteifigkeit wird die Dicke der benachbarten Platte verwendet (siehe

Bild 14 oben). Für die Steifigkeitsermittlung in Längsrichtung wird die fiktive Unterzugshöhe h mit

dem Modell 4 (Modelle 1 bis 4 siehe Bild 14 unten) ermittelt.

1) 2) 3) 4)

Bild 14: Modell für Steifigkeitsermittlung (oben) und Modelle 1) bis 4) für Unterzugshöhe (unten)

Modell 1 stellt die Realität am Besten dar, kann jedoch vom Programm nicht verwendet werden

(Membrandehnungen werden nicht erfasst). Im Modell 2 (Unterzug exzentrisch) liegt die Neutral-

Seite 10 Fachgebiet Massivbau Technische Universität Berlin

Page 17: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

achse in Plattenmitte (Folge: Steifigkeit zu groß), während bei Modell 3 (Unterzug zentrisch) die

Exzentrizität vernachlässigt wird (Folge: Steifigkeit zu klein). Das Modell 4 (CEDRUS-5-Modell)

entspricht bezüglich der Steifigkeitsermittlung dem Mittel der Modelle 2 und 3.

Hinweis: Es dürfen sich nicht mehr als zwei Unterzüge in einem Punkt schneiden.

Ein Klick auf das Symbol für „Unterzug“ und es erscheint ein Einstellungsfenster (siehe

Bild 15), in welchem die gewollten Werte (zunächst für den in der Aufgabenstellung dargestellten

Plattenbalken) eingegeben werden.

Bild 15: Dialogfenster für Unterzugattribute

Durch jeweils einen Klick auf „Einführen“ erzeugt man die beiden Unterzüge gemäß Aufgabenstel-

lung indem man schon erzeugte Objektpunkte vom Umriss anklickt bzw. Koordinaten (relativ)

eingibt.

Hinweis: Durch Klicken auf das Symbol an der linken Bildschirmseite werden die selek-

tierbaren Objektpunkte ein- bzw. wieder ausgeschaltet.

Die Eingabe ist jeweils mit <Q> oder durch nochmaliges Klicken des Endpunktes zu beenden.

Nach dem Schließen des Dialogfensters erhält man jedoch eine Fehlermeldung bezüglich des

äußeren Unterzugs (siehe Bild 16).

Technische Universität Berlin Fachgebiet Massivbau Seite 11

Page 18: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 16: Fehlermeldung und erzeugte Unterzüge

Unterzüge dürfen also nicht außerhalb vom Umriss liegen! Nachdem man mit „OK“ die Fehlermel-

dung beseitigt hat, müssen jetzt Lage sowie mitwirkende Plattenbreite des betreffenden Unterzugs

(Randbalken) korrigiert werden. Dazu selektiert man den Unterzug mit der rechten Maustaste und

wählt aus dem sich öffnenden Kontextmenü „Eigenschaften …“ aus, worauf sich das schon

bekannte Fenster aus Bild 15 öffnet. Im ersten Registerblatt wählt man die Eingabeachse mit

„rechts“ bzw. „links“ so, dass der Unterzug innerhalb liegt und mit dem Umriss abschließt. Im

zweiten Registerblatt ist die richtige mitwirkende Plattenbreite (0,74 m) einzustellen. Anschließend

klickt man auf „Anwenden (1)“.

Hinweis: Die (1) bedeutet, dass sich die geänderten Einstellungen auf das eine markierte Ob-

jekt auswirken. Mit <Shift> lassen sich wenn nötig auch mehrere Objekte anwählen.

Ein Klick auf das gelbe Symbol verrät, ob die Materialeingabe jetzt korrekt ist.

Es folgt die Lagereingabe. Dazu gehören in diesem Beispiel die Wände und die Stütze. Um die

Stütze zu erzeugen, wird auf das gleichnamige Symbol geklickt und es erscheint ein Dialogfen-

ster für die Attribute (siehe Bild 17). Mit „Einführen“ und mithilfe der Relativeingabe wird die Stütze

erzeugt.

Seite 12 Fachgebiet Massivbau Technische Universität Berlin

Page 19: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 17: Fenster für Stützenattribute und fertige Darstellung

Als Nächstes werden durch Klicken des Wand-Symbols diese erzeugt. Auch hier sind zunächst

die Attribute festzulegen (siehe Bild 18) bevor Wände mit „Einführen“ konstruiert werden können.

Bild 18: Fenster für Wandattribute und fertige Darstellung

Ein Klick auf das hellblaue Symbol zeigt, ob die Lagereingabe akzeptabel ist.

Das Registerblatt „Struktur“ ist damit für diese Berechnung abgearbeitet.

Hinweis: Mit den Layerschaltern auf der rechten Seite des Bildschirms können die einzelnen

erzeugten Objekte (dazu gehören auch die folgend erzeugten Lastfälle) separat

geschaltet sowie in der Darstellung überlagert werden. Zudem können zusätzliche

Technische Universität Berlin Fachgebiet Massivbau Seite 13

Page 20: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Informationen angezeigt werden (rechte Maustaste und dann auf Sublayer-

Sichtbarkeit).

Für die spätere Ausgabe ist es oft sinnvoll bzw. notwendig die Geometrie mit den Symbolen

und zu vermaßen bzw. beschriften. Das kann nur mit einem aktiven Layer „User“ (Beschrif-

tungslayer) geschehen. Es können je nach Bedarf mehrere User-Layer erstellt werden (rechte

Maustaste auf User-Layergruppe und „Neuer Layer“ wählen). Im Bild 19 ist für dieses Beispiel ge-

zeigt, wie die Bemaßung und Beschriftung aussehen kann.

Hinweis: Durch einen Klick mit der rechten Maustaste auf das Grafikeditorfenster erscheint

ein Kontextmenü, welches weitere Funktionen, wie das Beschriften von Koordina-

ten, beinhaltet.

Bild 19: Geometrie mit Maßlinien und Beschriftungen

2.1.2 Durchstanzobjekte An der Stütze, den einspringenden Wandecken und den Einzellasten können Durchstanzprobleme

auftreten. Um einen Durchstanznachweis führen zu können, müssen in CUBUS an den zu unter-

suchenden Stellen Durchstanzobjekte eingeführt werden. Hierzu ist der Button „Durchstanzob-

jekt“ zu betätigen. Daraufhin erscheint die zugehörige Dialogbox, wie sie im Bild 20 dargestellt ist.

Seite 14 Fachgebiet Massivbau Technische Universität Berlin

Page 21: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 20: Dialogbox für Durchstanzobjekte

Zuerst ist das Registerblatt „Attribute“ zu bearbeiten. Hier ist das Modell für die Widerstandsermitt-

lung zu wählen, das standardmäßig inaktiv gesetzt ist. Das bedeutet, das CUBUS keinen Durch-

stanznachweis führt und auch keinen Widerstand berechnet. Treten bei der Berechnung Fehler auf

oder werden vom Benutzer Änderungen am System vorgenommen, so setzt CUBUS die betrof-

fenen Durchstanzobjekte selbständig auf inaktiv. Stützen sind grundsätzlich Durchstanzobjekte,

die jedoch erst aktiviert werden müssen, damit CUBUS den Durchstanznachweis führt.

Der Standardfall ist die Ermittlung des Widerstandes aufgrund des kritischen Rundschnitts. Hier

müssen auch die Parameter im Registrierblatt „Rundschnitt“ korrekt eingestellt sein. Die Option

„kritischer Rundschnitt mit Durchstanzbewehrung“ erlaubt die Eingabe des Gesamtwiderstandes.

Hier wird vom Programm anhand der Parameter und des kritischen Rundschnitts eine Kontrolle

durchgeführt, da im Rahmen der Norm nur eine beschränkte Erhöhung des Widerstandes durch

eine Durchstanzbewehrung erreicht werden kann.

Für Fälle in denen das Programm aufgrund der vorgegebenen Geometrie (z.B. bei Stahlpilzen)

nicht in der Lage ist, den korrekten Widerstand zu ermitteln, kann der Widerstand auch direkt ein-

gegeben werden. Hier erfolgt keine weitere Kontrolle. In beiden Fällen ist der Gesamtwiderstand

unter „gegebene Widerstände“ einzutragen.

Unter dem Punkt „Nachweistyp“ ist anzugeben, ob die Last auf die Decke nach oben (Stütze) oder

nach unten (Einzellast) wirkt.

Für die richtige Ermittlung des Widerstandes ist zudem die Angabe des geometrischen Beweh-

rungsgehaltes nötig. Hier kann beispielsweise eine Vorlaufrechnung zur Ermittlung der Bewehrung

erfolgen.

Technische Universität Berlin Fachgebiet Massivbau Seite 15

Page 22: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bei allen Modellen kann außerdem ein Zusatzwiderstand (auch negativ als Abzug) angegeben

werden. Dieser kann z.B. aus Vorspannung der Decke herrühren. Kommen die Vorspannbelastun-

gen in der Grenzwertspezifikation für den Durchstanznachweis vor, so wird dieser Effekt jedoch

automatisch berücksichtigt und es darf hier nicht nochmals ein Zusatzwiderstand eingegeben wer-

den.

Auf dem Registerblatt „Rundschnitt“ muss unter „Plattendicke / statische Höhe“ dem Programm die

Deckengeometrie übergeben werden. Das macht das Programm im Allgemeinen automatisch,

sofern das Durchstanzobjekt komplett innerhalb einer Materialzone liegt. Die Eingabe der Spann-

weiten ist normenabhängig und für die DIN 1045-1 nicht erforderlich.

Mit der Eingabe eines Aussparungsabzuges besteht die Möglichkeit, einen Abzug am kritischen

Umfang vorzunehmen, wenn keine Korrektur am Durchstanzpolygon erfolgen soll. Dies ist bei-

spielsweise für kleine Aussparungen sinnvoll. Der Beiwert der Lastausmitte ist für eine Berech-

nung nach DIN 1045-1 nicht relevant.

Die Option „Durchstanzpolygon“ bietet die Möglichkeit das vom Programm automatisch erzeugte

Polygon manuell anzupassen. Bei der Einstellung „automatisch“ versucht CUBUS Plattenränder

und Aussparungen normenkonform zu berücksichtigen. Tritt dabei ein Problem auf, so schaltet

CUBUS automatisch auf die Eingabe „manuell“. In jedem Fall sollte das Ergebnis aber noch ein-

mal überprüft werden.

Auf dem Registerblatt „Optionen“ kann wie gewohnt der Beschriftungsumfang für die zum Durch-

stanzobjekt gehörende Beschriftungsbox gewählt werden.

Im Beispiel sind die Stütze, die einspringende Wandecke, das Wandende und die Einzellasten

Durchstanzobjekte. Die Stütze ist bereits vom Programm als Durchstanzobjekt angelegt, das ledig-

lich aktiviert werden muss. Die anderen sind neu einzuführen. Als geometrischer Bewehrungsgrad

kann vereinfachend von 0,5 % in beiden Richtungen ausgegangen werden. Für die Einzellasten

kann von einer Aufstandsfläche von 10 cm x 10 cm ausgegangen werden. Das Ergebnis der Ein-

gabe ist im Bild 21 dargestellt.

Seite 16 Fachgebiet Massivbau Technische Universität Berlin

Page 23: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 21: Die Durchstanzobjekte des Beispiels

2.2 Lasten Um die Lasten einzugeben, muss auf das gleichnamige Registerblatt (siehe Bild 22) gewechselt

werden.

Bild 22: Registerblatt Lasten

Eine Belastung mit dem Eigengewicht der Platte ist automatisch vordefiniert. Zu dieser Belastung

bzw. diesem Lastfall soll noch eine ständige Ausbaulast von 1,5 kN/m² hinzugefügt werden. Dazu

ein Klick auf das Symbol für „Flächenlast“ und es erscheint ein Fenster (s. Bild 23), in welchem

die Lastgröße einzustellen ist (negativ, da nach unten wirkend).

Bild 23: Eingabefenster für Flächenlast

Ein Klick auf „Ganze Struktur“ sowie anschließend ein Klick mit der linken Maustaste auf die Platte

setzt die Last. Das Fenster aus Bild 23 kann geschlossen werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 17

Page 24: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Jetzt sollen die Nutzlasten eingegeben werden. Zuerst wird die Flächenlast von 3 kN/m² so

eingegeben, dass sie feldweise ungünstig berücksichtigt werden kann. Das heißt, man könnte jetzt

vier entsprechende Belastungen definieren. Besser geht es allerdings mit dem entsprechenden

„Generator für ungünstiges Muster“, für welchen zwar alle Lastfelder auch explizit einzugeben

sind, jedoch in derselben Belastung (Generatorbelastung).

Hinweis: Das Wort Belastung hat hier die gleiche Bedeutung wie das Wort Lastfall. Im

CUBUS-Handbuch sowie in der Programmhilfe bedeutet Lastfall gleich Einwirkungs-

kombination!

Zuerst ein Klick auf das Symbol für „Neue Belastung“. In dem erscheinenden Dialogfenster

sind nun Einstellungen vorzunehmen (siehe Bild 24) und mit „OK“ zu bestätigen.

Bild 24: Dialogfenster für eine neue Belastung

Nach einem Klick auf das Symbol für „Flächenlast“ kann die Lastgröße (-3,0 kN/m²) eingestellt

werden und es erscheinen Schaltflächen zur Eingabe von Lastobjekten (siehe Bild 25).

Bild 25: Schaltflächen zur Eingabe von Lastobjekten

Mit dem Symbol für „Flächenlast-Rechteck (Eckpunkt - Eckpunkt)“ und dem Symbol für

„Flächenlast-Polygon“ werden die vier Lastflächen (siehe Bild 26) konstruiert.

Seite 18 Fachgebiet Massivbau Technische Universität Berlin

Page 25: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 26: Fertige Lastflächen der Belastung GU

Es folgt die Eingabe einer neuen Belastung bestehend aus einer Linienlast mit 10 kN/m

(siehe Bild 27), die mithilfe des Symbols für „Linienlast“ auf dem äußeren Unterzug erzeugt

wird.

Bild 27: Randlast auf dem äußeren Unterzug

Die letzten beiden Lasten sind Punkt- bzw. Einzellasten von je 20 kN. Es sind Sonderlasten,

welche exklusiv in die Berechnung eingehen sollen. Sie werden in einer gemeinsamen neuen

Belastung mit den Symbolen und sowie mithilfe der Relativeingabe gemäß Aufgaben-

stellung erzeugt (siehe Bild 28).

Technische Universität Berlin Fachgebiet Massivbau Seite 19

Page 26: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 28: Exklusive Sonderlasten

Damit ist die Lasteingabe beendet. Ein Klick auf das Symbol verrät, ob die Belastungseingabe

in Ordnung ist. Mit Klicken des Symbols für „Liste der Belastungen“ erhält man eine Liste der

definierten und vom Programm generierten Belastungen.

2.3 Netzgenerierung Es folgt die Netzgenerierung mithilfe des Registerblatts „FE-Netz“ (siehe Bild 29).

Bild 29: Registerblatt FE-Netz

CEDRUS-5 generiert (wenn gewünscht) automatisch das für das Berechnungsverfahren benötigte

FE-Netz. Dafür müssen jedoch Parameter, d. h. im Normalfall nur die maximale Seitenlänge (hier

Netzweite zu max. 0,5 m gewählt) der verwendeten Elemente, eingestellt werden. Dies geschieht

durch Klicken des Symbols „Attributeboxen für FE-Netzzonen“ (siehe Bild 30) und Absetzen

dieser innerhalb der Platte.

Bild 30: Einstellungen für das FE-Netz in der Attributebox

Seite 20 Fachgebiet Massivbau Technische Universität Berlin

Page 27: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Mit einem Klick auf das Symbol können die gesamten Netz- und Struktureingaben auf ihre

Richtigkeit überprüft werden.

Das eigentliche Generieren des FE-Netzes (siehe Bild 31) kann mit dem Symbol ausgeführt

werden. Dies erfolgt allerdings auch automatisch vom Programm sobald das Netz für die Berech-

nung der Resultate benötigt wird.

Bild 31: Generiertes FE-Netz mit einer maximalen Netzweite von 0,5 m

Hinweis: Der Struktur können bei Bedarf auch mehrere FE-Netz-Zonen zugewiesen werden.

Diese können dann mit Attributeboxen unterschiedlicher Eigenschaften belegt wer-

den und die jeweilige Generierung kann entweder automatisch, teilweise manuell

oder komplett manuell erfolgen.

2.4 Berechnung In diesem Fall sind hier keine Eingaben zu tätigen. Die für die Bemessung notwendigen Grenz-

wertspezifikationen (Einwirkungskombinationen im Grenzzustand der Tragfähigkeit sowie der Ge-

brauchstauglichkeit für die entsprechende Bemessungssituation) werden vom Programm auto-

matisch generiert. Die Berechnung der Rohresultate kann mit dem Symbol im Registerblatt

„Berechnung“ (siehe Bild 32) gestartet werden. Das ist jedoch nicht unbedingt notwendig, da diese

beim Verlangen von Resultaten automatisch gestartet wird.

Bild 32: Registerblatt Berechnung

Technische Universität Berlin Fachgebiet Massivbau Seite 21

Page 28: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

2.5 Resultate Im Registerblatt „Resultate“ (siehe Bild 33) können verschiedenartige Ergebnisdarstellungen auf-

gerufen werden.

Bild 33: Registerblatt Resultate

Mit dem Symbol „Berechnen, Resultate anzeigen“ wird das von verschiedenen Schaltflächen-

Einstellungen (siehe Bild 34) abhängige Ergebnis präsentiert (siehe Bild 35).

Bild 34: Schaltflächen zum variieren der Ergebnisdarstellung (hier eingestellt für die grafische

Ausgabe der oberen Grenzwerte von Deformationen in 3D-Form für die automatisch generierte Einwirkungskombination bezüglich Tragsicherheit)

Bild 35: Ergebnisdarstellung für die in Bild 34 eingestellten Werte

(das Programm wechselt automatisch in die 3D-Ansicht)

Hinweis: Durch gleichzeitiges Drücken von <Strg> und <Shift> lässt sich die Grafik mit der

linken Maustaste zoomen, mit <Strg> und <Alt> drehen und mit <Strg> verschieben.

Seite 22 Fachgebiet Massivbau Technische Universität Berlin

Page 29: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

2.5.1 Verformungen Als Beispiel sollen hier die Verformungen aus Eigengewicht ausgewertet werden. Zunächst muss

dazu unter „Belastung-linear“ der Lastfall „EG: Eigengewicht“ gewählt werden. Als Ausgabegröße

werden „Deformationen“ eingestellt. Die Ausgabe soll als Isoflächen erfolgen. Dazu müssen

zunächst Isolinien mit der entsrechenden Schaltfläche als Ausgabe gewählt werden. An-

schließend ist die Darstellung noch mit der Schaltfläche anzupassen. Hier soll Isolinien füllen

gewählt werden, wie im Bild 36 dargestellt.

Bild 36: Anpassen der Darstellung der Isolinien

Abschließend ist noch die Darstellung mit auszuführen und es wird das Ergebnis wie im Bild 37

dargestellt. Über die Funktion „Export“ im Menü „Datei“ kann die Darstellung beispielsweise in die

Zwischenablage oder in unterschiedliche Bildformate kopiert werden, um sie später weiter bearbei-

ten zu können.

Bild 37: Darstellung der Verformung aus Eigengewicht mit gefüllten Isolinien

Technische Universität Berlin Fachgebiet Massivbau Seite 23

Page 30: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Die Ausgabe kann mit dem Knopf auch als 3D-Ansicht erfolgen, wie sie im Bild 35 dargestellt

ist. Sollen die Daten mit einem Tabellenkalkulationsprogramm weiterverarbeitet werden, so kann

der Export sehr komfortabel mit der Funktion „Numerisch“ erfolgen. Die so erstellte Tabelle

lässt sich einfach durch Markieren und Kopieren in den Arbeitsspeicher lesen.

2.5.2 Momente Beispielhaft für die Ausgabe von Momenten sollen hier die Drillmomente der Platte aus Eigenge-

wicht dargestellt werden. Dazu muss lediglich die Ausgabegröße auf „Schnittkräfte“ und die

Schnittgröße auf geändert werden. Das Ergebnis ist im Bild 38 dargestellt.

Bild 38: Drillmomente aus Eigengewicht

2.5.3 Spannungen Auch die Ausgabe von Spannungen kann nur für einzelne Lastfälle und keine Lastfallkombinatio-

nen erfolgen. Daher wird auch hier beispielhaft das Eigengewicht verwendet. Als Ausgabegröße

sind „Spannungen“ zu verwenden. Anschließend erfolgt die Auswahl zwischen Schubspannungen

(τ) und Normalspannungen (σ) in x- und y-Richtung. Zudem können die Spannungen am oberen

Rand der Platte (top) und am unteren Rand der Platte dargestellt werden (bottom). Sollen die

Hauptspannungen dargestellt werden, ist die Ausgabe zunächst auf „Hauptwert-Grafik“ zu stel-

len. Anschließend können die Hauptspannungen am oberen und unteren Rand der Platte ausge-

wählt werden. Im Bild 39 wurden die Hauptspannungen am oberen Rand der Platte verwendet.

Seite 24 Fachgebiet Massivbau Technische Universität Berlin

Page 31: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 39: Hauptspannungen am oberen Rand der Platte

2.5.4 Bewehrungsermittlung Zur Ermittlung der erforderlichen Bewehrungsquerschnitte für den Tragsicherheitsnachweis

müssen die entsprechenden Resultate gewählt werden. Als Ausgabegröße stehen nur As-Quer-

schnitte zur Verfügung. Es kann sowohl die Bewehrung oben und unten jeweils in x- und y-Rich-

tung angezeigt werden (axt, axb, ayt und ayb). Zusätzlich kann in einem Bild auch die Bewehrung in

beiden Richtungen dargestellt werden (at und ab). Als Beispiel ist im Bild 40 die Bewehrung unten

für die x-Richtung (Wert oben) und die y-Richtung (Wert unten) dargestellt.

Bild 40: Bewehrung unten in x- und y-Richtung

Technische Universität Berlin Fachgebiet Massivbau Seite 25

Page 32: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

2.5.5 Durchstanznachweis Im Grenzzustand der Tragfähigkeit kann der Durchstanznachweis geführt werden. Dazu ist als

Grenzwert „!Tragsicherheit“ und als Ausgabegröße „Durchstanznachweis“ auszuwählen. Mit dem

Symbol kann nun der Durchstanznachweis für die unter 2.1.2 definierten Durchstanzobjekte

ausgegeben werden. Das Ergebnis ist im Bild 41 dargestellt.

Bild 41: Durchstanznachweis

2.6 Bewehrungsmodul Mit dem Bewehrungsmodul von Cedrus 5 kann ein Bewehrungsplan des untersuchten Systems

erstellt werden. Dazu ist auf das folgende Register „Bewehrung“ zu wechseln. Hier können jetzt

unterschiedliche Varianten der Bewehrungsführung erzeugt werden. Zunächst ist mit der Layout-

verwaltung (Bild 42) eine neue Variante zu erstellen.

Bild 42: Bereich der Layoutverwaltung

Mit dem Button wird hierzu die Dialogbox für die Einstellungen der neuen Variante aufgerufen,

wie sie im Bild 43 dargestellt ist.

Seite 26 Fachgebiet Massivbau Technische Universität Berlin

Page 33: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 43: Einstellung für das neue Layout

Hier kann dem Layout ein Name zugewiesen werden und es können die bei der Bemessung zu

verwendenden Stabdurchmesser und –abstände definiert werden. Zudem kann das zu Mattenpro-

gramm gewählt werden, das der Bemessung zugrunde liegen soll. Diese Einstellung ist jedoch

normabhängig und für die DIN 1045-1 besteht keine Auswahlmöglichkeit.

Bild 44: Dialogbox Bewehrungsfeld

Sobald die Variante angelegt ist kann mit der Eingabe der Bewehrungsfelder begonnen werden.

Die Eingabe erfolgt getrennt für obere und untere Bewehrung. Die Auswahl geschieht mit den

Schaltern und . Zudem kann für Stabstahl die Verlegerichtung mit den Buttons und

gewählt werden. Für Matten spielt die Verlegerichtung keine Rolle. Jetzt kann mit der Schaltfläche

ein Bewehrungsfeld eingegeben werden. Bevor die Bewehrungsfelder eingeführt werden

können, muss die im Bild 44 dargestellte Dialogbox ausgefüllt werden. Hier wird für das Beispiel

Technische Universität Berlin Fachgebiet Massivbau Seite 27

Page 34: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

erst Mattenstahl gewählt, der in Zone 1 (Decke) verlegt werden soll. Alle anderen Einstellungen

können so übernommen werden, wie das Programm sie vorschlägt. Nun werden vier Bewehrungs-

felder jeweils oben und unten eingeführt, wie es im Bild 44 dargestellt ist.

Bild 45: Bewehrungsfelder für die Mattenbewehrung oben und unten

Jetzt müssen noch die Bewehrungsfelder für die Unterzüge definiert werden. Dazu wird unter

Attribute Stabstahl gewählt und die Zone 1 deaktiviert, da der Stahl nicht in der Platte liegt.

Daraufhin kann unter Optionen die Plattendicke auf 60 cm erhöht werden. Der Stahl für den

Unterzug muss nur unten eingelegt werden. Für den inneren Unterzug in y-Richtung, der Rand-

unterzug erhält Bewehrung in x-Richtung deren Stabrichtung auf 14° festgelegt wird. Cedrus be-

handelt einen Unterzug intern als dickeren Plattenbereich (vergleiche Bild 46).

Bild 46: Plattenzone und Unterzug

Seite 28 Fachgebiet Massivbau Technische Universität Berlin

Page 35: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Als nächster Schritt muss die Ermittlung des erforderlichen Bewehrungsbedarfs erfolgen , damit

anschließend eine elastische Bemessung durchgeführt werden kann. Als Einwirkung soll hier

als Beispiel der Nachweis der Tragsicherheit dienen. Beim ersten Versuch erhalten wir in unserem

Beispiel die Fehlermeldung im Bild 47, dass keine Bemessung möglich ist, da zu wenige

Bewehrungsfelder spezifiziert sind.

Bild 47: Fehlermeldung zu wenige Bewehrungsfelder

Die Bereiche, die den Fehler ausgelöst haben, werden im Programm rot schraffiert dargestellt, wie

im Bild 48 zu erkennen ist.

Bild 48: Markierung der fehlenden Bewehrungsfelder

Das Problem wird gelöst, indem jeweils oben und unten in der Zone 1 noch ein Bewehrungsfeld

eingeführt wird, das den markierten Bereich abdeckt. Die elastische Bemessung erzeugt daraufhin

keine weiteren Fehler.

Mit dem Befehl „Einstellung Darstellung“ kann die Darstellung der Ergebnisse noch verfeinert

werden. Mit der ausführlichen Feldbeschriftung (siehe Bild 49) und einer Texthöhe von 3 mm kann

eine Ansicht erzielt werden, die einer Bewehrungszeichnung ähnlich ist. Zudem sollte der Button

“Felder neu nummerieren“ betätigt werden, womit den eingegebenen Feldern eine aufsteigende

Positionsnummer, beginnend mit der unteren Lage, vergeben wird.

Technische Universität Berlin Fachgebiet Massivbau Seite 29

Page 36: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 49: Einstellung Darstellung

Diese Darstellung kann abschließend zur weiteren Bearbeitung in eine DXF-Datei exportiert

werden. Dazu ist jedoch als Ausgabeformat für Bewehrungszeichnungen im Menü „Einstellungen“

„CAD-Schnittstellen/ Export Bewehrung/ DXF“ zu wählen. Der Export der Zeichnung erfolgt danach

über „Einstellungen Layout“ . Die Auswahl für den Export im Bild 43 ist nun aktiv.

Zusätzlich kann auch eine Ausgabe der Liste der Bewehrungsfelder erfolgen. Dabei erzeugt

Cedrus eine tabellarische Positionsliste der erforderlichen Bewehrung, wie sie im Bild 50 darge-

stellt ist.

Bild 50: Bewehrungsliste

Seite 30 Fachgebiet Massivbau Technische Universität Berlin

Page 37: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Um zu einer wirtschaftlichen Bemessung zu kommen, kann zusätzlich eine plastische Optimierung

der Bewehrung erfolgen. Bei Betätigung der Schaltfläche öffnet sich das Fenster Monitor. Hier

kann die plastische Bemessung mit gestartet werden. Die Ergebnisse passen sich dabei auto-

matisch an und der Optimierungsverlauf wird graphisch dargestellt. Soll die plastische Lösung

rückgängig gemacht werden, so kann dies mit der Schaltfläche erfolgen.

2.7 Traglastmodul Mit dem Traglastmodul kann ansatzweise das nichtlineare Materialverhalten von Stahlbeton be-

rücksichtigt werden. Dazu wird vom Programm iterativ eine Momenten-Krümmungsbeziehung

erstellt.

Die Traglastanalyse erfolgt auf der Registerkarte „Traglast“. Zuerst muss eine zuvor erstellte Be-

wehrungsvariante gewählt werden, wir wählen hier „Variante 1“. Danach muss mit eine neue

Belastungsgeschichte erstellt werden. Hier wird als Lastfall (LF) „ständig“ das Eigengewicht hinzu-

gefügt und die Nutzlasten allgemein als Lastfall „variabel“ (siehe Bild 51).

Bild 51: Spezifikation der Lastgeschichte

Der Widerstand wird dann mit dem Button berechnet. Mit der Schaltfläche wird das Fenster

„Monitor“ geöffnet, in dem wieder mit dem Knopf die Analyse des Systems gestartet werden

kann für den Lastfall „ständig“. Die endgültige Momenten-Krümmungsbeziehung für die variablen

Technische Universität Berlin Fachgebiet Massivbau Seite 31

Page 38: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Lasten erhalten wir durch nochmaliges Betätigen der Schaltfläche . Das Ergebnis ist im Bild 52

dargestellt. Die Decke versagt bei neunfacher variabler Last nach dieser Untersuchung.

Bild 52: Ergebnis der Traglastuntersuchung

2.8 Import von DXF-Dateien Mit der Importfunktion des Grafikeditors können ganze DXF-Dateien oder einzelne Layer einer

DXF-Datei in den Grafikeditor eingelesen werden. Dabei bleibt die Layerstruktur der DXF-Datei

auch im Grafikeditor erhalten. Aus den DXF-Dateien können Linien, Polylinien und Kreisbögen

übernommen werden. Nicht unterstützt werden gruppierte Elemente, diese sind vorher mit der

exportierenden Anwendung in einzelne Linien aufzulösen.

Der Import erfolgt über die Dialogbox „DXF-Import“ im Menü „Datei/ Import/ DXF“, wie sie im

Bild 53 dargestellt ist.

Seite 32 Fachgebiet Massivbau Technische Universität Berlin

Page 39: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 53: Dialogbox DXF-Import

Mit dem Symbol „DXF-Datei öffnen“ wird dabei zunächst eine Datei im Windows Explorer für

den Import ausgewählt. Mit den Symbolen kann die Ansichtvorschau angepasst werden.

Auf der linken Seite sind alle in der Datei enthaltenen Layer aufgeführt. Hier können die Layer zum

Import gewählt und nicht benötigte deaktiviert werden. Im Bereich „Abmessungen der Sichtbaren

Layer“ werden die dimensionslosen Abmessungen der aktivierten Layer angezeigt. Diese können

nicht verändert werden und dienen nur der Kontrolle.

Unter dem Punkt „Kreisbogen-Unterteilung“ kann angegeben werden, wie ein Kreisbogen in ein

Polygon übertragen werden soll, da der Graphikeditor lediglich Linien importieren kann. Mit der

Standardeinstellung α = 22,5° wird ein Vollkreis mit einem Polygon aus 16 Linien angenähert.

Die Einstellung „Toleranzlänge für kurze Linien“ dient dem Aufräumen von DXF-Dateien, um bei-

spielsweise Linien der Länge Null nicht zu importieren. Hier könnte dann die Toleranzlänge

aktiviert und auf s = 0.0000001 festgelegt werden.

Im Bereich „Koordinatentransformation“ können die Daten aus der DXF-Datei skaliert und verscho-

ben werden. Zudem können die Koordinatenachsen vertauscht werden, bzw. die x- und y-Koordi-

naten der DXF-Datei in u- und v-Koordinaten einer speziellen Arbeitsebene in Cedrus importiert

werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 33

Page 40: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

3 Übung zum Selbststudium: Deckenplatte Als vertiefende Übung zum Selbststudium wird hier ein Beispiel gegeben, für das ein Bewehrungs-

plan plastisch zu ermitteln ist. Zusätzlich sind die Durchstanznachweise zu führen. Die Aufgabe ist

mit den Kenntnissen aus dem ersten Beispiel vollständig bearbeitbar.

3.1 Geometrie und Belastung

Unterzug, b = 0,2 m

Mauerwerkwand, d = 0,24 m

24 20 20 20

20

20

20

20

7,50 7,50 7,50

5,00

5,00

5,00 4,00

2,00

2,503,75

100 kN

100 kN 2,50

3,75

Material: Beton C 40/50

Betonstahl BSt 500 SA, Achsabstand vom Rand 4,0 cm

Querschnitte: Platte Plattendicke h = 27 cm

Unterzug als Plattenbalken beff = 2,7 m h = 0,7 m

Lasten: ständige Einwirkung Ausbaulast 1,5 kN/m²

veränderliche Einwirkung Flächenlast 5 kN/m² (inklusiv)

Zwei Sonderlasten 100 kN (exklusiv) mit einer

Aufstandsfläche von 10 x 10 cm

Bild 54: Aufgabenstellung

Seite 34 Fachgebiet Massivbau Technische Universität Berlin

Page 41: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

4 Vorgespannte Flachdecke Es soll eine Flachdecke untersucht werden, wie sie im Bild 55 dargestellt ist. Zur Reduktion der

Verformungen wird die Platte vorgespannt.

4.1 Geometrie und Belastung

Plattendicke h = 0,28 m Stützen 0,4 x 0,4 m

2,90 2,90 8,40 8,40 8,40 8,40

39,40

19,2

0 7,

20

7,20

2,

40

2,40

Nutzlast q = -5,0 kN/m² (ganze Platte)

Bild 55: Geometrie und Belastung

Die Platte soll nach der DIN bemessen werden. Als Baustoffe werden für den Beton ein C35/45,

für den Stahl BSt500 S/M und als Spannstahl St1670/1860 verwendet. Die Platte wird nur durch

das Eigengewicht und eine vollflächige Verkehrslast von 5 kN/m² belastet. Die Eingabe der

Geometrie und Belastung erfolgt analog zum ersten Beispiel.

4.2 Vorbemessung Da vorgespannte Flachdecken keine alltäglichen Bauwerke sind, gibt es in Cedrus auf der Regi-

sterkarte „Vorspannung“ ein Tool zum Vorbemessen von Flachdecken. Mit dem Icon öffnet sich

die im Bild 56 dargestellte Dialogbox. Hier müssen zunächst die Spannweiten für das Innenfeld

lx = 8,40 m und ly = 7,20 m eingetragen werden. Sofern die Plattendicke nicht angegeben wird,

macht das Programm einen Vorschlag für die Plattendicke. Als Belastung müssen -5,0 kN/m²

angegeben werden. Die Fläche pro Litze wird auf 100 mm² belassen.

Technische Universität Berlin Fachgebiet Massivbau Seite 35

Page 42: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 56: Dialogbox zur Vorbemessung von vorgespannten Flachdecken

Mit „Rechne“ erhalten wir im unteren Teil des Dialogs den Programmvorschlag. Der Vorschlag

einer Plattendicke von 24 cm ist aber aufgrund des Durchstanzens und der Schallschutznachweise

indiskutabel. Deshalb wird die Plattendicke manuell auf 0,28 m festgelegt und ein neuer Vorschlag

berechnet. Ein detailliertes Vorbemessungsblatt kann mit dem Button erstellt und anschließend

auch ausgedruckt werden. Anstelle der vom Programm vorgeschlagenen 22 und 25 Litzen, legen

wir jedoch nur folgende Vorspannbewehrung ein:

Stützstreifen 12 Litzen in x- und y-Richtung (drei Bündel á vier Litzen)

Feldstreifen 7 Litzen in x-Richtung

9 Litzen in y-Richtung

4.3 Spannglieder Die Eingabe der Spannglieder erfolgt mit wegen der besseren Übersichtlichkeit in zwei

Gruppen. Die erste Gruppe heißt VGX mit der Beschreibung „Spannglieder in x-Richtung“ und die

zweite Gruppe VGY „Spannglieder in y-Richtung“ (siehe Bild 57).

Seite 36 Fachgebiet Massivbau Technische Universität Berlin

Page 43: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 57: Gruppe VGX, Spannglieder in x-Richtung

Die Eingabe der Spannglieder erfolg mit der Schaltfläche „Spannglied“. Die Spannglieder

erhalten die im Bild 58 dargestellten Attribute. Aufgrund der großen Spanngliedlängen werden die

Spannglieder beidseitig vorgespannt.

Bild 58: Spannglied Eigenschaften

Das erste Spannglied wird als Polygon eingegeben. Der Startpunkt befindet sich bei {0,0 / 0,5} am

linken Plattenrand. Der Endpunkt wird mithilfe der x-Taste eingegeben. Dadurch ist dieser nur

noch horizontal verschieblich und kann mit einem Klick auf den rechten Plattenrand festgelegt

werden. Die Polygoneingabe muss mit „Q“ abgeschlossen werden. Anschließend können die

restlichen Spannglieder der x-Richtung durch duplizieren erstellt werden. Dazu wird das soeben

erstellte Spannglied markiert und aus dem Kontextmenü (rechte Maustaste) „Duplizieren“ gewählt.

Die Einstellungen sind dabei nach Bild 59 vorzunehmen. Da unterschiedliche Abstände vorliegen,

müssen diese explizit eingegeben werden. Die Abstände betragen: 2*0,85 2*0,2 8*0,85 2*0,2

8*0,85 2*0,2 2*0,85. Die Eingabe von dx- und dy-Werten erzeugt lediglich einen Richtungsvektor,

dessen Länge für das Ergebnis ohne Bedeutung ist. Wird die Schaltfläche „Vorschau“ aktiviert,

stellt das Programm das Ergebnis des Duplizierens schon leicht grau dar. Nach der Bestätigung

mit „OK“ werden alle Spannglieder generiert.

Technische Universität Berlin Fachgebiet Massivbau Seite 37

Page 44: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 59: Einstellungen für das Duplizieren der Spannglieder

Die Spannglieder über den Stützen müssen jetzt noch modifiziert werden. Sie sollen vier Litzen

enthalten und nicht nur eine, wie die Spannglieder im Feld. Dazu werden alle Spannglieder über

den Stützen mit gedrückter „Shift-Taste“ ausgewählt. Anschließend kann über das Kontextmenü

die Anzahl der Litzen aller neun Spannglieder auf vier erhöht werden.

Damit ist die Eingabe der Spannglieder beendet und es müssen die Halter mit der Schaltfläche

definiert werden. Bei einer Betonüberdeckung von 3 cm und 20 mm Spannglieddurchmesser ergibt

sich ein Randabstand von 4 cm für die Spannglieder in x-Richtung. In y-Richtung liegen die

Spannglieder über denen in x-Richtung. Daher beträgt der Randabstand hier 6 cm.

Bild 60: Eingaben im Dialogfeld „Halter“

Im konkreten Anwendungsfall sind die geometrischen Verhältnisse über den Stützen genau zu

planen, wobei in den Produktdokumentationen der Hersteller von Spannsystemen viele Vorschlä-

ge zu diesem Thema zu finden sind. Für CEDRUS als Berechnungsprogramm ist nur das Zentrum

der Stahlkraft von Interesse. Mögliche geometrische Konflikte können aber evtl. mittels der grafi-

schen Ausgaben entdeckt werden.

Seite 38 Fachgebiet Massivbau Technische Universität Berlin

Page 45: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nach dem Einführen des ersten Halters muss dieser geometrisch platziert werden. Sein Startpunkt

befindet sich am unteren Plattenrand bei {2,90 / 0}. Mithilfe der Y-Taste kann der Endpunkt am

oberen Plattenrand definiert werden. Die übrigen Halter können wiederum über die Funktion „dupli-

zieren“ im Kontextmenü generiert werden. Wir benötigen acht Kopien im Abstand von dx = 4,20 m.

Abschließend müssen noch die Attribute aller Spanngliedtiefpunkte angepasst werden. Dazu wer-

den die vier Halter in den Feldmitten ausgewählt und diesen das Attribut „Tiefpunkt“ mit Randab-

stand 4 cm, sowie im Abschnitt „Minimalradius“ der Wert „frei“ zugewiesen.

Kontrolle der Spanngliedkräfte

Die Stahlspannungen, Spanngliedgeometrie und die Umlenkkräfte können für die einzelnen

Spannglieder mit dem Button dargestellt. Dafür muss das darzustellende Spannglied vorher

markiert werden. Ist das Fenster (Bild 61) offen, so passt es sich automatisch dem jeweils markier-

ten Spannglied an. Es muss also nicht geschlossen werden, um ein neues Spannglied zu betrach-

ten. In diesem Beispiel ist wichtig, dass die negativen Umlenkkräfte über der Stütze konzentriert

über der Stütze abgegeben werden, um Durchstanzen zu verhindern und möglichst wenig Biegung

in die Decke einzuleiten. Der Hochpunkt ist aus diesem Grunde mit der Minimalradiusbiegung

definiert worden.

Technische Universität Berlin Fachgebiet Massivbau Seite 39

Page 46: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 61: Spanngliedgrafik

Jetzt kann die zweite Spanngliedgruppe nach dem gleichen Muster generiert werden. Die Anzahl

der Litzen sollte wieder auf 1 zurückgestellt werden. Das erste Spannglied in y-Richtung beginnt

am Punkt {1,1 / 0} und endet am oberen Plattenrand. Die restlichen Spannglieder entstehen durch

duplizieren. In einem ersten Schritt wird das erste Feld mit Spanngliedern versehen. Dazu brau-

chen wir den Richtungsvektor dx = 1,0 / dy = 0,0 mit den Abständen: 2*0,8 2*0,2 9*0,8. In einem

zweiten Schritt werden die 12 Spannglieder über der Stütze und im Feld 4-mal in x-Richtung

8,40 m dupliziert. Zum Schluss müssen dann noch die Spannglieder, die jetzt außerhalb der Platte

liegen und das erste innerhalb der Platte gelöscht werden. Eine andere Möglichkeit wäre gewesen,

alle Abstände per Hand einzugeben, was jedoch aufgrund der Datenmenge fehleranfällig ist. Es

Seite 40 Fachgebiet Massivbau Technische Universität Berlin

Page 47: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

bietet sich immer die Kontrolle der Spannglieder mit dem Button „Vorschau“ an, da so Fehler in der

Eingabe sofort auffallen.

Jetzt muss, wie in x-Richtung gehabt, die Anzahl der Litzen über den Stützen auf vier erhöht

werden und es kann die Eingabe der Halter für die Spannglieder erfolgen. Der erste Halter beginnt

im Punkt {0 / 2,4} und endet am rechten Plattenrand. Er hat die Kote Z am Hochpunkt mit

Randabstand 6 cm. Der Minimalradius soll eine Parabel sein. Die restlichen Halter bekommen wir

durch viermaliges duplizieren im Abstand 3,60 m in y-Richtung. Abschließend müssen die beiden

Halter in den Feldmitten noch angepasst werden. Ihre Kote Z ist ein Tiefpunkt mit Randabstand

6 cm. Der Minimalradius soll bei ihnen frei sein. Hinterher kann die Eingabe noch mit dem

Knopf anhand einzelner Spannglieder kontrolliert werden.

Die Daten aller erzeugten Spannglieder können tabellarisch mit dem Button ausgegeben

werden. Die Daten können hier einfach kopiert und zur weiteren Bearbeitung nach Excel exportiert

werden (siehe Bild 62).

-0,25

-0,2

-0,15

-0,1

-0,05

00 5 10 15 20 25 30 35 40

Bild 62: Spanngliedverlauf in y-Richtung mit MS Excel dargestellt

4.4 Belastung Nun können auf dem Registerblatt „Lasten“ die Belastungen eingegeben werden. Das Eigenge-

wicht wird bereits vom Programm berücksichtigt. Zusätzlich ist nur die Verkehrslast einzugeben.

Hier soll jetzt der Einfachheit halber eine Flächelast von 5 kN/m² auf die gesamte Platte aufge-

bracht werden.

4.5 Berechnung Als Ergebnis sind wir an der zusätzlichen schlaffen Bewehrung in diesem Beispiel interessiert. Da

dieses Ergebnis nicht standardmäßig spezifiziert ist, muss zuerst im Registerblatt „Berechnung“

eine entsprechende Ausgabe angelegt werden. Standardmäßig werden nur die Spezifikationen

„!Tragsicherheit“ und „!Gebrauchstauglichkeit“ erzeugt. Mit der Schaltfläche „Vorspannungsspezifi-

Technische Universität Berlin Fachgebiet Massivbau Seite 41

Page 48: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

kationen“ wird nun eine Spezifikation „Vorspannung = Widerstand“ erzeugt, indem die im

Bild 63 dargestellten Werte eingetragen werden.

Bild 63: Neue Bemessungsspezifikation

Für die Berechnung der Beanspruchung wird die Grenzwertspezifikation „!Tragsicherheit“ verwen-

det. Zur letzten Zeile bleibt anzumerken, dass von den Vorspannlasten nur die Zwängungen ver-

wendet werden, falls die Balkenschnitt-Bemessung „As: Vorspannung = Widerstand“ durchgeführt

wird.

Die Vorspannlast wirkt also auf der Widerstandsseite

4.6 Ergebnisse Auf der Registerkarte „Resultate“ wird nun in der Rubrik „Resultate für“ die Zeile „Beweh-

rung > Vorspannung = Widerstand“ gewählt. Dann muss mit dem Button ein neuer Schnitt der

Breite 1,50 m und dem Normalfaktor 1,0 über der ersten Stützenreihe definiert werden. Nun wird

die erforderliche zusätzliche schlaffe Bewehrung. In unserem Beispiel ist keine zusätzliche schlaffe

Bewehrung erforderlich, deshalb wird hier nichts dargestellt. Wie das Ergebnis für zusätzlich erfor-

derliche schlaffe Bewehrung aussieht, kann dargestellt werden, wenn als zusätzliche Belastung

noch eine ständige Flächenlast von 5 kN/m² hinzugefügt wird.

Seite 42 Fachgebiet Massivbau Technische Universität Berlin

Page 49: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

5 Vorgespannter Dachträger mit Cedrus-5 Die in dieser Berechung behandelte weit gespannte Dachkonstruktion ist als Durchlaufträger

über zwei Felder mit beidseitigem Kragarm ausgebildet. Ein Plattenbalken wird als Querschnitt verwendet (siehe

Bild 64).

Bild 64: Aufgabenstellung

Material: Beton C 55/67

Spannstahl St 1500/1670, 4 Bündelspannglieder

Betonstahl BSt 500 SA, Achsabstand vom Rand 3,0 cm

Querschnitte: Platte Plattendicke h = 24 cm

Plattenbalken

Lasten: ständige Einwirkung Eigengewicht (automatisch)

Ausbaulast 1,47 kN/m²

veränderliche Einwirkung Schneelast 1 kN/m²

Vorspannung automatisch generiert

Nachdem im „CubusExplorer“ für dieses Beispiel eine neue „Cedrus-5 Berechnung“ angelegt

wurde, kann diese bearbeitet werden. Im Startdialogfenster „Allgemeine Einstellungen“ wird

„Platte“ als Strukturtyp, die „DIN“ als Norm und „Gebäude“ als Bauwerkstyp festgelegt. Daraufhin

sind die Baustoffeigenschaften gemäß Aufgabenstellung zu korrigieren.

Technische Universität Berlin Fachgebiet Massivbau Seite 43

Page 50: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

5.1 Struktureingabe Begonnen wird mit der Eingabe der Geometrie im Strukturregisterblatt. Der Umriss wird mit

dem Symbol „Umriss-Rechteck (2 Eckpunkte)“ definiert, z. B. mit den Koordinateneingaben

{0;-3,95} und relativ {128;7,90}. Somit liegt die Mittelachse der Platte in Längsrichtung auf der

x-Achse. Jetzt fügt man der Platte mit dem Symbol die Materialattribute (isotropes Modell,

Plattendicke 24 cm) hinzu. Daraufhin kann der Unterzug gemäß Bild 65 mit den Koordinaten

{0;0} und {128;0} eingeführt werden.

Hinweis: Anstelle des zweiten Koordinatenpaares kann auch die Taste <X> auf der Tastatur

gedrückt und die rechte schmale Umrisskante angeklickt werden. Mit <Q> wird die

Unterzugeingabe beendet.

Bild 65: Eingabedaten des Unterzugs

Ein Klick auf das Symbol zur Überprüfung der Materialeingabe ergibt eine Fehlermeldung

(siehe Bild 66).

Bild 66: Fehlermeldung bezüglich der Materialeingabe

Durch Einführung des Unterzugs über die komplette Länge der Platte, wurde diese in zwei Mate-

rialzonen geteilt. Dadurch wird nun eine zweite Attributbox für den unteren Plattenteil benötigt.

Wurde diese eingeführt (siehe Bild 67), läuft die Überprüfung ohne Fehler durch.

Seite 44 Fachgebiet Massivbau Technische Universität Berlin

Page 51: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 67: Darstellung der bisherigen Struktureingaben

Es folgt die Eingabe der Lagerungsbedingungen (hier: Stützen) mit dem Symbol gemäß Auf-

gabenstellung (mit Koordinaten {16;0} und zweimal relativ {48;0} einführen) und Bild 68.

Bild 68: Stützeneinstellungen

(wichtig: Punktlagerung, Rotation X blockiert bei mindestens einer Stütze)

Mit der erfolgreichen Überprüfung der Struktureingabe kann auf das Registerblatt „Vorspan-

nung“ gewechselt werden.

5.2 Definition der Vorspannung Mit dem Symbol wird eine neue Gruppe (besitzt dann einen eigenen Layer in der Layergruppe

Vorspannung) erstellt (siehe Bild 69).

Bild 69: Gruppenbezeichnung für Vorspannung

Technische Universität Berlin Fachgebiet Massivbau Seite 45

Page 52: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Die geometrische Eingabe der Vorspannung erfolgt mit den Symbolen „Spannglied“ und

„Halter“ getrennt für den horizontalen und vertikalen Verlauf. Klickt man auf das erstere Symbol so

erscheint das im Bild 70 dargestellte Dialogfenster, in welchem entsprechende Einstellungen vor-

zunehmen sind. Die Abstände der Höhenbeschriftung betragen:

0 3*8 2*16 2*8 2*16 3*8 128

Bild 70: Dialogfenster mit Einstellungen für die horizontale Spanngliedeingabe (teilweise

Werte aus Beispielen des CUBUS-Handbuchs, sonst aus Zulassung bzw. vom Hersteller nehmen)

Mit „Einführen“ kann das Spannglied dann per Koordinateneingabe mit {0;0} und {128;0} oder per

Mausklick auf die entsprechenden Punkte konstruiert werden. Mit <Q> kann die Eingabe nach

Bestimmung der beiden Punkte abgebrochen werden, da das Spannglied in dieser Ansicht gerade

verlaufen soll. Um nun den entscheidenden vertikalen Verlauf durch einzutragende Strecken mit

Höhenattributen, so genannten „Haltern“, definieren zu können, klickt man auf das entsprechende

Symbol (s. o.) und füllt (hier für den ersten Punkt bei {0;0}) zunächst das erscheinende Dialog-

fenster aus (siehe Bild 71). Die „Kote Z“ bezieht sich unter „Fix“ auf die Kote, welche in den

Materialboxen für die Platte festgelegt wurde (hier: Null, positiv nach oben). Für den ersten Punkt

sind daher -70,0 cm einzutragen.

Seite 46 Fachgebiet Massivbau Technische Universität Berlin

Page 53: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 71: Dialogfenster mit Einstellungen für die vertikale Spanngliedeingabe

Tabelle 1: Spanngliedlage x [m] 0,00 8,00 16,00 24,00 40,00 56,00 64,00 72,00 88,00 104,00 112,00 120,00 128,00

-z [m] 0,70 0,44 0,185 1,01 2,105 1,01 0,185 1,01 2,105 1,01 0,185 0,44 0,70

Wenn man auf „Einführen“ klickt, wird nach einem Punkt gefragt, welcher hier mit {0;-3,95}

angegeben wird. Um nun den Halter zu setzen, klickt man in Y-Richtung auf die obere Umrissbe-

grenzung der Platte. Wenn man nun mit dem Symbol in den 3D-Ansichtsmodus wechselt, dort

die „Ansicht in Richtung Y“ mit dem Symbol wählt und mit dem Symbol bzw. <F4> das

Fenster entsprechend vergrößert, kommt man zu folgender Darstellung (Bild 72).

Bild 72: Darstellung des ersten erzeugten Haltepunkts

Der eben erstellte Haltepunkt mit der Höhenkote -70,0 cm wird auch am anderen Ende des

Unterzugs benötigt und wird daher selektiert. Das Kontextmenü, in welchem „Duplizieren …“ zu

wählen ist, wird durch einen Klick mit der rechten Maustaste auf den selektierten Halter geöffnet.

Im eingeblendeten Dialogfenster (siehe Bild 73) sind die entsprechenden Werte (dx = 128, Anzahl

Duplikate: 1) einzutragen. Mit der „Vorschau“ kann man sich vor Bestätigung der Aktion mit „OK“

einen Überblick über die Richtigkeit der Lage der neuen Halter-Objekte schaffen.

Technische Universität Berlin Fachgebiet Massivbau Seite 47

Page 54: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 73: Dialogfenster zum Duplizieren von Objekten (hier: Haltepunkte)

Mit dieser für die Erstellung der ersten Haltepunkte beschriebenen Vorgehensweise können nun

alle weiteren Haltepunkte geschaffen werden. Alternativ kann man jedoch auch den ersten Halte-

punkt noch 15mal alle 8 m duplizieren lassen. Durch Löschen der nicht benötigten Haltepunkte

und Anpassung (im Kontextmenü unter „Eigenschaften …“) der Höhenkoten der anderen Halte-

punkte erhält man ebenfalls (und das schneller) die vollständige Spanngliedkurve (Bild 74).

Bild 74: Ausschnitt aus dem vollständig definierten Spannstrang

Mit dem Symbol kann die erstellte Vorspanngruppe überprüft werden und wenn ein Spannglied

selektiert ist wird mit dem Symbol eine Grafik mit Stahlspannung, Spanngliedgeometrie und

Umlenkkräften angezeigt (s. Bild 75). Eine tabellarische Darstellung der Vorspanndaten erhält man

mit dem Symbol .

Seite 48 Fachgebiet Massivbau Technische Universität Berlin

Page 55: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 75: Spanngliedgrafik

Hinweis: Das Spannglied verläuft am Anfang und Ende recht steil. Will man dies verhindern

(z. B. um die Spannpresse vernünftig ansetzen zu können), muss man für die

Spanngliedgeometrie in Bild 70 eine Länge für den geraden Endbereich sowie für

die Steigung in Bild 71 einen Wert nahe Null vorgeben. Man verzichtet damit aller-

dings auf eine konstante Umlenkkraftverteilung, wie man sie gerade annähernd

hatte.

5.3 Belastungseingabe und Netzgenerierung Nun kann auf das Registerblatt „Lasten“ gewechselt werden. In der Layergruppe „Belastungen“

wurden automatisch Belastungen aus der Vorspannung hinzugefügt. Zu der automatisch angeleg-

ten Belastung „EG: Eigengewicht“ kommt noch eine Ausbaulast als Flächenlast von -1,47 kN/m²

hinzu. Eine weitere Belastung besteht aus einer Schneelast von -1 kN/m². Wenn die Belastungs-

eingabe erfolgreich überprüft wurde, kann auf das Registerblatt „FE-Netz“ gewechselt werden. Der

für die maximale Seitenlänge vorgegebene Wert von s = 1,00 m ist mehr als ausreichend. Nach-

dem das Netz generiert wurde kann das Registerblatt „Berechnung“ aktiviert werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 49

Page 56: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

5.4 Berechnung Für eine Balkenschnittbemessung mit Aussagen über die zusätzlich erforderliche schlaffe Beweh-

rung ist hier mit dem Symbol eine neue Vorspannspezifikation anzulegen (siehe Bild 76), wel-

che vom Programm unter dem Begriff „Vorspannung = Widerstand“ abgelegt wird (die Vorspan-

nung wird jetzt nicht mehr als äußere Last sondern als Widerstand im Rahmen der Bemessung

erfasst).

Bild 76: Dialogfenster für Vorspannspezifikation

Die Berechnung kann nun durchgeführt werden.

5.5 Ergebnisse Nachdem auf das Registerblatt „Resultate“ gewechselt wurde kann mit dem Symbol ein neuer

Schnitt von {0;0} bis {128;0} definiert werden. Die Breite im Einstellungsfenster beträgt dabei

7,90 m. Als Ergebnisdarstellung kann mit den Einstellungen gemäß Bild 77 nun die zusätzlich

erforderliche Bewehrung betrachtet werden.

Bild 77: Einstellungen im Strukturblatt „Resultate“

Mit einem Klick auf das Symbol „Einstellungen Ausgabe“ kann zwischen grafischer und tabella-

rischer Darstellungsart gewählt werden (siehe Bild 78).

Bild 78: Dialogfenster für Ausgabeeinstellungen

Seite 50 Fachgebiet Massivbau Technische Universität Berlin

Page 57: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Ebenfalls interessant sind die Deformationsbilder für die Bemessung in den Grenzzuständen sowie

der Vergleich jener für Vorspannung und Eigengewicht. Man kann sehen, dass sich die Durchbie-

gungen durch die Anordnung eines Spanngliedes nahezu aufheben lassen (siehe Bild 79).

Bild 79: Deformationsbilder für die Lastfälle Vorspannung und Eigengewicht

5.6 Eigenfrequenz Um die Eigenwertanalyse in Cedrus nutzen zu können, muss zunächst nach Bild 80 ein neuer

Belastungstyp „Massenverteilung“ definiert werden, dem anschließend mit dem Icon „Eigen-

masse“ die Masse des Systems hinzugefügt werden muss. Zusätzlich können auch mit den

Buttons , und Flächenmassen, Linienmassen und Einzelmassen definiert werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 51

Page 58: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 80: Belastungstyp Massenverteilung

Auf der Registerkarte „Berechnung“ müssen dann mit der Option „Spezifikationen für die

Eigenwertanalyse“ die zu verwendende Massenverteilung, sofern unterschiedliche Massenvertei-

lungen definiert wurden, die Anzahl der zu berechnenden Eigenwerte und eine Toleranz für den

Berechnungsalgorithmus angegeben werden. Die Toleranz sollte nicht verändert werden.

Bild 81: Einstellungen für die Berechnung der Eigenfrequenzen

Auf der Registerkarte „Resultate“ kann dann als Ergebnis die Eigenwerttabelle ausgegeben wer-

den (Bild 82). Mit „Berechnen“ wird anschließend die Eigenwerttabelle erzeugt, wie sie im

Bild 83 dargestellt ist. Die beiden ersten Eigenformen sind im Bild 84 und im Bild 85 dargestellt.

Bei der zweiten Eigenform handelt es sich um eine Torsionseigenform. Die dritte Eigenform stellt

den antimetrischen Fall zur zweiten Eigenform dar.

Seite 52 Fachgebiet Massivbau Technische Universität Berlin

Page 59: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 82: Auswahl der Eigenwerttabelle

Bild 83: Eigenwerttabelle für den Dachbinder

Bild 84: Erste Eigenform bei 1,43 Hz

Technische Universität Berlin Fachgebiet Massivbau Seite 53

Page 60: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 85: Die zweite Eigenform bei 1,56 Hz

Seite 54 Fachgebiet Massivbau Technische Universität Berlin

Page 61: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

6 Fachwerkrahmen mit STATIK-5

4,60

16,0

1,60

1,20

HEB 300

HEB 160

HEB 160

RHS 120/80/6

Baustoff: Baustahl S235

Belastung:

Eigengewicht der Struktur

Dacheindeckung

20 kN/m

Schnee (links und rechts)

16 kN/m 16 kN/m

Wind links Wind rechts 10 kN/m 10 kN/m

4 kN/m 4 kN/m

Zunächst wird der CUBUS-Explorer gestartet und ein neues Statik-5 Projekt mit dem Namen

„Fachwerkrahmen“ angelegt und anschließend bearbeitet. Im Startdialogfenster „Allgemeine Ein-

stellungen“ wird „Eben“ als Strukturtyp, die „DIN“ als Norm und „Gebäude“ als Bauwerkstyp

festgelegt. Die Materialeigenschaften können einfach übernommen werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 55

Page 62: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

6.1 Struktureingabe Zunächst starten wir mit der Eingabe der Stützen. Hierzu ist mit der Schaltfläche „Stabeingabe“

der Stabeingabedialog (Bild 86) aufzurufen. Mit dem Button „Querschnittseingabe“ wählen wir

als Querschnitt einen HEB 300 aus.

Bild 86: Dialog zur Stabeingabe

Dann wählen wir „Einführen“ und zeichnen die linke Stütze von {0;0} bis {0;4,6}. Die rechte Stütze

wird anschließend durch duplizieren um dx = 16 m erzeugt. Jetzt wird erneut der Stabdialog

aufgerufen und als Querschnitt für Ober- und Untergurt ein HEB 160 gewählt. Der Obergurt wird

jetzt zwischen die Kopfpunkte der Stützen eingefügt und der Untergurt durch duplizieren des Ober-

gurtes um dz = -1,2 m erzeugt. Zum Schluss müssen noch die Ausfachungsstäbe generiert wer-

den. Hierzu muss erneut der Stabdialog aufgerufen werden und als Querschnitt ein Rechteck-

Hohlprofil RHS 120/80/6 gewählt werden. Der Ausgangspunkt für den ersten Diagonalstab ist die

Rahmenecke oben links {0;4,6}. Von dort liegt der Endpunkt der Diagonale relativ R{1,6;-1,2}. Der

erste Vertikalstab kann direkt im Anschluss eingeführt werden mit Beginn im Endpunkt des Diago-

nalstabes. Der Endpunkt wird durch drücken der Z-Taste und auswählen des Obergurtes definiert.

Das Vorgehen ist im Bild 87 noch einmal grafisch erläutert.

Seite 56 Fachgebiet Massivbau Technische Universität Berlin

Page 63: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

R{1,6;-1,2}

„Z“ und Auswahl Obergurt

Bild 87: Konstruktion der Ausfachung

Die beiden erzeugten Stäbe können jetzt markiert und mit dx = 1,60 m viermal in x-Richtung

dupliziert werden. Anschließend können alle Stäbe der Ausfachung, bis auf den in der Mittelachse

markiert werden und um den mittleren Stab gespiegelt werden. Bei der Wahl „Spiegeln“ im

Kontextmenü der rechten Maustaste muss die „Shift“-Taste gedrückt sein, um das Original beim

Spiegeln zu behalten.

Hinweis: Wird bei der Auswahl ein Fenster von links nach rechts aufgezogen, so sind nur

Objekte markiert, die komplett innerhalb des Fensters liegen. Ein Fenster von rechts

nach links markiert auch Objekte, die nur teilweise innerhalb des Fensters liegen.

4-mal in 1,60 m in x-Richtung duplizieren

Spiegelachse

Die fett markierten Stäbe um die markierte Spiegelachse mit gedrückter Shift-Taste spiegeln.

Bild 88: Konstruktion der Ausfachung

Die beiden Stützenfüße erhalten mit der Schaltfläche ein gelenkiges Festlager.

Hinweis: Sich kreuzende oder berührende Stäbe werden, wenn in ihren Attributen nicht aus-

drücklich anders verlangt, im Kreuzungs- bzw. Berührungspunkt miteinander ver-

schmolzen.

Nun müssen noch die Stabgelenke definiert werden, da alle Stäbe bis jetzt biegesteif verbunden

sind. Dazu werden alle Stäbe bis auf die beiden Stützen selektiert und über „Eigenschaften“ im

Kontextmenü der rechten Maustaste werden die 21 Stäbe zu Fachwerkstäben umgewandelt, wie

im Bild 89 abgebildet. Dazu muss auf das Register „Gelenke“ gewechselt werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 57

Page 64: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 89: Ändern der Stäbe zu Fachwerkstäben

6.2 Lasteingabe Für die Lasteingabe wechseln wir auf das Register „Lasten“. Das Eigengewicht ist mit einem Be-

schleunigungswert von 10 m/s² bereits voreingestellt.

Hinweis: Die Erdbeschleunigung für das Eigengewicht kann durch „Einstellungen“ für die

Belastung im Kontextmenü der rechten Maustaste geändert werden. Soll ein ande-

rer Wert, z.B. 9,813 m/s² als Vorgabewert verwendet werden, so kann dieser bei ge-

öffneter Dialogbox im Menü Einstellungen/Dialogeinstellungen/Speichern als Vorga-

be als Defaultwert gespeichert werden. Dialogeinstellungen können auch direkt mit

<Strg><F9> als Vorgabewerte gespeichert werden.

6.2.1 Dacheindeckung Zu Beginn erstellen wir mit eine neue Belastung für die Dacheindeckung. Als Bezeichner wäh-

len wir DG und Dacheindeckung als Titel (Bild 90).

Seite 58 Fachgebiet Massivbau Technische Universität Berlin

Page 65: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 90: Belastung Dacheindeckung

Die Linienlast auf den Obergurt geben wir mit der Schaltfläche ein. Die Attribute werden vom

Programm direkt richtig mit Kraft, global und z vorgeschlagen. Als Wert sind -20 kN/m einzugeben.

Nun können wir die Belastung einführen und als Linie auf den Obergurt eingeben. Anschließend

sollten mit dem Button die Überhöhungsfaktoren neu berechnet werden, um eine vernünftige

Darstellung zu erhalten.

Alternativ können Lasten auf ganze Stäbe auch mit der im Bild 91 dargestellten Schaltfläche ein-

geführt werden. Dadurch werden die Stäbe selektierbar und die jeweilige Last kann auf den ge-

samten Stab bzw. auf die Stabreihe angewendet werden. Auch hierbei empfiehlt sich eine

Anpassung der Überhöhung mit der Schaltfläche .

Bild 91: Einführen von Lasten auf Stäbe

6.2.2 Schneelasten Für die Schneelasten wird wieder mit eine neue Belastung erzeugt. Als Bezeichner wird

„SchneeL“ und als Titel „Schneelast links“ verwendet. Als Kategorie wird „Schneelast“ eingestellt.

Auch hier wird eine Linienlast mit erzeugt. Der Dialog sollte auf „Kraft“, „global“ und „Z“ gestellt

sein. Der Lastwert wird mit -16 kN/m festgelegt. Schließlich wird die Lastlinie durch Wahl des An-

fangspunktes am linken Obergurtende und des Endpunktes am Kopf der mittleren Strebe festge-

legt.

Die Belastung „Schnee rechts“ kann äquivalent erzeugt werden, bzw. über die Möglichkeit des Du-

plizierens von Belastungen mit der Schaltfläche . Hier muss jetzt der Bezeichner auf „SchneeR“

Technische Universität Berlin Fachgebiet Massivbau Seite 59

Page 66: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

und der Titel auf „Schneelast rechts“ geändert werden. Anschließend muss die Last natürlich auch

noch auf den rechten Teil des Obergurtes verschoben werden.

6.2.3 Windlast von links und von rechts Die Windlasten links und rechts können im Gegensatz zu den Schneelasten nicht gemeinsam

auftreten, deshalb ist hier eine exklusive Überlagerung nötig. Dazu muss im Belastungsdialog das

Kontrollfeld „Exklusive Überlagerung“ eingeschaltet werden. Zunächst wird aber eine neue Bela-

stung mit dem Bezeichner „WindL“ und dem Titel „Windlast links“ (siehe Bild 92) eingegeben.

Bild 92: Exklusive Überlagerung der Windlast

Daraufhin kann nun die Windlast links als Streckenlast erzeugt werden. Im Dialog muss dafür

„Kraft“, „global“ und „X“ angegeben werden, da die Windlast natürlich horizontal in x-Richtung

wirkt. Das Kontrollfeld „gleichmäßig“ muss deaktiviert werden, da die Windlast linear nach obenhin

zunimmt. Als Lastwerte sind am Anfang 4 kN/m und am Ende 10 kN/m einzutragen. Diese Lasten

wirken positiv in x-Richtung. Nach dem Einführen muss zunächst der Fußpunkt und anschließend

der Kopfpunkt der linken Stütze angewählt werden, damit die Richtung der Belastungseingabe

stimmt. Alternativ kann auch wieder mit der Schaltfläche „Einführen auf selektierte ganze

Stäbe“ erfolgen, wobei darauf zu achten ist, dass mit Anfang der Anfang des selektierten Stabes

ist. Die Stabrichtung ist bei der Eingabe des Stabes erzeugt worden.

Die Windlast rechts (WindR) ist auf die gleiche Weise zu generieren, wobei zu beachten ist, dass

die Last nun negativ an die rechte Stütze angetragen werden muss.

Hinweis: Sowohl Punkt- als auch Linienlasten sind eigenständige Objekte, die nur über einen

Lastanfangs- und einen Lastendpunkt, bzw. bei Punktlasten über einen Lastpunkt

definiert sind. Sie könnten somit auch frei im Raum schweben. Erst für die Berech-

nung prüft das Programm, ob der Lastpunkt einer Punktlast auf einem Knoten liegt

und ob die Lastlinien (zwischen Lastanfangs- und Lastendpunkt) der Linienlasten

Seite 60 Fachgebiet Massivbau Technische Universität Berlin

Page 67: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

auf Stäben liegen. Sollte dies nicht erfüllt sein, so wird ein Fehler gemeldet.

Lastpunkte und Lastlinien sind nur bei selektierter Last sichtbar.

6.2.4 Dokumentation der Lasteingabe Um eine tabellarische Auflistung der eingegebenen Lasten zu erhalten kann der Button betätigt

werden. Damit wird die im Bild 93 dargestellte Ausgabe erzeugt. Mit der Schaltfläche am unte-

ren Rand der Dialogbox kann ein Druckeintrag zur späteren Ausgabe auf den Drucker erzeugt

werden.

Bild 93: Tabellarische Ausgabe der Belastungen

Die Ausgabe der Belastungsdarstellungen aus dem Grafikeditor erfolgt ähnlich. Auch hier müssen

alle Belastungen mit als Druckeintrag erzeugt werden. Anschließend kann die aktuelle Druck-

zusammenstellung mit im CubusViewer dargestellt werden (Bild 94). Im linken Bereich des

Fensters kann die Reihenfolge auf der Ausgabeseite, die rechts zu sehen ist, per drag and drop

verändert werden. Um die Ausgabe der Belastungsdarstellungen anzupassen können sie direkt in

der Vorschau mit der rechten Maustaste angeklickt und im Kontextmenü kann „Massstab“ ausge-

wählt werden. Zur besseren Darstellung wird hier ein Maßstab von 1:200 gewählt (siehe Bild 95).

Technische Universität Berlin Fachgebiet Massivbau Seite 61

Page 68: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 94: Der CubusViewer

Bild 95: Vorgabe des Maßstabes

Ist die Darstellung wie gewünscht, so kann der Druckauftrag mit gestartet werden.

6.3 Erweiterte Stabselektion Das Programm Statik-5 bietet mit der Schaltfläche oben links im Grafikeditor die Möglichkeit

der erweiterten Stabselektion:

Selektiert alle zu einer vorgegebenen Richtung parallelen Stäbe.

Selektiert alle zu einer vorgegebenen Richtung senkrechten Stäbe.

Selektiert alle zur globalen x-Richtung senkrechten Stäbe.

Selektiert alle zur globalen y-Richtung senkrechten Stäbe.

Selektiert alle zur globalen z-Richtung senkrechten Stäbe.

Selektiert alle Stäbe in einem oder mehreren Teilsystemen (Kapitel 6.4).

Seite 62 Fachgebiet Massivbau Technische Universität Berlin

Page 69: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Selektiert alle Stäbe deren Bezeichner mit der gleichen vorzugebenden

Zeichenfolge beginnt.

Invertiert die Stabselektion

6.4 Teilsysteme Teilsysteme sind Untergruppen von Stäben und Knoten die einzeln sichtbar geschaltet werden

können und sollen das arbeiten in unübersichtlichen Systemen erleichtern. Teilsysteme dienen nur

der Übersicht und haben keinen Einfluss auf das statische System oder die Berechnung. Die

Definition von Teilsystemen ist zu jedem Zeitpunkt möglich.

Im Folgenden sollen die Teilsysteme Stützen, Obergurt, Untergurt, vertikale Streben und Diagonal-

streben erzeugt werden. Dazu öffnen wir mit die Teilsystemverwaltung. Mit der Schaltfläche

öffnen wir ein neues Teilsystem und nennen es „Stützen“, wie im Bild 96 dargestellt.

Bild 96: Neues Teilsystem

Bei geöffnetem Dialog werden nun die beiden Stützen selektiert und mit „+“ dem Teilsystem hinzu-

gefügt. Die dem Teilsystem zugehörigen Stäbe werden blau angezeigt. Mit „+“ und „−“ können

beliebig viele Stäbe bzw. Knoten dem Teilsystem hinzugefügt bzw. aus ihm entfernt werden. So

lässt es sich auch nachträglich modifizieren. Mit „OK“ wird der Dialog geschlossen und analog

können die Teilsysteme Ober- und Untergurt erzeugt werden.

Für das Teilsystem „vertikale Streben“ verwenden wir die erweiterte Stabselektion und wählen

alle zur x-Achse senkrechten Stäbe . Nun müssen nur noch die beiden mitselektierten Stützen

deselektiert werden, bevor die Auswahl mit „+“ dem Teilsystem hinzugefügt werden kann. Für das

Teilsystem „Diagonalstreben“ verfahren wir ähnlich. Mit und Auswahl einer Diagonalstrebe

werden alle Diagonalstreben einer Seite ausgewählt und können dem Teilsystem hinzugefügt

werden. Durch nochmaliges betätigen von und Auswahl einer Diagonalstrebe auf der anderen

Seite werden die restlichen Streben selektiert und können hinzugefügt werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 63

Page 70: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nun sollen zum Schluss noch einige Teilsysteme ausgeblendet werden. Dazu werden alle

Teilsysteme bis auf die Stützen und die Diagonalstäbe deaktiviert (siehe Bild 97). Durch

„Anwenden“ werden jetzt die deaktivierten Teilsysteme ausgeblendet. Mit der Schaltfläche lässt

sich zwischen dem Gesamtsystem und den Teilsystemen hin und her schalten.

Bild 97: Ausblenden von Teilsystemen

Hinweis: Durch drücken auf „aktiv“ in der Teilsystemverwaltung lassen sich alle Teilsysteme

aktivieren bzw. deaktivieren. Betätigen von „Stäbe/Knoten“ sortiert die Liste auf-

bzw. absteigend nach der Anzahl enthaltener Objekte. Mit Bezeichner lässt sich die

liste alphabetisch sortieren.

6.5 Standardresultate Zur Ergebnisdarstellung wechseln wir nun in das Register „Resultate“. Zunächst sollen die Nor-

malkräfte im Grenzzustand der Tragfähigkeit betrachtet werden. Dazu sind die Einstellungen so

vorzunehmen, wie sie im Bild 98 dargestellt sind. Mit den Schaltflächen und lassen sich

die Anzahl der Punkte je Stab einstellen, an denen die Ergebnisse ausgegeben werden sollen.

Die linke Schaltfläche ist eine Schnellausgabe, bei der sich mit nur wenig anpassen

lässt. Die Schaltfläche ist für die Designausgabe. Das heißt, es bestehen deutlich mehr An-

passungsmöglichkeiten.

Sind die Einstellungen erfolgt, so kann die Berechnung mit erfolgen.

Bild 98: Einstellungen Resultatausgabe

Da die Ausgabe sehr unübersichtlich ist, gibt es in STATIK-5 zwei Möglichkeiten nur Teilergeb-

nisse zu betrachten. Zum einen können einzelne Stäbe und Knoten selektiert werden, für die dann

Seite 64 Fachgebiet Massivbau Technische Universität Berlin

Page 71: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

die Ausgabe erfolgt. Das eignet sich besonders für die Kontrolle einzelner Stäbe. Zum anderen

kann die Ausgabe auf Teilsysteme der derzeitigen Ansicht reduziert werden. Als Beispiel sollen

hier mit der Teilsystemverwaltung nur die Teilsysteme „Stützen“ und „Obergurt“ eingeschaltet

werden. Nach der Berechnung ist die Darstellung wesentlich übersichtlicher (Bild 99).

Bild 99: Darstellung der Normalkraft im Grenzzustand der Tragfähigkeit für Stützen und

Obergurt

Zum Schluss des Abschnitts wollen wir uns noch der bislang unbeachteten Schaltfläche wid-

men. Da ein Grenzzustand aus unterschiedlichen Lastanteilen besteht, kann es manchmal von

Interesse sein, den Anteil einer einzelnen Belastung an der Gesamtschnittgröße zu kennen.

Als Beispiel wird der Dialog im Bild 100 mit der Schaltfläche „zugehörige Schnittkräfte“ geöffnet

und es werden die Einwirkungen geöffnet. Wie im Bild wir die „Eigenlast N“ ausgewählt und nach

eine Neuberechnung mit erscheinen die Normalkräfte aus dem Eigengewicht im Grenzzustand

der Tragfähigkeit in der Ansicht, so wie im Bild 101 dargestellt.

Bild 100: Dem Grenzwert N zugehörige Einwirkungen

Technische Universität Berlin Fachgebiet Massivbau Seite 65

Page 72: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 101: Anteil des Eigengewichts an der Normalkraft im Grenzzustand der Tragfähigkeit

6.6 Beeinflussung der Resultatausgabe Mit der Schaltfläche „Einstellungen Resultatausgabe“ lassen sich für die grafische und die

tabellarische Ausgabe Werte wie die Überhöhung der Darstellung, die Beschriftung und die

Darstellung kritischer Werte einstellen. Für die tabellarische Ausgabe können zusätzlich noch Ta-

bellen mit den maßgebenden Belastungen erzeugt werden.

Erzeugte Resultatbilder (z.B. Schnittkraftlinien) können nachträglich geändert werden, indem sie

doppelt angeklickt werden. Die Beschriftung kann mit einem Klick mit der echten Maustaste auf

den jeweiligen Resultatlayer ein bzw. ausgeblendet werden. Die Resultatlayer befinden sich in der

Werkzeugbox auf der rechten Seite (Bild 102).

Bild 102: Eigenschaften des Resultatlayers

6.7 Das Register „Berechnung“ Für die Ausgabe von Standardergebnissen ist das Registerblatt „Berechnungen“ unnötig. Hier

müssen nur dann Einstellungen vorgenommen werden, sofern bestimmte, von der Norm abwei-

chende Lastkombinationen oder Sicherheitsniveaus untersucht werden sollen.

Zur Verfügung stehen „Spezialberechnungen“ , „Definition von Resultatkombinationen“ und

„Grenzwertspezifikationen“ .

Seite 66 Fachgebiet Massivbau Technische Universität Berlin

Page 73: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 103: Berechnungstypen für die Spezialberechnungen

Spezialberechnungen sind Berechnungen nach Bild 103. Auf diese Optionen wird in gesonderten

Kapiteln eingegangen.

6.7.1 Resultatkombinationen Mit der Schaltfläche „Definition von Resultatkombinationen“ lassen sich benutzerdefinierte

Kombinationen aus den einzelnen Lastfällen bilden.

Hinweis: Die Resultatkombinationen werden einfach superponiert. Für Berechnungen nach

Theorie II. Ordnung oder andere nichtlineare Ergebnisse ist dieses Verfahren also

nicht zulässig.

Als Beispiel sollen die Durchbiegungen des Fachwerkträgers unter Eigengewicht und Schnee

ermittelt werden. Zunächst wird dazu der Dialog geöffnet und eine neue Belastungskombina-

tion erzeugt mit dem Namen „Volllast“. Jetzt sollte die Belastungsliste nach den Belastungsbe-

zeichnern sortiert werden, wie im Bild 104 dargestellt. Das geschieht mit der Schaltfläche unten

links, mit der sich zwischen der Sortierung nach Einwirkung und nach Bezeichnern hin- und her-

schalten lässt. Jetzt können die Belastungen Eigengewicht und Schnee mit der Schaltfläche

der Kombination Volllast einzeln hinzugefügt werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 67

Page 74: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 104: Eingabe einer neuen Belastungskombination

6.7.2 Grenzwertspezifikationen Die Schaltfläche „Grenzwertspezifikationen“ erlaubt das Erstellen eigener Grenzwertspezifika-

tionen. Das Programm STATIK-5 erstellt automatisch eine Grenzwertspezifikation „Tragsicherheit“,

die nicht editierbar ist.

Grenzwertspezifikationen werden aus einer Kombination von Lasten mit Sicherheits- und Kombi-

nationsbeiwerten gebildet. Dazu müssen wir uns zunächst damit beschäftigen, wie CUBUS Einwir-

kungen definiert. Dazu müssen wir auf das Register „Lasten“ zurückwechseln, wo mit der Schalt-

fläche der Dialog für die Definition der Einwirkungen geöffnet wird. Daraufhin öffnet sich das

Fenster, das im Bild 105 dargestellt ist. Hier sind die Standardeinwirkungen aufgeführt und können

nicht verändert werden. Die Sicherheitsbeiwerte γ und Kombinationsbeiwerte ψ kommen hierbei

aus der eingestellten Norm. Mit der Schaltfläche lässt sich eine neue Zeile für eine eigene Ein-

wirkung hinzufügen. Das ist nötig, wenn die gewünschte Einwirkung nicht angeboten wird.

Seite 68 Fachgebiet Massivbau Technische Universität Berlin

Page 75: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 105: Definition der Einwirkungen

Zurück auf dem Register „Berechnung“ öffnen wir mit der Schaltfläche den Dialog „Grenzwert-

spezifikationen“, der im Bild 106 dargestellt ist. Hier wird zunächst der automatisch erzeugte und

nicht editierbare Eintrag „!Tragsicherheit“ angezeigt. Links werden die Einwirkungen dargestellt

und rechts die Einwirkungskombinationen. Die Einwirkungen lassen sich separat mit unten

links editieren, sofern „auto“ deaktiviert ist.

Bild 106: Grenzwertspezifikationen

Zum besseren Verständnis soll mit eine neue Grenzwertspezifikation „Gebrauchstauglichkeit“

erstellt werden. Die Bemessungssituation ist die „Standard-Bemessungssituation“ und als Grenz-

zustand soll „Gebrauchstauglichkeit seltene Kombination“ verwendet werden. Nun lassen sich

mit die Einwirkungskombinationen nach Eurocode generieren. Sollten noch zusätzliche Einwir-

kungskombinationen gewünscht werden, so lassen sich diese mit hinzufügen und editieren.

Technische Universität Berlin Fachgebiet Massivbau Seite 69

Page 76: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

In der neu erstellten Grenzwertspezifikation „Gebrauchstauglichkeit“ lässt sich auch die Option

„auto“ für die Einwirkungen deaktivieren und die Einwirkungen manuell konfigurieren. Mit lässt

sich beispielsweise die Windlast bearbeiten. Als Dialog erhalten wir Bild 107.

Bild 107: Manuelle Spezifikation der Einwirkungen

Hier kann jetzt die Standardkonfiguration bearbeitet werden. Die einzelnen Lasten können als

Ständig wirkend „ST“, plus wo maßgebend „PL“, plus ständig „PlSt“, Addition „+“, Oder „OD“ und

alternativ „Alt“ hinzugefügt werden:

ST Bezeichnet eine ständig wirkende Last.

PL Diese Last wird nur berücksichtigt, wenn sie maßgebend wird.

PlSt Hat die gleiche Wirkung wie ST.

+ Die Last wird zu der vorhergehenden zur einer Belastung addiert. Es

können beliebig viele Lasten hinzugefügt werden. Die gesamte kombination

wird dann entsprechend der vorangestellten Überlagerungsart überlagert

(ST oder PL).

OD Entweder die hinzugefügte Last oder die Last oberhalb werden berücksich-

tigt. Es werden nicht beide Lasten verwendet. Auch hier lassen sich mehrer

Lasten hintereinander eintragen, von denen nur eine verwendet wird. Zum

Beispiel ein LKW auf einer Brücke in verschiedenen Laststellungen.

ALT Damit wird eine neue alternative Überlagerungsspezifikation begonnen.

Diese Funktion musste primär in älteren Versionen des Programms genutzt

werden.

Seite 70 Fachgebiet Massivbau Technische Universität Berlin

Page 77: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

6.8 Ausgabe der maßgebenden Lastfälle bei Grenzwerten Die Ausgabe der Grenzwertresultate auf dem Registerblatt „Resultate“ kann tabellarisch erfolgen.

Zusätzlich besteht die Option auch die maßgebenden Belastungen auszugeben. Dazu muss zu-

erst die Ausgabe tabellarisch gewählt werden und anschließend mit der Schaltfläche der

Attributdialog für die tabellarische Ausgabe aufgerufen werden. Hier ist die Ausgabe „Mit massge-

benden Belastungen“ zu aktivieren. Wird jetzt mit die Resultatausgabe gestartet, erhalten wir

zwei Tabellen. Zum einen den Grenzwert für die gewählte Schnittkraft und zum anderen eine

Tabelle mit den zugehörigen maßgebenden Belastungen.

So lässt sich feststellen, dass sich das maximale Moment im linken Stiel unter der Belastung

Eigengewicht, Dacheindeckung, Schnee links, Schnee rechts und Wind rechts ergibt.

Soll nun z.B. nur der Anteil des Schnees an den maßgebenden Schnittgrößen untersucht werden,

so ist mit der Schaltfläche „zugehörige Schnittkräfte“ die Schneelast auszuwählen und auszu-

geben.

Technische Universität Berlin Fachgebiet Massivbau Seite 71

Page 78: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

7 Übung zum Selbststudium: Halbrahmen mit Betonstütze Als vertiefende Übung zum Selbststudium wird hier ein Beispiel gegeben, für das die Schnitt-

größen und Verformungen zu ermitteln sind. Die Aufgabe ist mit den Kenntnissen aus dem letzten

Beispiel vollständig bearbeitbar.

7.1 Geometrie und Belastung

23,30

3,40

9,90 8,90 HEB 600

HEB 800

b/h = 50/80

Stahl: S235 Beton: C 40/50 Betonstahl: BSt 500S

Dacheindeckung

7,8 kN/m

Schnee

7,7 kN/m

Erddruck

9,2 kN/m

Wind von links

4,1 kN/m

6,5 kN/m

2,5 kN/m

4,1 kN/m

8,0

Wind von rechts

4,1 kN/m

6,5 kN/m

2,5 kN/m

4,1 kN/m

8,0

2,5 kN/m 2,5 kN/m

Deckeneigengewicht

3,40

89 kN

Deckenverkerhrslast

3,40

215 kN

Seite 72 Fachgebiet Massivbau Technische Universität Berlin

Page 79: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

8 Dreidimensionale Halle mit nichtlinearen Stäben und Stabilitätsgefährdung

In dieser Übung soll eine Halle untersucht werden, die als komplettes System eingegeben wird.

Anhand dieser Konstruktion soll die Stabilität des Rahmens und die Verwendung von druckschlaf-

fen Stäben untersucht werden.

HEB 600

25,00

7,00

1,00 HEB 300

6,25 6,25 6,25 6,25 6,25 6,25 6,25 43,75

25,0

0

4,10

4,1

0 4,

10

4,10

4,1

0 4,

10

40

Rundstahl ∅ 10 (druckschlaff)

1,00

7,00

Rundstahl ∅ 10(druckschlaff)

Stahl: S355

Technische Universität Berlin Fachgebiet Massivbau Seite 73

Page 80: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Belastungen:

Eigengewicht vom Programm

Dacheindeckung 0,8 kN/m²

Schnee links bzw. rechts 0,75 kN/m²

Winddruck angeströmte Fläche 0,64 kN/m²

Windsog vertikale Flächen -0,4 kN/m²

Windsog Dach -0,48 kN/m²

Wir öffnen den CUBUS-Explorer, legen ein neues Statik-5 Projekt mit dem Namen „Halle“ an und

bearbeitet es. Im Startdialogfenster „Allgemeine Einstellungen“ wird „Räumlich“ als Strukturtyp,

die „DIN“ als Norm und „Gebäude“ als Bauwerkstyp festgelegt. Die Materialeigenschaften werden

alle bis auf den Baustahl entfernt, der zu einem S355 geändert wird.

8.1 Struktureingabe Zu Beginn werden die beiden Stützen mit der Funktion „Stabeingabe“ in das in den 3D-Arbeits-

raum gezeichnet. Es handelt sich hierbei um HEB 600 Profile ( ). Die erste Stütze beginnt im

Punkt {0;0;0} und geht bis {0;0;7}. Die zweite Stütze wird mit {25;0;0} und R{0;0;7} definiert. Bevor

der Rahmen jetzt mit dem Binder geschlossen werden kann soll zunächst eine Arbeitsebene defi-

niert werden. Dies geschieht mit der Arbeitsebenendefinition . Hier wird zunächst eine neue

Arbeitsebene für den ersten Rahmen angelegt der Die Bezeichnung XZ_01 erhält (Bild 108). Der

Unterstrich vor der Nummerierung ist wichtig, damit Duplikate dieser Ebene für die anderen Rah-

men automatisch durchgezählt werden können.

Bild 108: Die Arbeitsebene XZ_01 für den ersten Rahmen

Seite 74 Fachgebiet Massivbau Technische Universität Berlin

Page 81: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Die drei Ebenen Punkte werden nach der im Bild 109 dargestellten Reihenfolge definiert. Dabei

gibt der erste Punkt den Ursprung des lokalen Ebenenkoordinatensystems an und die Eingabe-

richtung der beiden andern Punkte legt die Blickrichtung auf die Ebene fest. Dabei gilt die Konven-

tion der Rechten-Hand-Regel. Werden die Punkte wie im Bild 109 definiert, schauen wir in y-Rich-

tung auf die Ebene.

xy

z

1

2

3

Bild 109: Definitionsreihenfolge der Punkte für die Ebene XZ_01

Nach der Erstellung der Ebene wechselt das Programm automatisch in die Ebenendarstellung und

nur noch die soeben erstellte Ebene ist aktiv. Elemente, die sich nicht in dieser Ebene befinden,

sind nur noch leicht grau dargestellt. Mit der Schaltfläche können wir nun in die Ebenendarstel-

lung wechseln und die fehlenden Dachbinder zeichnen. Dazu wird ein Stab als HEB 600 vom

Kopfpunkt der linken Stütze bis zum Firstpunkt mir R{12,5;1} gezeichnet und ein zweiter Stab vom

Firstpunkt bis zum Kopfpunkt der rechten Stütze.

Nun können die beiden Lager an den Fußpunkten der Stütze eingegeben werden. Hierbei handelt

es sich um gelenkige Festlager ( ).

Zum duplizieren des ersten Rahmens wird wieder mit in die dreidimensionale Darstellung ge-

wechselt. Hier wird jetzt der gesamte Rahmen mit Hilfe des Kontextmenüs der rechten Maustaste

in y-Richtung 7mal um 6,25 m dupliziert.

Anschließend müssen noch die Arbeitsebenen für die einzelnen Rahmen erzeugt werden. Auch

diese können dupliziert werden. Dafür muss zunächst der Layer mit den Ebenensymbolen einge-

blendet werden. Dies geschieht mit der Schaltfläche auf der rechten Seite in der Layer-

steuerung. Daraufhin erscheint das Koordinatensystem der Ebene XZ_01. Dieses Koordinatensy-

stem kann genauso wie der Rahmen 7mal um 6,25 m in x-Richtung dupliziert werden.

Jetzt sollten noch zwei Ebenen für die Dachflächen definiert werden, die mit „Dach_links“ und

„Dach_rechts“. Die Punkteingabe erfolgt im Uhrzeigersinn, damit wir auf das Dach drauf schauen

und die Koordinatenursprünge sind Bild 110 zu entnehmen.

Technische Universität Berlin Fachgebiet Massivbau Seite 75

Page 82: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 110: Arbeitsebenen des Projektes

Außerdem werden für die Lasteingabe nachher noch zwei Arbeitsflächen für die Fassaden links

und rechts benötigt, die mit „Fassade_links“ und „Fassade_rechts“ bezeichnet werden

Jetzt können die Dachebenen für die Eingabe der Pfetten genutzt werden. Zur Optimierung der

Auslastung sollen Gerberträger genutzt werden.

e1 = 0,1465 · l = 0,1465 · 6,25 = 0,916 m

Somit hat die erste Pfette Randfeld eine Länge von 6,25 + 0,916 = 7,166 m. Die anschließenden

Pfetten haben dann wiederum eine Länge von 6,25 m und die letzte Pfette hat eine Länge von

5,334 m. Die Pfetten sollten zur Erhöhung der Redundanz des Systems so angeordnet werden,

dass je zwei Gerbergelenke in einem Feld liegen. Zuerst werden die Stäbe ohne Gelenke gezeich-

net. Anschließend werden alle Pfetten markiert und damit keine Gelenkketten entstehen wird nur

der Stabanfang aller Stäbe als gelenkig markiert (siehe Bild 111 a)). Die letzte Pfette einer Reihe

wird beidseitig gelenkig angeschlossen. Zudem sollen die Pfetten auf den Bindern liegen, daher

verschieben wir die Stabachse um 45 cm nach oben (Bild 111 b)). Als Beispiel ist das Ergebnis der

linken Dachhälfte im Bild 112 dargestellt.

Die Pfetten der rechten Dachhälfte können einfach durch spiegeln erzeugt werden. Dazu werden

z.B. mit der Stabselektion alle Pfetten der linken Dachhälfte gewählte und wenn bei der

Auswahl „Spiegeln“ im Kontextmenü der rechten Maustaste die Shift-Taste gedrückt wird, können

die Pfetten kopiert und gespiegelt werden. Als Spiegelebene wählen wir zunächst die beiden

Firstpunkte an den Giebelseiten und geben den dritten Punkt der Ebene relativ zu einem

Firstpunkt ein R{0;0;-1}.

Seite 76 Fachgebiet Massivbau Technische Universität Berlin

Page 83: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

a) b)

Bild 111: Ändern der Stabeigenschaften

Bild 112: Linke Dachhälfte mit Gerbergelenken

Jetzt müssen in den Endfeldern noch die druckschlaffen Windverbände definiert werden. Dazu

wird der Querschnitt RND 10 verwendet. Die Diagonalen sollen in Höhe des unteren Flansches

der Pfetten angeordnet werden. Daher müssen die Diagonalen eine globale Exzentrizität von

30 cm bekommen. Zudem sollen die Diagonalen druckschlaffe Zugstäbe sein. Das bedeutet, dass

sie die Eigenschaft „nichtlinearer Fachwerkstab – Zugstab“ bekommen müssen, wie es im Bild 113

dargestellt ist. Da die Kreuzungspunkte von Bindern und Pfetten nicht gefangen werden können,

müssen diese Punkte über das Kontextmenü „Schnittpunkt“ der rechten Maustaste definiert

werden. Hier müssen zwei Geraden definiert werden, deren Schnittpunkt dann als Endpunkt der

Diagonalen verwendet wird. Als Geraden können sowohl die Binder als auch die Pfetten

verwendet werden. Der Verband kann einfach über die Funktion „Verschieben“ aus dem Kontext-

Technische Universität Berlin Fachgebiet Massivbau Seite 77

Page 84: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

menü der rechten Maustaste verschoben werden. Wenn bei der Auswahl „Verschieben“ die

Schift-Taste gedrückt wird, so wird der gesamte Verband kopiert und nicht nur verschoben.

Bild 113: Diagonalen als druckschlaffe Zugstäbe

Die Vertikalverbände in den Seitenwänden müssen nicht exzentrisch angeordnet werden. Sie

können direkt in der 3D-Ansicht über den Knotenfang definiert werden. Auch sie sind druckschlaff.

Hinweis: Zug- bzw. Druckstäbe werden von CUBUS nicht an Kreuzungspunkten unterteilt.

Durch die Diagonalen entstehen also nicht vier Stäbe, wie es bei linearen Stäben

der Fall wäre, sondern es bleiben zwei sich kreuzende, durchlaufende Stäbe.

8.2 Belastung Die Belastungen werden als Flächenlasten eingegeben. Zuvor sind diese Flächen auf dem Regi-

sterblatt „Flächen“ zu definieren. Dazu werden zunächst mit der Schaltfläche neue Flächen

angelegt. Jeder Fläche muss ein Name gegeben und die zugehörige Arbeitsebene zugewiesen

werden (siehe Bild 114).

Seite 78 Fachgebiet Massivbau Technische Universität Berlin

Page 85: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 114: Eingeben der neuen Flächen

Nachdem die Fläche erstellt wurde, muss noch ihr Umriss definiert werden. Dies geschieht mit der

Schaltfläche . Innerhalb dieser Fläche können mit auch Aussparungen festgelegt werden,

die dann nicht belastet werden. Zusätzlich müssen für die Fläche auch die am Lastabtrag beteilig-

ten Elemente mit der Schaltfläche definiert werden. Für die Fassaden links und rechts ist der

Dialog wie im Bild 115 dargestellt auszufüllen, da die Diagonalen und die Randpfetten nicht am

Lastabtrag beteiligt sind.

Bild 115: Festlegen der tragenden Elemente

Neben den Fassaden links und rechts sind auch die Fassaden vorne und hinten als Lastflächen zu

definieren. Hier sind alle Elemente lastabtragend. Zudem werden auch die Dachflächen links und

rechts als Lastflächen definiert. In den Dachebenen sind jedoch nur die Pfetten die lastabtragen-

den Bauteile. Hier müssen die tragenden Elemente manuell ausgewählt werden, indem mit „+“

abtragende Bauteile hinzugefügt und mit „-“ nicht tragende Bauteile entfernt werden. Das Ergebnis

ist für die linke Dachhälfte im Bild 116 dargestellt. Die Flächen für die Dachhälften müssen

zusätzlich noch um 2 cm zur Hallenmitte eingerückt werden. Dazu werden wie üblich die Flächen

gezeichnet und anschließend die beiden Punkte der Fläche am Hallenrand manuell um 2 cm nach

innen verschoben.

Technische Universität Berlin Fachgebiet Massivbau Seite 79

Page 86: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 116: Lastabtragende Bauteile in der Fläche „Dach links“

Tabelle 2: Lastfälle Flächenlasten Last Bezeichner Wert Richtung Flächen Exklusiv

Dacheindeckung DG -0,8 kN/m² Global z Dach links

Dach rechts

nein

Schnee links SchneeL -0,75 kN/m² Projektion z Dach links nein

Schnee rechts SchneeR -0,75 kN/m² Projektion z Dach rechts nein

Exklusiv Wind links WindL 0,64 kN/m²

0,4 kN/m²

-0,4 kN/m²

0,4 kN/m²

0,48 kN/m²

0,48 kN/m²

Global x

Global x

Global y

Global y

Lokal z

Lokal z

Fassade links

Fassade rechts

Fassade vorne

Fassade hinten

Dach links

Dach rechts

Exklusiv Wind rechts WindR -0,4 kN/m²

-0,64 kN/m²

-0,4 kN/m²

0,4 kN/m²

0,48 kN/m²

0,48 kN/m²

Global x

Global x

Global y

Global y

Lokal z

Lokal z

Fassade links

Fassade rechts

Fassade vorne

Fassade hinten

Dach links

Dach rechts

Exklusiv Wind vorne WindV -0,4 kN/m²

0,4 kN/m²

0,64 kN/m²

0,4 kN/m²

0,48 kN/m²

0,48 kN/m²

Global x

Global x

Global y

Global y

Lokal z

Lokal z

Fassade links

Fassade rechts

Fassade vorne

Fassade hinten

Dach links

Dach rechts

Exklusiv Wind hinten WindH -0,4 kN/m²

0,4 kN/m²

-0,4 kN/m²

-0,64 kN/m²

0,48 kN/m²

0,48 kN/m²

Global x

Global x

Global y

Global y

Lokal z

Lokal z

Fassade links

Fassade rechts

Fassade vorne

Fassade hinten

Dach links

Dach rechts

Seite 80 Fachgebiet Massivbau Technische Universität Berlin

Page 87: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nun kann die Lasteingabe erfolgen. Dazu wechseln wir auf das Registerblatt „Lasten“ und defi-

nieren zunächst mit eine neue Belastung „Dacheindeckung“ mit dem Bezeichner „DG“. Sie soll

der Kategorie „Eigenlasten“ angehören und „Flächelast“ muss aktiviert sein. In dieser Belastung

definieren wir anschließend zwei Flächenlasten jeweils auf die linke und die rechte Dachhälfte von

je 0,8 kN/m². Die Belastung kann jeweils auf die gesamte Fläche eingeführt werden. Alle Lasten

sind ausführlich in der Tabelle 2 aufgeführt.

8.3 Berechnung Da in diesem Beispiel Nichtlinearitäten berücksichtigt werden sollen, reichen die Standardergeb-

nisse nicht aus. Daher ist die Erstellung von Spezialberechnungen auf dem Register „Berech-

nung“ notwendig. Zunächst soll die Stabilität untersucht werden. Dazu ist eine neue Berech-

nung vom Typ „Eigenwertberechnung Stabilität“ nötig. Als variable Last wird, wie im Bild 117 a)

dargestellt, die Schneelast links verwendet. Zusätzlich soll das Eigengewicht als Fixbelastung vor-

handen sein.

a) b)

Bild 117: Eingaben für die Stabilitätsuntersuchung und die druckschlaffen Zugstäbe

Für die Untersuchung der Windverbände als druckschlaffe Zugstäbe sind zusätzlich noch vier

Rechnungen vom Typ „Nichtlineare Berechnung“ hinzuzufügen. Für jede Windbelastung ist eine

eigene Berechnung zu erstellen. Beispielhaft ist die Eingabe für die Belastung „Wind von hinten“

im Bild 117 b) dargestellt.

8.4 Ergebnisse Nun kann die Analyse auf der Registerkarte „Resultate“ erfolgen. Dabei erscheinen die

nichtlinearen Berechnungen und die Stabilitätsanalysen als eigene Unterpunkte in der Resultat-

auswahl (siehe Bild 118). Beginnen wollen wir mit den nichtlinearen Ergebnissen für den Wind von

hinten.

Technische Universität Berlin Fachgebiet Massivbau Seite 81

Page 88: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 118: Resultatauswahl mit nichtlinearen Berechnungen und den Stabilitätsanalysen

Die Normalkräfte, die unter Ausfall der Druckdiagonalen bei Wind von hinten entstehen, sind im

Bild 119 dargestellt. Das Bild 120 zeigt die Normalkräfte aus der nichtlinearen Berechnung bei

Wind von links.

Bild 119: Normalkräfte unter Ausfall der Druckdiagonalen bei Wind von hinten

Seite 82 Fachgebiet Massivbau Technische Universität Berlin

Page 89: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 120: Normalkräfte unter Ausfall der Druckdiagonalen bei Wind von links

Die Stabilitätsuntersuchung liefert zwei Ergebnisse. Einmal das Ergebnis SchneeL_S2_EG, das

den Lastfaktor λ tabellarisch ausgibt. Die Ausgabe wird mit der Einheit kN erzeugt, wobei es sich

um einen Programmfehler handelt. Der Lastfaktor beträgt -2,9mal die Schneelast bis zum Eintreten

des Stabilitätsversagens. Der Lastfaktor ist negativ, da im System Stäbe mit Zuglasten auftreten.

Die Knickform unter der Belastung Eigengewicht und Schnee ist im Bild 121 dargestellt.

Technische Universität Berlin Fachgebiet Massivbau Seite 83

Page 90: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 121: Knickform der Halle unter Eigengewicht und Schnee links

Natürlich stehen auch die linearen Ergebnisse zur Verfügung und können wie gewohnt ausgege-

ben werden. Die Momente im Grenzzustand der Tragfähigkeit im Bild 122 dargestellt.

Bild 122: Momente im Grenzzustand der Tragfähigkeit

Seite 84 Fachgebiet Massivbau Technische Universität Berlin

Page 91: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

9 Vorgespannter Dachträger mit Statik-5 Die in dieser Berechung behandelte weit gespannte Dachkonstruktion ist der gleiche Durchlaufträ-

ger der im Kapitel 5 gerechneten Übung. Die Material- und Geometriedaten finden sich auf Sei-

te 43.

Nachdem im „CubusExplorer“ für dieses Beispiel eine neue „Statik-5 Berechnung“ angelegt wurde,

kann diese bearbeitet werden. Im Startdialogfenster „Allgemeine Einstellungen“ wird „Räumlich“

als Strukturtyp, die „DIN“ als Norm und „Gebäude“ als Bauwerkstyp festgelegt. Die Einstellung

„Räumlich“ ist nötig für die Berücksichtigung der Vorspannung. Daraufhin sind die Baustoffeigen-

schaften gemäß Aufgabenstellung zu korrigieren.

In dem Dialog „Programmoptionen laden“ können nun die benötigten Lizenzen vom Dongle gela-

den werden. Sollten nicht alle benötigten Lizenzen jetzt schon gewählt werden, so lädt das Pro-

gramm diese bei Bedarf nach.

9.1 Struktureingabe Zu Beginn muss auf dem Registerblatt „Struktur“ mit dem Button ein Querschnitt definiert wer-

den. Hier wird jetzt mit ein neuer parametrisierter Querschnitt mit der Dialogbox im Bild 123

eingegeben.

Bild 123: Dialogbox für die Querschnittseingabe

Technische Universität Berlin Fachgebiet Massivbau Seite 85

Page 92: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Anschließend kann mit eine Strukturlinie eingegeben werden. Die Strukturlinie ersetzt die

Stabeingabe und ermöglicht die Eingabe von Kurven. Zudem ist Vorspannung nur Strukturlinien

und keinen normalen Stäben zuzuordnen. Das bedeutet auch, dass dort wo Strukturlinien sind

keine weiteren Stäbe sein sollten. Als Grundrissebene für die Strukturlinie wird die x-y-Ebene

gewählt. Sobald diese Eingeführt ist, können wir mit der Eingabe beginnen. Voreingestellt ist die

Eingabe als Grundrisskurve . Nach der Definition der Geometrie auf Seite 43 beginnt die erste

Strukturlinie im Punkt {0;0} und endet am ersten Auflager im Punkt {16;0}. Die restlichen drei Stru-

kturlinien werden jeweils bis zu den Auflagern relativ eingegeben:

R{48;0}, R{48;0} und R{16;0}.

Nun können die Strukturlinienabschnitte, die mit einer Raute in der Mitte jeder Strukturlinie markiert

sind, ausgewählt werden und mit „Strukturlinienabschnitt bearbeiten“ modifiziert werden. Wir

können feststellen, dass der von uns definierte Querschnitt S-T bereits der Strukturlinie zugeordnet

ist und nichts weiter geändert werden muss.

Nach der Eingabe der Strukturlinien erfolgt die Eingabe der Lager mit dem Button „Knoten“. Die

beiden äußeren Lager sind gelenkige Lager, die in x-Richtung verschieblich sind (Bild 124 a)) und

das mittlere Lager ist ein gelenkiges unverschiebliches Lager (Bild 124 b)). An allen Lagern

müssen die Rotationen um die x-Achse gesperrt werden. Um die richtigen Knoten zu finden,

können die Objektpunkte mit der Schaltfläche sichtbar geschaltet werden.

a) b)

Bild 124: Eingabe der Lagerdefinition

Seite 86 Fachgebiet Massivbau Technische Universität Berlin

Page 93: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

9.2 Eingabe der Spannglieder Auf der Registerkarte „Vorspannung“ kann nun mit dem Button eine neue Spanngliedgruppe

nach Bild 125 erstellt werden. Anschließend kann für diese Spanngliedgruppe mit der Schalt-

fläche die Vorspannung definiert werden.

Bild 125: neuer Spanngliedgruppe 1

Die Vorspannung ist gemäß Bild 126 einzugeben.

Bild 126: Eingabe Spannglieder

Im folgenden Dialog ist das Spannglied qualitativ in den Trägeraufriss mit der Funktion „Spann-

glied Aufrisskurve“ zu zeichnen. Hier sollten schon alle 13 Stützstellen definiert werden. Die

genaue Lage wird allerdings in einem zweiten Schritt festgelegt. Hierfür müssen die Stützstellen

einzeln selektiert und die Spanngliedlage nach Tabelle 3 festgelegt werden. Der zugehörige Dialog

ist im Bild 127 für den zweiten Punkt dargestellt. Es ist die Lage im Aufriss S (x-Koordinate des

Spanngliedes) und der Wert dz relativ von oben anzugeben.

Tabelle 3: Spanngliedlage S[m] 0,00 8,00 16,00 24,00 40,00 56,00 64,00 72,00 88,00 104,00 112,00 120,00 128,00

dz [m] 0,70 0,44 0,185 1,01 2,105 1,01 0,185 1,01 2,105 1,01 0,185 0,44 0,70

Technische Universität Berlin Fachgebiet Massivbau Seite 87

Page 94: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 127: Eingabe der Spanngliedpunkte

Die Tangentenrichtung ist über den Auflagerpunkten und in Feldmitte 0,0° bzw. parallel zur Struk-

turlinie (//). Die Tangentenlängen t1 und t2 sollten etwa 1 m betragen. In den Wendepunkten ist die

Tangentenrichtung visuell mit der Maus festzulegen. Wurde die Eingabe mit „OK“ bestätigt,

kann nun die Eingabe mit dem Button bei selektiertem Spannglied kontrolliert werden. In der

Spanngliedgrafik im Bild 128 werden der Spanngliedverlauf und die Spannkraft dargestellt.

Tabellarisch kann das gleiche Ergebnis mit der Schaltfläche ausgegeben werden.

Hinweis: Liegen mehrere Spannglieder übereinander, so dass sie sich nicht mit der Maus

auswählen lassen, so können einzelne Spannglieder mit dem Listenfeld „Spann-

glied-Selektion“ auf der Registerkarte „Vorspannung“ ausgewählt werden.

Seite 88 Fachgebiet Massivbau Technische Universität Berlin

Page 95: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 128: Spanngliedgrafik für das Spannglied

9.3 Lasten Auf dem Registerblatt „Lasten“ muss nur noch die Verkehrslast und die Ausbaulast hinzugefügt

werden. Die Lasten aus Eigengewicht und Vorspannung fügt CUBUS automatisch hinzu. Zum

Lastfall Eigengewicht ist die Ausbaulast mit 11,6 kN/m als Streckenlast hinzuzufügen und als

Schneelast eine Schneestreckenlast von 7,9 kN/m.

9.4 Ergebnisse Nachdem die Eingabe nun vollständig ist können wir auf die Registerkarte „Resultate“ wechseln.

Einige Ergebnisbeispiele sind in den folgenden Abbildungen dargestellt. Im Bild 129 und Bild 130

sind die Verformungen aus Vorspannung und Eigengewicht dargestellt. Das Bild 131 stellt die

Betonrandspannungen im Grenzzustand der Tragfähigkeit dar.

Bild 129: Verformungen aus Vorspannung

Technische Universität Berlin Fachgebiet Massivbau Seite 89

Page 96: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 130: Verformungen aus Eigengewicht

Bild 131: Betonrandspannungen im Nachweis der Tragsicherheit

Seite 90 Fachgebiet Massivbau Technische Universität Berlin

Page 97: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

10 Bauzustände, Stahlbetonanalysen und Dynamik In diesem Beispiel soll die Verwendung von Bauzuständen am Beispiel einer Hohlkastenbrücke

gezeigt werden, die aus zwei Bauabschnitten besteht. Zusätzlich werden die Eigenfrequenzen

ermittelt und eine Antwortspektrenanalyse durchgeführt.

10.1 Statisches System und Geometrie

27,00 25,00

Querschnitt: G-B2

2,00

Bild 132: Aufgabenstellung mit Querschnitt G-B2

Beton: C30/37

Betonstahl: BSt 500S

Technische Universität Berlin Fachgebiet Massivbau Seite 91

Page 98: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Zunächst wird im Startdialogfenster „Allgemeine Einstellungen“ „Räumlich“ als Strukturtyp, die

„DIN“ als Norm und „Straßenbrücken“ als Bauwerkstyp festgelegt. Die Materialeigenschaften

werden gemäß der Aufgabenstellung angepasst.

Das Tragwerk besteht aus einem im Grundriss geschwungenen Holhasten als Brückenlängsträger.

Die Eingabe der Struktur wird mit der Schaltfläche begonnen. Damit die Geometrie geschwun-

gen geführt werden kann und die Lasten direkt generiert werden können, muss die Eingabe als

Strukturlinie erfolgen. Hier müssen vorab die Querschnitte mit definiert werden. Um später

noch Resultatpunkte definieren zu können, wird nicht die vordefinierte Variante des Querschnitts in

STATIK-5 verwendet, sondern das Programm FAGUS gestartet . Der neue Querschnitt wird als

„Brückenquerschnitt“ bezeichnet. In FAGUS kann jetzt die Eingabe des Hohlkastens als parametri-

sierter Querschnitt erfolgen. Der Hohlkasten ist auf der Registerkarte „Stahlbeton“ bereits als

Brückenträger „G-B2“ vordefiniert. Zusätzlich werden noch zwei Resultatpunkte definiert . Ein

Resultatpunkt soll vom Typ „Längsbewehrung“ (siehe Bild 133) und ein weiterer Resultatpunkt

vom Typ Längsdehnung. Beide Resultatpunkte werden auf der unteren Bewehrung platziert.

Bild 133: Resultatpunkt für die Längsbewehrung und die Längsdehnung

Nachdem jetzt der Querschnitt definiert ist, können wir mit der Eingabe der Brücke beginnen. Wir

wählen den Querschnitt „Brückenträger“, beginnen im Punkt {0;0} und zeichnen den ersten Träger

bis zum Punkt {27;2}. Daran anschließend kann gleich der zweite Träger starten, der relativ zum

Startpunkt im Punkt R{25;-2} endet.

Da FAGUS die Stahlbetonanalyse ausschließlich in Schnitten durchführt und so keine Rücksicht

auf Auflager oder Einzellasten. Das bedeutet es werden auch keine Erhöhungen der Längsbeweh-

rung aus der Querkraft (Versatzmaß) berücksichtigt. Um bei der Bemessung trotzdem diese

zusätzliche Bewehrung zu erhalten, muss das Stabende bzw. der Stabanfang als Fächer definiert

werden (siehe Bild 134). Der Wert x für den Nachweisschnitt der Querkraft kann manuell eingege-

Seite 92 Fachgebiet Massivbau Technische Universität Berlin

Page 99: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

ben werden. Wird dieser Wert nicht vorgegeben, so verwendet FAGUS den Wert nach Norm. Für

die DIN 1045-1 z.B. x = d.

Auflagerfächer

Versatzmaß av Zugkraftdeckungslinie

θ⋅= cot2zav

Querkraftverlauf

Δx = d

Bild 134: Definition von Auflagerfächern für die Querkraftbemessung

Zum Abschluss der Struktureingabe fehlen nun nur noch die Lager. Die werden in den Lagerpunk-

ten als Festlager angeordnet, die zusätzlich noch die Verdrehung um die x-Achse gesperrt haben.

10.2 Bauzustände Für die Definition der Bauzustände wählen wir „Bauzustände“. Hier werden mit dem Button

zwei neue Bauzustände „Bauzustand“ und „Endzustand“ definiert. Der Bauzustand „Bauzustand“

wird anschließend aktiviert.

Bild 135: Bauzustände

Im „Bauzustand“ wird der 25 m lange hintere Teil der Brücke inaktiv geschaltet. Dies geschieht,

indem im Eigenschaftendialog des entsprechenden Strukturlinienabschnitts der Haken vor „aktiv“

entfernt wird. Im Bauzustand „Endzustand“ sind alle Stäbe aktiv.

Technische Universität Berlin Fachgebiet Massivbau Seite 93

Page 100: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

10.3 Lasteingabe Die Einwirkungen müssen jetzt im Register „Lasten“ für jeden Bauzustand einzeln eingegeben

werden. Wir beginnen mit der Eingabe der Lasten für den Bauzustand „Bauzustand“. Hier wirkt auf

dem linken Teil der Brücke eine Linienlast von 20 kN/m. Die Eingabe erfolgt über „Neue Bela-

stung“ , Bezeicher „BZ“ und Beschreibung „Bauzustand“. Als Bauzustand wird der „Bauzustand“

gewählt. Die Kategorie ist „Auflasten“ (Bild 136).

Bild 136: Neue Belastung „Bauzustand“

Nun kann die Eingabe als Streckenlast erfolgen.

Zusätzlich muss das Eigengewicht, das bislang im Grundzustand wirkt, in den Bauzustand ver-

schoben werden. Dazu werden die Belastungsattribute des Eigengewichts gewählt und die

Einstellungen so wie im Bild 137 dargestellt geändert.

Seite 94 Fachgebiet Massivbau Technische Universität Berlin

Page 101: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 137: Ändern des Eigengewichtes für den Bauzustand „Bauzustand“

Als nächstes erfolgt die Eingabe der Lasten für „Endzustand“. Hier muss zunächst das Eigen-

gewicht für die Konstruktion definiert werden. Es wird also ein neuer Lastfall erzeugt mit dem

Bezeichner „EG-EZ“ und der Beschreibung „Eigengewicht Endzustand“ im Bauzustand

„Endzustand“ mit der Kategorie „Eigenlast“. Dann kann mit dem Button das Eigengewicht für

alle Stäbe hinzugefügt werden.

Für Verkehrslasten stellt CUBUS die Möglichkeit zur Verfügung, direkt die Lasten in ungünstigen

Laststellungen auf die Struktur generieren zu lassen. Dies funktioniert jedoch nur auf Strukturli-

nien. Es wird eine neue Belastung definiert vom Typ „Generator“ mit dem Bezeichner „VEZ“

und der Beschreibung „Verkehrslast Endzustand“. Die Kategorie ist „Lastmodell 1 Q (TS)“. Nach

dem DIN Fachbericht 101 müssen die generierten Flächenlasten jedoch in der Kategorie „Lastmo-

dell 1 q (UDL)“ berücksichtigt werden. Das wird durch CUBUS automatisch berücksichtigt. Im Last-

generator müssen die Werte für einen 14,50 m breiten Fahrstreifen geändert werden (Bild 138).

Die Strukturlinie, auf die die Verkehrslast angewendet werden soll ist die Strukturlinie „SL“.

Technische Universität Berlin Fachgebiet Massivbau Seite 95

Page 102: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 138: Eingaben im Lastgenerator

Abschließend werden für die drei Bauzustände noch Lastkombinationen erstellt. Der Belastungs-

typ ist dabei „Kombination“. Die Beschreibung der einzelnen Kombinationen ist in der nachfolgen-

den Tabelle Angegeben.

Bauzustand Bezeichner Beschreibung

Bauzustand KBZ Kombination Bauzustand

Endzustand KEZ Kombination Endzustand

Bevor die Verkehrslasten den Kombinationen hinzugefügt werden können, müssen sie mit einem

Druck auf die Schaltfläche generiert werden. Die Kategorie für alle Kombinationen ist „nicht-

linear“ (Bild 139).

Seite 96 Fachgebiet Massivbau Technische Universität Berlin

Page 103: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 139: Lastkombination für den Bauzustand

Für die Kombination im Endzustand müssen das Eigengewicht und alle generierten Verkehrs-

lasten hinzugefügt werden (Bild 140).

Bild 140: Lastkombinationen für die Kombination Endzustand (KEZ)

Zusätzlich wird im Bauzustand „Endzustand“ noch eine Massenverteilung auf alle Stäbe definiert

mit dem Bezeichner „Mass“ und der Beschreibung Massenverteilung. Die Massenverteilung wird

für den Lastfall Erdbeben in der Stahlbetonanalyse benötigt.

10.4 Berechnungen Auf dem Registerblatt „Berechnungen“ muss zunächst eine Grenzwertspezifikation erstellt wer-

den, die wir für die späteren Berechnungen benötigen. Hier wird mit eine Grenzwertspezifika-

Technische Universität Berlin Fachgebiet Massivbau Seite 97

Page 104: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

tion „Tragsicherheit“ erstellt für die Bemessungssituation „Standard“ und den Grenzzustand „Trag-

sicherheit Grenzzustand Typ 2 (1B)“. Zunächst muss jetzt mit einem Doppelklick auf „Straßen-

verkehr (Set)“ mit eine neue Einwirkungsgruppe für den Einwirkungsset „Straßenverkehr“ an-

gelegt werden (siehe Bild 141). Danach können im Editor für die Einwirkungskombinationen die

Einwirkungskombinationen nach Eurocode mit der Schaltfläche erstellt und der Dialog ge-

schlossen werden.

Bild 141: Neue Einwirkungsgruppe für den Set „Straßenverkehr“

10.4.1 Eigenwertberechnung Es werden für eine Antwortspektrenanalyse die Eigenwerte des Systems benötigt. Daher wird als

Spezialberechnung eine Eigenwertanalyse durchgeführt . Hierfür verwenden wir die im Bau-

zustand „Endzustand“ definierte Massenverteilung „Mass“, so dass die Eingabe nach Bild 142

erfolgt.

Seite 98 Fachgebiet Massivbau Technische Universität Berlin

Page 105: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 142: Eingaben für die Eigenwertberechnung

10.4.2 Antwortspektrenanalyse Mit den nun ermittelten Eigenwerten kann nun eine Antwortspektrenanalyse angelegt werden. Mit

dem Button legen wir eine neue Spezialberechnung „Antwortspektrenanalyse“ an. Hier muss

zunächst unten im Fenster mit „Spektren bearbeiten“ ein neues Spektrum „EC8“ angelegt werden.

Die Spektrenliste wird mit um ein Spektrum nach Eurocode EC8 erweitert (Bild 143). Dabei

sind die Eingaben nach Bild 143 Parameter aus dem EC 8 und werden hier beispielhaft nicht

weiter verändert.

Bild 143: Erstellen eines Spektrums nach EC 8

Die Eingabe der Werte für die Antwortspektrenanalyse erfolgt dann nach Bild 144. In den Berech-

nungsspezifikationen wird zunächst der Name der Analyse (hier A1) angegeben. Weiterhin muss

die Richtung der Erregung vektoriell angegeben werden. In unserem Fall soll die Anregung in

y-Richtung erfolgen. Dann wird das Eben erstellte Spektrum nach EC 8 als zu verwendendes

Technische Universität Berlin Fachgebiet Massivbau Seite 99

Page 106: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Spektrum angegeben und zuletzt als Überlagerungsart die Wurzel aus der Quadratsumme

(WQSumme).

Bild 144: Eingaben für die Antwortspektrenanalyse

10.4.3 Stahlbetonanalyse Als dritte Spezialberechnung wird eine Stahlbetonanalyse aufgesetzt . Die Eingaben erfolgen

hier nach Bild 145. Als Grenzwert wird die oben definierte Grenzwertspezifikation „Tragsicherheit“

verwendet. Ebenso kommt der Analyseparameter 2: Tragsicherheit zur Anwendung. Die Bemes-

sung soll einmal für Vz, T und My unter Berücksichtung eines Erdbebens nach Analyse 1 des Ant-

wortspektrums 1 erfolgen. Die gleiche Bemessung soll dann aber auch durchgeführt werden, ohne

die Erdbebenlasten zu berücksichtigen. Zudem soll eine Spannungsanalyse und eine Traglastbe-

stimmung durchgeführt werden.

Seite 100 Fachgebiet Massivbau Technische Universität Berlin

Page 107: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 145: Eingaben für die Stahlbetonanalyse

10.5 Resultate Als Resultate stehen uns auf dem Register „Resultate“ die Ergebnisse aus den einzelnen Bela-

stungen nach Thoerie I. Ordnung, die Grenzwerte für die Tragsicherheit, die Eigenschwingungen,

die Antwortspektrenresultate, die Fagusanalysen und die Resultate für die Klebebewehrung zur

Verfügung. Beginnen wollen wir mit den Antwortspektren.

10.5.1 Antwortspektrenresultate Unter AS1_A1-Spektrum bekommen wir Bild 146, sofern die Darstellung auf logarithmisch geän-

dert wird. Dargestellt ist die Beschleunigung des Bauwerks im Verhältnis zur Erdbeschleunigung

über die Zeit.

Technische Universität Berlin Fachgebiet Massivbau Seite 101

Page 108: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 146: Antwortspektrum des Bauwerks

Als nächstes soll uns das Moment um die z-Achse aus dem Lastfall Erdbeben (AS1_A1) inter-

essieren. Dieses Ergebnis muss ausgegeben werden, bevor eine Bemessung des Querschnitts in

der Fagusanalyse erfolgen kann. Der Verlauf des Momentes ist im Bild 147 dargestellt.

Bild 147: Mz aus Lastfall AS1_A1

10.5.2 Fagusanalyse Nun kann die Bemessung mit FAGUS erfolgen. Hierzu wird das Resultat für FG1 ausgegeben.

Wenn die Standardgrößen ausgegeben werden, mit der Längsbewehrung unter Berücksichtigung

von Schub erhalten wir das im Bild 148 dargestellte Ergebnis. Abgebildet sind die verschobene

Seite 102 Fachgebiet Massivbau Technische Universität Berlin

Page 109: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

und die unverschobene Zugkraftdeckungslinie. Dass nicht die gesamte Länge abgedeckt ist, liegt

an einem Programmfehler.

Bild 148: Längsbewehrung mit und ohne Berücksichtigung von Anteilen aus Schub

Nach einer Standardanalyse kann nun auch das Ergebnis der zusätzlich definierten Resultat-

punkte ausgegeben werden. Hier muss als Ausgabegröße „Zusatz“ gewählt werden und für den

Resultatpunkt RP1 (Längsbewehrung unten) erhalten wir das im Bild 149 dargestellte Ergebnis.

Bild 149: Bewehrung aus dem Ergebnis für Resultatpunkt 1

Genauso lassen sich im Resultatpunkt 2 die Stahldehnungen εRP2 darstellen. Das Ergebnis wird im

Bild 150 gezeigt.

Technische Universität Berlin Fachgebiet Massivbau Seite 103

Page 110: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 150: Stahldehnungen εRP2 im Resultatpunkt 2

Mit Hilfe der Schnittkontrolle lassen sich die Ergebnisse in den einzelnen Querschnittschnitten

auswerten. Dafür muss jedoch ein Strukturlinienabschnitt gewählt werden. Das Ergebnis wird dann

laut Bild 151 dargestellt.

Bild 151: Schnittkontrolle im Strukturlinienabschnitt 1

Ebenso können die Betonspannungen und die Stahlspannungen oben und unten im Querschnitt

ausgegeben werden. Diese Werte gibt FAGUS als Standardresultatpunkte aus. Zusätzlich kann

Seite 104 Fachgebiet Massivbau Technische Universität Berlin

Page 111: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

auch die größte Differenz der Spannungen zwischen den einzelnen Lastfällen dargestellt werden.

Als Beispiel ist die Differenz zwischen maximaler und minimaler Stahlspannung oben und unten im

Bild 152 dargestellt.

Bild 152: Differenz zwischen maximaler und minimaler Stahlspannung oben und unten

10.5.3 Eigenschwingungen Ebenfalls stehen die ersten fünf Eigenformen der Struktur als Ergebnis zur Verfügung. Hier lassen

sich die Verschiebungen ausgeben und so kann die Eigenform qualitativ dargestellt werden.

10.5.4 Ergebnisse im Bauzustand Auch lassen sich die Ergebnisse aus den einzelnen Bauzuständen ausgeben. Im Bild 153 ist zum

Beispiel das Moment My aus der zuvor definierten Kombination KBZ (Bauzustand) dargestellt.

Bild 153: My aus der Kombination Bauzustand

Technische Universität Berlin Fachgebiet Massivbau Seite 105

Page 112: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

11 Berücksichtigung von Langzeitauswirkungen Mit CUBUS ist die Durchführung von Langzeituntersuchungen an Stahlbetonbauteilen möglich.

11.1 Statisches System und Geometrie

27,00 25,00

Bild 154: Aufgabenstellung

Beton: C30/37

Betonstahl: BSt 500S

Zunächst wird im Startdialogfenster „Allgemeine Einstellungen“ „Eben“ als Strukturtyp, die „DIN“

als Norm und „Straßenbrücken“ als Bauwerkstyp festgelegt. Die Materialeigenschaften werden

gemäß der Aufgabenstellung angepasst.

Für die Berücksichtigung von Schwinden und Kriechen werden die folgenden Parameter benötigt:

ρ = 0,8 (Relaxationsbeiwert)

RH = 70 % (relative Luftfeuchte)

T = 20 °C

Ac = 11,335 m² (siehe Fagus)

Seite 106 Fachgebiet Massivbau Technische Universität Berlin

Page 113: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

m63,545²3,0²8,02²45,0²15,22²3,0²25,02

²15,0²5,1243,7²85,0²1,32²1,0²1,323,022,15u

==++⋅++⋅++⋅+

++⋅++++⋅++⋅+⋅+=

m415,063,54335,112

uA2h c

eff =⋅

=⋅

=

Zementart: normal

Zunächst müssen die Baustoffeigenschaften im Menü „Einstellungen/ Baustoffe“ definiert werden.

Hier werden der Beton C30/37 und der Betonstahl BSt 500 SA definiert. Anschließend kann die

Stabeingabe mit der Schaltfläche erfolgen. Im Stabeingabedialog ist zunächst mit dem

Button der Querschnitt zu definieren. Hier reicht die Definition als Standardquerschnitt . Der

Brückenträgerquerschnitt G-B2 findet sich vordefiniert auf der Registerkarte „Stahlbeton“. Die

Definition der Stäbe als Kriechstäbe muss im Grundzustand erfolgen. Dafür muss die entsprechen-

de Eigenschaft nach Bild 155 ausgewählt sein.

Bild 155: Definition des Stabes mit Berücksichtigung von Langzeiteinflüssen

Nun kann die Eingabe von zwei Stäben vom Punkt {0;0} nach Punkt {27;0} und Punkt R{0;0} nach

Punkt R{25;0} erfolgen. Anschließend werden drei Festlager als Auflager definiert . Ab-

schließend benötigen wir noch drei Bauzustände „Einfeld“, „zwei Einfeld“ und „Durchlauf“, um den

Einfluss der Kriechumlagerungen untersuchen zu können. In den Bauzuständen müssen jeweils

auf der Registerkarte „Langzeitattribute“ die Aktivierungszeit des jeweiligen Bauzustandes und das

Betonalter der in diesem Bauzustand aktivierten Bauteile definiert werden. Sollten die Umwelt- und

Kriechparameter nicht für das gesamte Projekt konstant sein, so können diese für den jeweiligen

Technische Universität Berlin Fachgebiet Massivbau Seite 107

Page 114: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bauzustand hier definiert werden. Die Aktivierungszeiten und die jeweiligen Betonalter sind im

Bild 156 dargestellt. Die Angabe des Betonalters für den Bauzustand „Durchlauf“ ist bedeu-

tungslos, da in diesem Bauzustand keine weiteren Betonteile aktiviert werden, wird vom Programm

jedoch erwartet.

Bauzustand Aktivierungszeit Betonalter Einfeld 10 Tage 7 Tage Zwei Einfeld 20 Tage 7 Tage Durchlauf 21 Tage 7 Tage

Bild 156: Langzeitattribute für den Bauzustand „Einfeld“

Jetzt muss der rechte, 25 m lange Teil der Brücke im Bauzustand „Einfeld“ deaktiviert werden. Im

Bauzustand „zwei Einfeld“ erhält der zweite Stab am Stabanfang ein Gelenk Ry. Das Gelenk kann

mit der Schaltfläche in der Systemansicht dargestellt werden. Abschließend kann die Struktur

mit der Schaltfläche geprüft werden.

11.2 Lasten Als nächstes sind die Lasten für die einzelnen Bauzustände einzugeben. Hier beginnen wir mit der

Eingabe des Eigengewichts für alle Bauzustände. Das Eigengewicht, das STATIK-5 automatisch

generiert, verbleibt im Grundzustand. Im Bauzustand „Einfeld“ wird nun ein Lastfall mit dem

Bezeichner „EG-1“ und der Beschreibung „Eigengewicht Einfeld“ definiert. Hier kann das Eigenge-

wicht nicht mehr von CUBUS generiert werden, da es jetzt nur auf den linken Stab wirkt. Es wird

also separat als Streckenlast auf den linken, aktiven Stab eingegeben:

gk = Ac · γc = 11,335 · 25 = 283,34 kN/m

Genauso verfahren wir im Bauzustand „zwei Einfeld“, nur mit dem Unterschied, dass das Eigenge-

wicht auf den rechten Stab aufgebracht wird. Bei einer Langzeituntersuchung hinterlassen alle

Lasten auf dem System einen Schatten, was bedeutet, dass Lasten in den einzelnen Bauzu-

Seite 108 Fachgebiet Massivbau Technische Universität Berlin

Page 115: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

ständen nicht doppelt eingegeben werden dürfen. Der Grundzustand gehört nicht zur Langzeit-

untersuchung, weshalb hier alle Lasten eingegeben werden können.

Anschließend bekommen die Bauzustände „Grundzustand“, „Einfeld“ und „zwei Einfeld“ eine

Streckenlast von -20 kN/m in z-Richtung. Wir wählen hierfür die Bezeichner „Aus-G“, „Aus-1“ und

„Aus-2“ und als Beschreibung „Ausbaulast Grundzustand“, „Ausbaulast Einfeld“ und „Ausbaulast

zwei Einfeld“. Der Grundzustand erhält die Streckenlast über beide Felder, der Bauzustand

„Einfeld“ im linken Feld und der Bauzustand „zwei Einfeld“ im rechten Feld.

Zusätzlich soll auch das Schwinden des Betons berücksichtigt werden. Dazu wird eine neue

Belastung in jedem Bauzustand mit den Bezeichnern „S-G“, „S-1“ und „S-2“ und den Beschrei-

bungen „Schwinden Grundzustand“, Schwinden Einfeld“ und „Schwinden zwei Einfeld“ eingeführt.

Auf der Registerkarte „Langzeitattribute“ muss dabei der Typ „Schwinden“ gewählt werden. Als

Kategorie wird „Eigenlast“ verwendet.

Als Belastung in diesen Lastfällen sind den Stäben Anfangsstabdehnungen mit dem Wert -1000 ‰

in Stablängsrichtung (x-Richtung) zuzuordnen. Die Belastung erfolgt als Linienlast. Die notwendi-

gen Einstellungen sind im Bild 157 angegeben.

Bild 157: Dialog für die Eingabe der Schwindlast

11.3 Berechnung Im Register „Berechnung“ wird nun eine Spezialberechnung vom Typ „Langzeitanalyse“ neu

angelegt . In dem Dialog für die Langzeitanalyse werden dem Programm die Kriechparameter

übergeben. Als Start Bauzustand geben wir CUBUS „Einfeld“ vor und als Endbauzustand „Durch-

lauf“. Zusätzlich sollen Resultate nach 100 und 300 Tagen ermittelt werden. Die weiteren Para-

meter sind laut Aufgabenstellung nach Bild 158 einzutragen.

Technische Universität Berlin Fachgebiet Massivbau Seite 109

Page 116: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 158: Einstellungen für die Langzeitanalyse

11.4 Resultate Nun können auf dem Registerblatt „Resultate“ die Ergebnisse ausgegeben werden.

11.4.1 Langzeitanalysen Zunächst sollen die Langzeitanalysen betrachtet werden. Hierzu wählen wir im Resultatbaum den

Ast Langzeitberechnung mit dem Ergebnis „LTC1 Verlauf“. Für das Ergebnis Verlauf muss zu-

nächst ein Stab ausgewählt werden. Beispielhaft soll der linke Stab gewählt werden. Als Ergebnis

soll die grafische Ausgabe der Verformungskomponente Dz erfolgen. Nach dieser Auswahl

kann die Analyse gestartet werden und als letzte Angabe benötigt CUBUS den Ort des

Schnittes. Hier wird die Stabmitte bei 13,50 m gewählt. Das Ergebnis sollte dann wie im Bild 159

dargestellt angezeigt werden.

Seite 110 Fachgebiet Massivbau Technische Universität Berlin

Page 117: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 159: zeitlicher Verlauf der resultierenden Verformung in Feldmitte des linken Feldes

Als nächstes sollen die Momente zu den Zeitpunkten t = 10 Tage, t = 21 Tage und t = ∞ betrachtet

werden. Die Schnittgrößenentwicklung und die Umlagerung durch Kriechen sind im Bild 160,

Bild 161 und Bild 162 deutlich zu erkennen.

Bild 160: Momentenverlauf My zum Zeitpunkt t = 10 Tage

Bild 161: Momentenverlauf My zum Zeitpunkt t = 21 Tage direkt nach dem Fugenschluss

Bild 162: Momentenverlauf My zum Zeitpunkt t = ∞

Der Vergleich mit den Stützmomenten im Grundzustand aus Eigengewicht und Ausbaulast zeigt,

dass sich das Stützmoment zu 72,2 % des Eingussmomentes durch Kriechumlagerungen aufbaut.

MEinguss = MGrund,Eigengewicht + MGrund,Ausbau = 24050,33 + 1697,42 = 25747,75 kNm

722,075,2574773,18601

MMEinguss

t ==∞=

Technische Universität Berlin Fachgebiet Massivbau Seite 111

Page 118: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Als Ergebnis aus der Schwindbelastung erhalten wir im Grundzustand eine Normalkraft von

408060 MN, was nicht verwunderlich ist, da das System horizontal unverschieblich gelagert ist.

Durch das Kriechen kann sich diese große Kraft jedoch nicht aufbauen und wir erhalten zum Zeit-

punkt t = ∞ nur eine Normalkraft von 80,371 MN.

Zusätzlich können auch die Schnittkräfte und Verformungen zu den Zeitpunkten t = 100 Tage und

t = 300 Tage ausgewertet werden.

Seite 112 Fachgebiet Massivbau Technische Universität Berlin

Page 119: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

12 Klebebewehrung

12.1 Statisches System und Geometrie

30,00

Bild 163: Aufgabenstellung

Beton: C30/37

Betonstahl: BSt 500S

CFK: E = 165000 N/mm²

Zunächst wird im Startdialogfenster „Allgemeine Einstellungen“ „Eben“ als Strukturtyp, die „DIN“

als Norm und „Straßenbrücken“ als Bauwerkstyp festgelegt. Die Materialeigenschaften werden

gemäß der Aufgabenstellung im Menü „Einstellungen/ Baustoffe“ angepasst. Zusätzlich muss ein

neuer Baustoff „CFK“ definiert werden mit dem Typ „Faserverbund“ und mit der Klasse „Faser-

verbund“, die zunächst neu erzeugt werden muss . Dazu wird der Button betätigt und eine

Baustoffklasse „Faserverbund“ mit E = 165 kN/mm² erzeugt.

Technische Universität Berlin Fachgebiet Massivbau Seite 113

Page 120: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 164: Materialeigenschaften CFK

Da Änderungen der Bewehrung an den Standardquerschnitten nicht erfolgen können, muss die

Eingabe der Querschnitte im Programm FAGUS erfolgen, dass mit der Schaltfläche gestartet

wird. Als Bezeichnung für den Querschnitt verwenden wir „Brückenträger“.

Anschließend muss dieser jetzt in einen editierbaren Querschnitt umgewandelt wer-

den. Auf der Registerkarte „Bewehrung“ wird mit der Schaltfläche „Spannglied / Lamelle“ die

CFK-Lamelle in den Querschnitt eingefügt. Als Baustoff für die Lamelle wählen wir CFK und geben

eine Fläche von 5000 mm² vor. Auf der Registerkarte „Bemessung“ wählen wir „bemessen“,

„Fläche nur unter Zug bemessen“ und definieren einen Startwert von 100 mm². Die Klebebeweh-

rung wird an der Unterseite des Hohlkastens in der Mitte angeordnet (siehe Bild 163). Die beiden

Bewehrungslagen oben und unten werden jeweils auf einen Stahlquerschnitt von 50000 mm² ge-

ändert.

Zusätzlich werden noch zwei Resultatpunkte „Schlaffstahl“ und „CFK“ für die Längsdehnungen im

Betonstahl mit dem Bezugselement „bottom“ und in der Klebebewehrung mit dem Bezugselement

„PP1“ erzeugt .

Auf der Registerkarte „Analysen“ muss nun noch die zulässige Stahldehnung und der Verbund

definiert werden. Dies ändern wir beispielhaft für den „AP2: Tragsicherheit“. Nachdem der

entsprechende Analyseparameter gewählt wurde können die Einstellungen mit geändert

werden. Hier tragen wir zunächst auf dem Register „Grenzdehnungen/ -spannungen“ die Dehnung

für die Zugbewehrung εs1 = 25 ‰ ein. Auf der Registerkarte „weitere Werte“ muss nun noch die

Berücksichtigung für den Verbundbeiwert aktiviert werden, wie es im Bild 165 dargestellt ist.

Seite 114 Fachgebiet Massivbau Technische Universität Berlin

Page 121: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 165: Aktivieren des Verbundbeiwertes

Jetzt kann die Eingabe des Tragwerks erfolgen . Dafür definieren wir einen Stab von {0;0} bis

{30;0}. Als Lager wählen wir links ein Festlager und rechts ein Gleitlager .

12.2 Lasten Als Lasten definieren wir zusätzlich zu dem automatisch erzeugten Eigengewicht eine Ausbaulast

„Aus“ von -80 kN/m. Zusätzlich soll eine Einzellast von 960 kN in der Einwirkungskategorie „Last-

modell 1 Q (TS)“ mit dem Bezeichner „TS“ und der Beschreibung „Tandemsystem“ mittig

angreifen. Ebenfalls wird eine zugehörige Streckenlast von -100 kN/m in der Einwirkungskategorie

„Lastmodell 1 q (UDL)“ mit dem Bezeichner „UDL“ und der Beschreibung „Verkehr“ erzeugt. Diese

vier Lasten kombinieren wir in einer Kombination „K1“, „existierende Lasten“. Der Grund für die

Verstärkung mit CFK soll eine zusätzliche Belastung „B1“ mit der Beschreibung „Zusatzlast“ von

-150 kN/m sein in der Einwirkungskategorie „Lastmodell 1 q (UDL)“.

12.3 Berechnung Auf dem Registerblatt „Berechnungen“ muss zunächst eine Grenzwertspezifikation erstellt wer-

den, die wir für die späteren Berechnungen benötigen. Hier wird mit eine Grenzwertspezifika-

tion „Tragsicherheit“ erstellt für die Bemessungssituation „Standard“ und den Grenzzustand „Trag-

sicherheit Grenzzustand Typ 2 (1B)“. Zunächst muss jetzt mit einem Doppelklick auf „Straßen-

verkehr (Set)“ mit eine neue Einwirkungsgruppe für den Einwirkungsset „Straßenverkehr“ an-

gelegt werden (siehe Bild 141). Danach können im Editor für die Einwirkungskombinationen die

Einwirkungskombinationen nach Eurocode mit der Schaltfläche erstellt und der Dialog ge-

schlossen werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 115

Page 122: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nun kann eine neue Spezialberechnung ( + ) für die Klebebewehrungsanalyse mit der

Beschreibung „CFK Verstärkung“ angelegt werden. Als Zusatzbeanspruchung nach dem Einbau

wird die soeben erstellte Grenzwertspezifikation „Tragsicherheit“ angegeben. Als Analyse sollen

die Spannungsnachweise im Analyseparameter „AP2: Tragsicherheit“ geführt werden. Die

Einstellungen erfolgen nach Bild 166.

Bild 166: Einstellungen für die Klebebewehrungsanalyse

12.4 Ergebnisse Auf der Registerkarte „Resultate“ können nun die Standardergebnisse für die Klebebewehrung

ausgegeben werden (siehe Bild 167). Es sollen zunächst die Stahlspannungen oben und unten

betrachtet werden.

Bild 167: Resultatausgabe für die Klebebewehrung

Die Stahlspannungen sind im Bild 168 dargestellt.

Bild 168: Verlauf der Stahlspannungen

Seite 116 Fachgebiet Massivbau Technische Universität Berlin

Page 123: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nachdem die Standardergebnisse einmal berechnet wurden können auch die Zusatzergebnisse

abgefragt werden. Hier soll zunächst der Normalkraftverlauf in der Lamelle dargestellt werden. Das

entsprechende Ergebnis heißt „N+1-min/max“. Das „+“ bedeutet, dass hier die Maximal- bzw. Minimal-

werte dargestellt werden. Der Normalkraftverlauf ist im Bild 169 dargestellt.

Bild 169: maximale und minimale Normalkraft in der CFK-Lamelle (N+1-min/max)

Von Interesse ist natürlich auch die Änderung der Normalkraft in der CFK-Lamelle, um auf Ver-

bundspannungen schließen zu können. An besonders kritischen Stellen sollte hier auf kurze Er-

gebnisschnittabstände geachtet werden, da die Differenz ΔN aus den Normalkräften zweier

benachbarter Abschnitte ermittelt wird. Das Ergebnis kann dann als der Verlauf ΔN/Δx ausgege-

ben werden und ist im Bild 170 dargestellt.

Bild 170: Änderung der Normalkraft über die Länge in der CFK-Lamelle (ΔN/Δx)

Ebenfalls können die Ergebnisse der von uns definierten Resultatpunkte ausgegeben werden. Sie

liegen einmal in der Form ε als Mittelwert und in der Form ε+ als Maximalwert vor (siehe Bild 171).

ε ε+ Bild 171: Definition von ε und ε+

Das Ergebnis für die maximalen Dehnungen ε+CFK in der CFK-Lamelle ist im Bild 172 dargestellt.

Bild 172: Dehnungen ε+CFK in der CFK-Lamelle

Technische Universität Berlin Fachgebiet Massivbau Seite 117

Page 124: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

13 Berechnung einer zweiteiligen Stütze Mit dem Programm PYRUS-5 soll eine Stütze mit veränderlichem Querschnitt bemessen werden.

13.1 eometrie und Belastung G

12,0

0

7,00

5,

00

45 45

90

30 1,20

1,50

G2,k

G1,k + Q1,k

A A

B B

Schnitt A-A:

10 ∅ 25 pro Seite

Schnitt B-B:

20 ∅ 25 pro Seite

60

90

74 8 8

60

1,50

1,24 1313

Baustoffe:

Beton C30/37 Zement: 32,5 R Betonstahl BSt 500S

qk

M1g,k

Q2,k

Belastung:

G1,k = 333 kN Q1,k = 500 kN

G2,k = 1037 kN Q2,k = 200 kN

M1,g,k = 286 kNm qk = 40 kN/m

Seite 118 Fachgebiet Massivbau Technische Universität Berlin

Page 125: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

13.2 Struktureingabe Die Analyse der Struktur soll mit dem Stützenmodul PYRUS-5 erfolgen. Dazu wird im CUBUS-Ex-

plorer eine neue PYRUS-5 Berechnung „zweiteilige Stütze“ angelegt und mit „Bearbeiten“

geöffnet. Als Strukturtyp wird „Eben“ und als Norm „DIN“ verwendet.

Zunächst sollten nun die Baustoffe im Menü „Einstellungen/ Baustoffe“ definiert werden. Hier

werden nur die Baustoffe Beton und Betonstahl benötigt. Die anderen Materialien können gelöscht

werden. Als Beton wählen wir einen C30/37 und als Betonstahl BSt 500 SA.

Jetzt kann direkt mit der Struktureingabe begonnen werden. Eine 4 m lange, im Fußpunkt einge-

spannte Stütze ist sofort vordefiniert. Die Eingabe der Werte erfolgt auf der rechten Seite. Hier

muss zunächst die Gesamtlänge der Stütze von 12 m eingegeben werden, wie es im Bild 173

dargestellt ist.

Bild 173: Eingabe der Gesamtlänge

Die Unterteilung in einzelne Abschnitte erfolgt dann mit der Schaltfläche „Stab durch Knoten

unterteilen“ (siehe Bild 174).

Bild 174: Unterteilung des Stabes durch einen Knoten

Den beiden Stäben müssen noch Querschnitte zugewiesen werden. Dazu wird der bereits

bekannte Querschnittseingabedialog geöffnet und ein neuer Querschnitt mit der Bezeichnung

„Querschnitt oben“ erzeugt . Der obere Teil existiert bereits als vordefinierter Querschnitt

C-RL . Hier kann jetzt als Breite 60 cm und als Höhe 90 cm eingegeben werden. Auf der

Registerkarte „Bewehrung“ kann nun die Bewehrung eingegeben werden und zwar für top und

bottom jeweils n = 10, ∅ = 25 und left und right jeweils As = 0 mm² (siehe Bild 175). Auf der Re-

gisterkarte „Randabstand“ muss für diesen Querschnitt noch der Randabstand auf 0,055 m gesetzt

werden. Danach kann die Eingabe abgeschlossen und der Querschnitt dem oberen Stab zugewie-

sen werden.

Technische Universität Berlin Fachgebiet Massivbau Seite 119

Page 126: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 175: Bewehrung für den oberen Stützenteil

Der Querschnitt für den unteren Stützenabschnitt ist nicht vordefiniert. Daher muss hierfür FAGUS

geöffnet und der Querschnitt „Querschnitt unten“ erzeugt werden. Auch hier kann zunächst der

parametrisierte Querschnitt C-RL mit einer Breite von 60 cm und einer Höhe von 1,50 m erzeugt

werden . Für die Bewehrung und die Randabstände gelten die gleichen Werte wie für den

oberen Teil. Nachdem dieser Querschnitt eingeführt wurde, muss er anschließend zur weiteren

Bearbeitung aufgelöst werden . Danach kann dann auf der Registerkarte „Bewehrung“

die Bewehrung left und right gelöscht werden und die Bewehrung top und bottom kann um jeweils

0,05 m nach innen dupliziert werden.

Bild 176: Bewehrung im unteren Stützenteil

Seite 120 Fachgebiet Massivbau Technische Universität Berlin

Page 127: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Nun kann der Querschnitt gespeichert und FAGUS geschlossen werden. Der erzeugte Querschnitt

wird dem unteren Stab zugeordnet.

Da das Lager schon richtig voreingestellt war, muss für die Struktur nur noch die Exzentrizität des

oberen Stabes eingegeben werden. Hier geben wir dem Stab 2 eine Exzentrizität unten und oben

von x = 0,3 m vor. Die Eingabe kann mit Hilfe des Drahtmodells kontrolliert werden.

Als letztes muss am Knoten 1 noch eine Grenze für die Bemessung der Bewehrung definiert

werden. Dazu wählen wir die Knotenbearbeitung und aktivieren auf dem Register für Knoten 1

die „Grenze für die Bemessung der Bewehrung“.

13.3 Belastung Als Belastung wird ein Lastfall „0-Auto-Eigengewicht“ mit dem Eigengewicht vom Programm auto-

matisch erzeugt. Zusätzlich werden noch zwei Lastfälle erzeugt ein Lastfall „Eigengewicht“ und ein

Lastfall „veränderliche Lasten“. Hier können die jeweiligen Lasten eingegeben werden. Die Maske

für die Knotenkräfte ist mit der Schaltfläche standardmäßig aktiviert. Die Eingabemaske für die

Stabkräfte lässt sich über den Button aufrufen. Der Jeweilige Knoten bzw. Stab lässt sich über

das Register an der linken Seite anwählen. Die Eingabe der Knotenkräfte im Lastfall Eigengewicht

für den Kopfpunktknoten 2 ist im Bild 177 dargestellt. Bei der Eingabe ist darauf zu achten, dass

die Lasten G1,k und Q1,k eine Exzentrizität von 30 cm in x-Richtung erhalten und die Last G2,k eine

Exzentrizität von -0,45 m in x-Richtung.

Bild 177: Eingabe der Eigengewichtslasten am Kopfpunkt (Knoten 2)

Technische Universität Berlin Fachgebiet Massivbau Seite 121

Page 128: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

13.4 Gefährdungsbilder Jetzt können wir auf die Registerkarte „Gefährdungsbilder“ wechseln und zwei neue Gefährdungs-

bilder erstellen . Ein Gefährdungsbild bezeichnen wir als „ohne Kriechen“ und das zweite als

„mit Kriechen“.

Zunächst sollte die Kriechzahl definiert werden. Das geschieht mit unter der Überschrift

Analyseparameter. Hier kann die Kriechzahl ϕ = 2,0 auf dem Register „weitere Werte“ eingegeben

werden. Die Kriechzahl hat auf die Berechnung ohne Kriechen keine Auswirkung, da hier die Last-

anteile Gφ = 0 sind (siehe Bild 178). Mit Gφ werden alle Lasten bezeichnet, die ständig und kriech-

erzeugend wirken. Ständige Lasten, die nicht kriecherzeugend wirken sind mit G bezeichnet.

Unter der Annahme, dass die Knicklänge die doppelte Stützenhöhe ist, was in diesem Fall nicht

ganz zutreffend ist, da es sich um eine Stütze mit veränderlichem Querschnitt handelt, bekommen

wir für Exzentrizität aus ungewollter Schiefstellung:

m035,02

2412100

12h100

1e 0

gesa0 =⋅

⋅=⋅

⋅=

l

Dieser Wert kann an die entsprechende Stelle der Maske eingetragen werden. Zuletzt müssen

noch die Teilsicherheitswerte für ständigen und veränderlichen Lasten so definiert werden, wie es

im Bild 178 dargestellt ist.

Bild 178: Einstellungen für das Gefährdungsbild „ohne Kriechen“

Die Eingabe für das Gefährdungsbild „mit Kriechen“ erfolgt ebenso, nur, dass das Eigengewicht in

der Spalte Gφ berücksichtigt wird und das Kästchen „Aktiv für Bemessung“ deaktiviert wird.

Seite 122 Fachgebiet Massivbau Technische Universität Berlin

Page 129: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

13.5 Bemessung Nun kann das Register „Bemessung“ geöffnet werden. Hier aktivieren wir zunächst die abschnitts-

weise Bemessung. Dabei ist jedoch Vorsicht geboten, da es sich um eine zeitaufwändige Iteration

handelt. Die Dauer der Berechnung ist abhängig vom Rechner und kann teilweise recht lange

dauern.

Wir erhalten die Resultate für das Gefährdungsbild „ohne Kriechen“, da „mit Kriechen“ nicht für die

Bemessung aktiv ist. Wären beide Gefährdungsbilder aktiv, würde CUBUS Min/Max-Werte zusätz-

lich zu den Einzelergebnissen ausgeben.

Als Ergebnisse können die Imperfektion in x-Richtung exα, die Verschiebungen DX und DZ, die

Schnittkräfte und Werte für die Bewehrung abgefragt werden. Wird „nur einzelne Werte gleichzeitig

darstellen“ deaktiviert, können auch mehrere Ergebnisse in einem Bild dargestellt werden. Bei-

spielhaft ist im Bild 179 die Bewehrung der Stütze ohne Berücksichtigung von Kriechen dargestellt.

Bild 179: Bewehrung ohne Berücksichtigung von Kriechen

Technische Universität Berlin Fachgebiet Massivbau Seite 123

Page 130: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

13.6 Analyse Auf der Registerkarte „Analyse“ stehen zwei Analysetypen zur Verfügung. Zum einen die Fixlast-

analyse und zum andern die Grenzlastanalyse. Bei der Fixlastanalyse wird die Antwort des

Systems auf die vorgegebene Belastung berechnet. Es kann sowohl eine durch den Querschnitt

vorgegebene Bewehrung als auch die im letzten Schritt bemessene Bewehrung verwendet

werden. Als Ergebnisse können die Schnittkräfte, Verschiebungen, Spannungen, Dehnungen und

Steifigkeiten abgefragt werden.

In der Grenzlastanalyse wird ein Grenzlastfaktor berechnet, der angibt, mit welchem Faktor die

variablen Belastungen bis zum Versagen des Systems erhöht werden können. In unserem Fall

erhalten wir unter Verwendung der bemessenen Bewehrung einen Grenzlastfaktor γ = 1,00 ohne

die Berücksichtigung von Kriechen und γ = 0,98 unter Berücksichtigung von Kriechen, da die Be-

wehrung ja ohne Kriechen bemessen wurde. Im Bild 180 sind die Momentverläufe mit (links) und

ohne (rechts) Berücksichtigung von Kriechen dargestellt.

Die Darstellung von Zwischenwerten im Momentenverlauf erfolgt, indem der Werkzeugkasten

„Diagramm“ mit einem Doppelklick auf den Momentenverlauf aufgerufen wird und dort mit

„Kurvenpunkt beschriften“ alle gewünschten Teilabschnitte beschriftet werden.

Seite 124 Fachgebiet Massivbau Technische Universität Berlin

Page 131: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

a) b)

Bild 180: Momentenverlauf mit Berücksichtigung von Kriechen (links) und ohne Berücksichti-gung von Kriechen (rechts)

Technische Universität Berlin Fachgebiet Massivbau Seite 125

Page 132: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

14 Analyse eines Verbundquerschnitts In diesem Beispiel soll eine Holz-Beton-Verbunddecke mit dem Modul FAGUS untersucht werden.

14.1 Geometrie und Belastung

2,0

25

10

15

Beton: C30/37

Holz: GL24h

Belastung Schritt 1 (nur Holz): My = 10 kNm

Belastung Schritt 2 (Verbundquerschnitt): ΔMy = 50 kNm

14.2 Struktureingabe Im CUBUS-Explorer wird ein neues FAGUS-5 Projekt angelegt, das als Holz-Beton-Verbund be-

zeichnet wird. Der Querschnitt in diesem Projekt wird als Holz-Beton bezeichnet.

Zunächst müssen die Materialien definiert werden. Es wird nur Beton C30/37 und Brettschichtholz

GL24h benötigt. Die benötigten Werte sind im Bild 181 gegeben. Die Klasse GL24h muss manuell

definiert werden , wobei der E-Modul von Emean = 11,6 kN/mm² zu 12 kN/mm² gerundet wird. Die

Werte sind der DIN 1052 (08/04), Tabelle F.9 entnommen.

Bild 181: Materialwerte homogenes Brettschichtholz GL24h

Die übrigen Materialien können gelöscht werden.

Seite 126 Fachgebiet Massivbau Technische Universität Berlin

Page 133: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Die Struktureingabe beginnt nun mit der Umfahrung des Teilquerschnitts „Platte“ . Dabei wird

die Platte als Polygon eingegeben. Die numerische Eingabe könnte beispielsweise lauten: {0;0},

{2;0}, {2;-0,15}, {0;-0,15}, {0;0}. Das Material dieser Fläche ist der definierte Beton.

Darunter wird eine weitere Teilfläche „Holz“ laut Aufgabenstellung angeordnet. Die Eingabe könnt

beispielsweise folgendermaßen erfolgen: {0,95;-0,15}, R{0;-0,25}, R{0,1;0}, R{0;0,25}, R{-0,1;0}.

Hier ist als Material das Brettschichtholz zu verwenden.

14.3 Analysen Zunächst wird ein neuer Analyseparameter „Kriechen“ definiert . Hier wird global ein Kriechbei-

wert im Register „weitere Einstellungen“ ϕ = 2,0 definiert.

Nun kann eine Serienrechnung vorgenommen werden, um die einzelnen Belastungsstufen be-

rücksichtigen zu können. Zunächst wird eine neue Serienrechnung „Serienrechnung“ erstellt.

Mit der Serienrechnung können mehrere Arbeitsschritte hintereinander ausgeführt werden. Die

fertige Serienrechnung ist im Bild 182 dargestellt. Folgende Schritte werden ausgeführt:

• Laden des Querschnitts „Holz-Beton“

• Deaktivieren des Plattenquerschnitts . Hier muss der Querschnitt „Platte“ ausgewählt

werden.

• Wahl des Analyseparameters AP1: Gebrauchstauglichkeit

• Spannungsanalyse mit Kräften . My = 10 kNm.

• Erzeugen eines Druckeintrags

• Aktivieren des Plattenquerschnitts . Hier ist wieder der Querschnitt „Platte“ auszuwählen.

• Zweiter Belastungsschritt: Spannungsanalyse mit Kräften . My = 50 kNm. Insgesamt wir

der Querschnitt jetzt mit 60 kNm belastet.

• Erzeugen eines Druckeintrags

Diese Serienrechnung berücksichtigt noch nicht Umlagerungen aus Kriechen.

Technische Universität Berlin Fachgebiet Massivbau Seite 127

Page 134: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 182: Erstellen der Serienrechnung

Die Serienrechnung kann nun gestartet werden . Die erzeugten Druckeinträge werden automa-

tisch dargestellt.

In einer zweiten Serienrechnung sollen nun die Einflüsse aus Kriechumlagerungen berücksichtigt

werden. Dazu wird eine neue Serienrechnung „Kriechen“ erzeugt . Jetzt führen wir folgende

Schritte in der Serienrechnung aus:

• Laden des Querschnitts „Holz-Beton“

• Wahl des Analyseparameters AP1: Gebrauchstauglichkeit

• Spannungsanalyse mit Kräften . My = 100 kNm.

• Erzeugen eines Druckeintrags

• Entfernen der ersten Last durch eine Spannungsanalyse mit Kräften . My = -100 kNm

• Wahl des Analyseparameters AP4: Kriechen

• Spannungsanalyse mit Kräften . My = 100 kNm

• Erzeugen eines Druckeintrags

Die Druckeinträge werden an die aus der ersten Rechnung angehangen und sind im Bild 183

dargestellt. In den beiden unteren ist zu erkennen, dass durch Kriechen die Spannung im Beton

von -7,2 N/mm² auf -4,6 N/mm² abgebaut wird. Im Ausgleich erhält der Holzbalken mehr Last.

Seite 128 Fachgebiet Massivbau Technische Universität Berlin

Page 135: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 183: Erzeugte Druckeinträge

Hinweis Werden Querschnittselemente deaktiviert, die von Null verschiedene Spannungen

aufweisen, so muss im Anschluss an diesen Schritt eine Spannungsanalyse durch-

geführt werden, um das innere Gleichgewicht wieder herzustellen. Es ist auch

möglich, eine Spannungsanalyse ohne Kräfte durchzuführen.

Technische Universität Berlin Fachgebiet Massivbau Seite 129

Page 136: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

15 Analyse eines einbetonierten Stahlquerschnitts In diesem Beispiel soll ein M-N-Diagramm und ein M-N-κ-Diagramm für eine Stahlbetonstütze mit

einbetoniertem HEB-Profil erstellt werden.

40

40

HEB 200 S235

20 10 10

20

10

10

Beton C30/37

Nachdem im CUBUS-Explorer ein Projekt „Beton-Stahlträger“ definiert wurde und das Programm

FAGUS-5 gestartet ist, muss zunächst die Norm geändert werden. Dies geschieht unter „Ein-

stellungen/ Allgemein“. Hier kann die Norm auf DIN geändert werden. Daraufhin können gleich die

Baustoffe angepasst werden. Es wird nur der Beton auf einen C30/37 geändert. Der Stahl ist

schon korrekt voreingestellt.

15.1 Struktureingabe Wir beginnen die Eingabe des Querschnitts mit dem Stahlbetonquadrat. Es soll so eingegeben

werden, dass der Mittelpunkt im Koordinatenursprung liegt. Hierzu wird der Teilquerschnitt umfah-

ren . Die Eingabe könnte beispielsweise folgendermaßen erfolgen: {0,2;0,2}, R{-0,4;0},

R{0;-0,4}, R{0,4;0}, R{0;0,4}. Anschließend kann das Walzprofil HEB 200 im Koordinatenursprung

{0;0} eingefügt werden . Der Beton wird dadurch automatisch um die Fläche des Stahlprofils

reduziert. Zum Schluss sollte die Querschnittseingabe kontrolliert werden .

15.2 Bewehrung Zusätzlich soll noch Bewehrung in den Querschnitt eingelegt werden. Dazu wird auf dem Register

Bewehrung zunächst der Randabstand auf 30 mm verringert. Die Hilfspunkte zur Bewehrungskon-

struktion sollten angezeigt werden . Die Hilfspunkte repräsentieren den Wert d1, also den

Seite 130 Fachgebiet Massivbau Technische Universität Berlin

Page 137: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Abstand von der Außenkante des Bauteils zum Schwerpunkt der Bewehrung. Auf die verschobe-

nen Hilfspunkte werden nun vier Punktbewehrungen eingefügt. Dabei können die Standardein-

stellungen verwendet werden.

15.3 Analysen Auf dem Register „Analysen“ kann dieser Verbundquerschnitt nun ausgewertet werden. Zunächst

soll das M-N-Interaktionsdiagramm für die Bewehrungsgehalte ρ = 0, 0,5 und 1 % ausgegeben

werden . Das Ergebnis zeigt Bild 184.

Bild 184: M-N-interaktion für ρ = 0, 0,5 und 1 %

Als zweites Ergebnis möchten wir die My-Mz-N-Beziehung betrachten. Es sollen die Graphen für

N = -2000, -3000 und -4400 kN ausgegeben werden. Die Darstellung im Bild 185 wird als allgemei-

nes Interaktionsdiagramm erzeugt.

Technische Universität Berlin Fachgebiet Massivbau Seite 131

Page 138: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 185: Interaktion My – Mz für N = 2000, 3000 und 4400 kN

Weiterhin soll noch das M-N-κ-Diagramm für den Querschnitt ermittelt werden. Es sollen die

Graphen für N = -1000, -2000 und -3000 kN ausgegeben werden . Es soll Biegung um die

y-Achse und eine positive Krümmung untersucht werden. Das Ergebnis wird im Bild 186 gezeigt.

Seite 132 Fachgebiet Massivbau Technische Universität Berlin

Page 139: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 186: M-N-κ-Diagramm

Als letztes soll ein Momenten-Steifigkeitsdiagramm für Biegung um die y-Achse und die Nor-

malkräfte N = -1000, -2000 und -3000 kN erzeugt werden. Auf der Ordinate wird EI aufgetragen

und es soll die negative Krümmung analysiert werden. Die Graphen sind im Bild 187 dargestellt.

Technische Universität Berlin Fachgebiet Massivbau Seite 133

Page 140: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Bild 187: Momenten-Steifigkeitsdiagramm

Seite 134 Fachgebiet Massivbau Technische Universität Berlin

Page 141: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

16 Analyse eines dünnwandigen Querschnitts In dieser Übung wird die Analyse des aus Blechen gefertigten Hohlkastens im Bild 188 vor-

geführt.

y

z Bl 4000 x 20

Bl 1600 x 16

Bl 2000 x 20

Werkstoff: S235

Bild 188: Material und Geometrie

Nachdem im CUBUS-Explorer ein FAGUS-Projekt „Hohlkasten“ definiert wurde und das Programm

FAGUS-5 gestartet ist, muss zunächst die Norm geändert werden. Dies geschieht unter „Einstel-

lungen/ Allgemein“. Hier kann die Norm auf DIN geändert werden. Daraufhin können gleich die

Baustoffe angepasst werden. Die Baustoffe können alle bis auf den Baustahl gelöscht werden.

16.1 Struktureingabe Die Eingabe des Querschnitts erfolgt als dünnwandiger Querschnitt in sechs Teilen. Die obere

Platte kann nicht als ein Querschnitt eingegeben werden, da in einem Knoten kein Querschnitt

durchlaufen kann. Die Eingabe kann also folgendermaßen erfolgen:

• Querschnitt 1: {0;0} bis {1;0}

• Querschnitt 2: {1;0} bis {3;0}

• Querschnitt 3: {3;0} bis {4;0}

• Querschnitt 4: Schnittpunkt 1 und 2 bis R{0;-1,2}

• Querschnitt 5: Schnittpunkt 2 und 3 bis R{0;-1,2}

• Querschnitt 6: Endpunkt 4 bis Endpunkt 5

Technische Universität Berlin Fachgebiet Massivbau Seite 135

Page 142: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

Anschließend sollte die Eingabe kontrolliert werden .

16.2 Analysen Im Register „Geometrie“ kann direkt die Ausgabe der Querschnittswerte mit der Schaltfläche

erfolgen. Im Folgenden sind die statischen Querschnittswerte abgedruckt:

Ax = 0,1584 Ix = 0,065848 ys = 2,00 Iyz* = 0,000000 eyM = 0,00

Ay = (=Ax) Iy = 0,044176 zs = -0,45 Iy* = 0,044176 ezM = -0,06

Az = (=Ax) Iz = 0,158401 β = 0 [°] Iz* = 0,158401

Auf dem Register Analysen können alle weiteren Untersuchungen durchgeführt werden. Zum

Beispiel lässt sich der Schubfluss für eine Einheitsquerkraft V = 1 darstellen . Das Ergebnis ist

im Bild 189 dargestellt.

Bild 189: Schubfluss im Querschnitt

Seite 136 Fachgebiet Massivbau Technische Universität Berlin

Page 143: FEM im Massivbau - Entwerfen und Konstruieren · Mit dem Finite-Element-Programm CEDRUS-5 können linear elastische, statische und dynamische Analysen von Platten- und Scheibentragwerken

FEM im Massivbau, Bemessung mit CUBUS

17 Literatur [1] CEDRUS-5 Handbuch, ab Programmversion 1.09, CUBUS AG, Zürich

[2] STATIK-5 Handbuch, ab Programmversion 1.10, CUBUS AG, Zürich

[3] FAGUS-5 Handbuch, ab Programmversion 1.03, CUBUS AG, Zürich

[4] PYRUS-5 Handbuch, Version 1.0, Oktober 2003, CUBUS AG, Zürich

[5] DIN 1045-1, 07/2001

[6] DIN 1052, 08/2004

Technische Universität Berlin Fachgebiet Massivbau Seite 137