236
G r u n d l a g e n d e r P h y s i k I Mechanik Vorlesungsskript A. Stampa Universität GH Essen (Version 1999)

G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Embed Size (px)

Citation preview

Page 1: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

G r u n d l a g e n d e r P h y s i k I

Mechanik

Vorlesungsskript

A. Stampa

Universität GH Essen

(Version 1999)

Page 2: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

I N H A L T

KAPITEL A: Einleitung Seite

1. Was ist Physik? 62. Messen, Einheiten 8

a) Größen und Zahlenwerte 8b) Zugeschnittene Größengleichung 9c) Grundeinheiten im SI - System 9

3. Bemerkungen zu Fehlern 10KAPITEL B: Kinematik 121. Die geradlinige Bewegung 12

a) Geschwindigkeit als Ableitung 12b) Differenziationsregeln 14c) Beispiel: die harmonische Schwingung 15d) Ermittlung des Weg - Zeit - Gesetzes durch Integration 17e) Geradlinige Bewegung mit konstanter Beschleunigung 19

2. Die krummlinige Bewegung von Teilchen 21a) Vektoren 21b) Einige Operationen mit Vektoren 22c) Realisierung von Vektoraddition: Überlagerung von Bewegungen 22d) Die Geschwindigkeit bei krummliniger Bewegung 24e) Produkte von Vektoren 26f) Beispiele für krummlinige Bewegung 30

α) Der waagerechte Wurf 30β) Die gleichförmige Kreisbewegung 31γ) Die Winkelgeschwindigkeit als Vektor 34δ) Der schiefe Wurf 35

g) Approximation von Kurven 38KAPITEL C: Dynamik von Massenpunkten 421. Die Newtonschen Axiome 42

a) Newtons Formulierung der Axiome 42b) Das Trägheitsprinzip 42c) Das Aktionsprinzip 43

α) Definition einer Kraftskala 43β) Zerlegung von Kräften 44

d) Das Reaktionsprinzip 46e) Historische Randbemerkungen 47

2. Kräfte 48a) Die Grundkräfte 48b) Die Gravitation 49c) Kraft zwischen ausgedehnten Körpern 52

α) Integration über Massenelemente 52β) Feldstärke 53γ) Der Fluß 53δ) Das Gesetz von Gauß 55

1

Harald Schüler
Harald Schüler
Harald Schüler
Harald Schüler
Page 3: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

d) andere Grundkräfte 57e) Kräfte zwischen makroskopischen Körpern 59

α) Kraft durch elastische Verformung 59β) Reibungskraft 60

3. Beispiele für einfache Bewegungen 62a) In zäher Flüssigkeit fallende Kugel 62b) Reibungsfreie Bewegung auf einer schiefen Ebene 64c) Die Atwoodsche Fallmaschine 65d) Die Rakete 66e) Dynamik der Kreisbewegung 67f) Geladenes Teilchen im Magnetfeld 68g) Kurvenneigung 69h) Das Geoid 69

4. Drehimpuls und Drehmoment 70a) Der Drehimpuls 70b) Das Drehmoment 71c) Der Flächensatz 72

5. Arbeit, Leistung, Energie 74a) Grundbegriffe 74b) Berechnung des Integrals 75∫ F • dsc) Die potentielle Energie 77

α) Was ist potentielle Energie? 77β) Äquipotentialflächen 79γ) Das Vorzeichen 80δ) Arbeit im Potentialfeld 80ε) Das Potential 81η) Potentialkurven 82

d) Die Kinetische Energie 84e) Der Energiesatz der Mechanik 86f) Verschiedene Energieformen 86g) Anwendung des Energiesatzes 87

α) Der Looping 87β) Der harmonische Oszillator 88γ) Das Fadenpendel 90δ) Anwendung des Energiesatzes bei Anwesenheit von Reibung 91ε) Leistung in einer Strömung 92ζ) Ausströmgeschwindigkeit 92

h) Kraft bei mehrdimensionalen Potentialen 936. Das Keplerproblem 94

a) Historisches 94b) Einige Eigenschaften von Kegelschnitten 97c) Herleitung der Bahngleichung 100

7. Scheinkräfte 104a) Was sind Scheinkräfte 104b) Scheinkräfte im rotierenden System 106

α) Formale Herleitung 106β) Die Zentrifugalkraft 109

2

Page 4: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

γ) Die Corioliskraft 110KAPITEL D: Dynamik von Massenpunktsystemen 1131. Der Massenmittelpunkt 113

a) Das Hebelgesetz 113b) Der Schwerpunkt beliebiger Massenpunktsysteme 114c) Schwerpunkt als Mittelwert 115d) Schwerpunkt kontinuierlicher Massenverteilungen 116

α) Übergang von diskreten zu kontinuierlichen Massen 116β) Das Massenelement 117γ) Wie berechnet man Volumenintegrale? 118

2. Bewegung des Schwerpunktes 121a) Das Aktionsgesetz 121b) Das Zweikörperproblem, reduzierte Masse 122

3. Dynamische Hilfsbegriffe 124a) Der Impuls 124b) Der Drehimpuls 124c) Energie 128

4. Stoßgesetze 129a) Was ist ein Stoß? 129b) Grundbegriffe 130c) Elastischer zentraler Stoß 130d) Stoß mit seitlicher Impulsänderung 134e) Der inelastische Stoß 135

KAPITEL E: Mechanik von Flüssigkeiten und Gasen 1371.Vorbemerkungen über Gase, Flüssigkeiten und feste Körper 1372. Druck in Gasen 1373. Hydrostatik 140

a) Das Eigengewicht ist vernachlässigbar 140b) Druck aufgrund des Eigengewichtes 141c) Auftrieb 142d) Die Barometrische Höhenformel 144e) Die Oberflächenspannung 146

4. Hydrodynamik 150a) Das Geschwindigkeitsfeld 150

α) Grundbegriffe 150β) Der Fluß 150γ) Die Kontinuitätsgleichung 151δ) Anzahl der Stromlinien 151

b) Die Bewegungsgleichung 152c) Der Satz von Bernoulli 153d) Innere Reibung von Flüssigkeiten 157

α) Was ist Viskosität? 157β) Die Grenzschicht 158γ) Die stationäre Rohrströmung 159δ) Das Stokesche Gesetz 161ε) Die Reynoldszahl 162

KAPITEL F: Mechanik starrer Körper 164

3

Harald Schüler
Harald Schüler
Harald Schüler
Page 5: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

1. Das Modell des starren Körpers 1642. Statik 1643. Grundbegriffe zur Beschreibung einer Rotation 167

a) Das Trägheitsmoment 167b) Der Drehimpulsvektor 168c) Berechnung des Trägheitsmomentes 170

4. Beispiele zur Bewegung starrer Körper 176a) Achse raum- und körperfest, äußeres Drehmoment konstant 176b) Achse körperfest, wird bei der Bewegung parallel verschoben 177c) Achse körperfest, kein äußeres Drehmoment 178d) Achse körperfest, Drehmoment senkrecht zu L 179e) Anwendungen der Kreiselgesetze 181

α) Wendeanzeiger 181β) Der Kreiselkompaß 181γ) Der Spielkreisel 181δ) Dynamische Stabilisierung des Fahrrads 182

KAPITEL G: Schwingungen 1831. Allgemeines 1832. Die harmonische Schwingung 183

a) Darstellung 183b) Die Kinematik der harmonischen Schwingung 184c) Schwingung eines Massenpunktes 185d) Die Schwingung eines ausgedehnten Körpers 188

3. Überlagerung von Schwingungen gleicher Frequenz 191a) Anwendung der Additionstheoreme 191b) Zeigerdiagramm 192c) Beispiele 193

4. Schwingung als komplexe Zahl 194a) Komplexe Zahl 194b) Algebraische Operationen mit komplexen Zahlen 195c) Satz von Moivre 196d) Anwendung der komplexen Zahlen auf Schwingungsprobleme 197

5. Die gedämpfte Schwingung 199a) Die freie gedämpfte Schwingung 199b) Die erzwungene Schwingung 201

6. Überlagerung bei ungleicher Frequenz oder Richtung 205a) Schwebungen 205b) Überlagerung von Schwingungen und ihren Oberschwingungen207c) Überlagerung bei verschiedenen Schwingungsrichtungen 209

KAPITEL H: Spezielle Relativitätstheorie 2111. Einleitung 211

a) Womit befaßt sich die Relativitätstheorie? 211b) Der Äther 212c) Versuche zur Bewegung der Erde durch den Äther 212

2. Aufbau der Relativitätstheorie 215a) Die Grundpostulate 215b) Direkte Folgerungen der Grundpostulate 215

α) Die Gleichzeitigkeit ist relativ 215

4

Harald Schüler
Harald Schüler
Page 6: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

β) Gleich gebaute Uhren gehen nicht gleich schnell 216γ) Längen werden unterschiedlich gemessen 217

c) Lorentztransformation 218α) Herleitung der Transformationsformeln 218β) Diskussion 220

d) Minkowski Diagramme 227α) Was sind Minkowski Diagramme? 228β) Zeitdilatation und Längenkontraktion im Minkowski Diagr. 229γ) Gegenwart, Vergangenheit, Zukunft 229δ) Der relativistische Dopplereffekt 231ε) Ein Zwillingsparadoxon 231

e) Experimente mit Uhren 233f) Experimente mit Elementarteilchen 234g) Andere Evidenzen 235

5

Page 7: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL A

Einleitung

1. Was Ist Physik?

Die Physik beschäftigt sich mit der unbelebten Natur, wobei im Gegensatz zur Chemie Än-

derungen der Stoffzusammensetzung weniger interessieren. Man erwartet von der Physik,

daß sie erklärt, wobei eine "Erklärung" sehr subjektiv ist. Z.B. finden manche Menschen, ei-

nen Sachverhalt als gut erklärt, wenn er auf das typische Verhalten von Menschen zurückge-

führt wird: Die rollende Kugel kommt zum Stillstand, weil sie erschöpft ist. Andere verlan-

gen eine mechanische Erklärung, etwa die Gravitationskraft als hervorgerufen durch den

Stoß vieler kleiner Teilchen. In der Physik soll eine Erklärung ein konsistentes Bild liefern

und Ereignisse vorhersagen. Die Anzahl der nicht beweisbaren Annahmen soll möglichst

klein sein, und das Gedankengebäude soll schön sein.

Aristoteles erklärte den Fall eines Steines, indem er sagte, jeder Körper ist bestrebt, den ihm

in der Welt zustehenden Platz einzunehmen. Damit wird der Fall erklärt und das Aufsteigen

leichter Gase. Das Verhalten von Mondmaterie auf der Erde wäre wahrscheinlich falsch vor-

hergesagt worden. Ebenso wurde die Geschwindigkeit beim freien Fall und der waagerechte

Wurf falsch vorhergesagt. Der Mangel an Erfolg in der der antiken griechischen Physik liegt

wahrscheinlich daran, daß die Kraft des Denkens überschätzt wurde.

Die Methode der Erkenntnisfindung in der Physik seit Galilei besteht aus zwei Elementen:

Dem Aufbau eines gedanklichen Modells, und der Überprüfung an der Wirklichkeit. Dieses

Wechselspiel von Hypothese und Experiment ist ein sehr universelles Verfahren, das alle Le-

bewesen zum Sammeln von Information über die Welt anwenden: In der Evolution geht man

davon aus, daß die Information in der Erbsubstanz codiert ist. Durch Mutation der Erbsub-

stanz wird als "Hypothese" eine neue Variante der Art vorgeschlagen. Wenn sie sich nicht

bewährt, stirbt sie aus. Das Experiment ist negativ ausgefallen. Wenn sie sich bewährt, wird

sie sich durchsetzen. Sie enthält im allgemeinen eine bessere Information über die Umwelt.

In diesem Fall entscheidet das Experiment über Leben und Tod. Beim Menschen gibt es im

täglichen Leben diese "harte" Überprüfung einer Hypothese etwa beim Überholmanöver. In

der Mehrheit der Fälle entscheidet die Überprüfung nicht unmittelbar über Leben und Tod,

sondern nur über die Richtigkeit der zugrunde gelegten Gesetze und Annahmen. Ein negati-

ver Ausgang eines wichtigen Experimentes läßt erwarten, daß das Weltbild geändert wird.

6

Harald Schüler
Page 8: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Häufig bleibt die ursprüngliche Version des Weltbildes als Näherung des neuen gültig. Ein

Experiment, das anders als vorhergesagt verläuft, ist also keine Schande, sondern im allge-

meinen ein Erfolg.

Man erkennt in der Geschichte der Physik Phasen, in denen die Entwicklung der Physik stark

behindert wurde, weil entweder das Experiment (die induktive Methode) oder die Theorie

(die deduktive Methode) überbewertet wurde. Ende des 19. Jahrhunderts haben sich die Posi-

tivisten mit Ernst Mach als prominenten Vertreter aus der Physik dafür eingesetzt, sich nur

mit Dingen zu beschäftigen, die beobachtbar sind. Dadurch ist die Entwicklung der

Atomtheorie und Kernphysik in Deutschland behindert worden. Heute scheut man sich nicht,

von Quarks als kleinsten Bausteinen der Materie zu sprechen und gleichzeitig zu fordern, daß

sie niemals einzeln in Erscheinung treten.

Oft wird von der Physik erwartet, daß sie eine Formel bereit hat, mit der es möglich ist, den

Lauf der Welt genau zu beschreiben. Dies kann die Physik nicht, denn

Man kennt diese Weltformel nicht. Man kennt nur eine näherungsweise Beschreibung der

Welt. Nur die Grenze der Ignoranz verschiebt sich.

Man kennt den augenblicklichen Zustand der Welt nicht. Im mechanischen Weltbild müß-

te man Ort und Geschwindigkeit aller Teilchen zu einem bestimmten Zeitpunkt kennen,

um ihr Verhalten für alle Zeiten vorhersagen zu können.

Weniger bekannt ist vielleicht, daß die qualitative Argumentation in der Physik eine wichtige

Rolle spielt.

Beispiel:

Warum sind bei großen Vögeln die Flügel lang und schmal, bei kleinen kurz und breit?

Argumentation: Die Auftriebskraft wird proportional der Fläche der Flügel sein, d.h (s.

Abb.1)

FA ∼ A ∼ LB

7

Page 9: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 1: Große Vögel haben im allgemeinen im Verhältnis

zur Körperlänge lange Flügel

Die Gewichtskraft wird proportional zum Volumen des Körpers sein und diese ist bei glei-

cher Gestalt proportional zu l3, wenn l die Länge des Körpers ist, also zu B3.

FG ∼ V ∼ B3

Da der Auftrieb die Gewichtskraft kompensieren muß, gilt FA = FG, und damit LB ~ B3, also

LB

∼ B

Qualitative Argumentationen sind Abschätzungen, die helfen, eine Situation besser zu

verstehen.

2. Messen, Einheiten

a) Größen und Zahlenwerte

Die natürliche Wahrnehmung ist unvollkommen. Bei technisch-physikalisch nicht vorbela-

steten Menschen löst die Vorstellung, daß es Dinge gibt, die unsere Sinne nicht wahrnehmen,

häufig Angstgefühle aus. So ist ein Grund für die emotionale Ablehnung von Kerntechnik,

daß man radioaktive Strahlen nicht sieht. In der Physik lernt man, daß tatsächlich nur ein ver-

schwindender Bruchteil der Wirklichkeit durch unsere Sinne wahrgenommen wird: Dem Au-

ge ist im Spektrum nur ein ein kleiner Bereich zugänglich. Optische Täuschungen verzerren

die Wirklichkeit. Das Wärmeempfinden ist relativ.

Zur Objektivierung von Aussagen werden physikalische Größen gemessen. Dabei ist eine

Größe ein Produkt von Zahl und Einheit. Die Masse meines Körpers ist z.B mK = 85 kg. Die

Einheit ist [mK] = kg. 85 ist die Maßzahl und sie ergibt sich aus Größe durch Einheit.

85 = mK / kg

8

Page 10: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Verschiedene Einheiten, die ein und dieselbe Eigenschaften messen, werden zu einer Dimen-

sion zusammengefaßt. So haben g, kg, Unze, Pfund die Dimension Masse, Meile, Zoll Meter

Die Dimension Länge. Wir benutzen SI - Einheiten, die alle Einheiten auf kg, m, s, A, K,

mol, cd zurückführen. Man benutzt dann Einheit und Dimension synonym. Stellt man in ei-

ner graphischen Darstellung Zahlenwerte von Größen dar, ist die Achsenbezeichnung Grö-

ße/Dimension. Zum Umrechnen von Einheiten ersetzt man die alten Einheiten durch die neu-

en, indem man die Umrechnungsbeziehungen in die Gleichung einsetzt, als handele es sich

um algebraische Größen.

Abb. 2: In Graphiken werden Zahlenwerte wiedergegeben. Daher

wählt man für die Beschriftung der Achsen am besten Größe / Einheit.

Beispiel: Umrechnen von 15 km/h in m/s:

Umrechnungsbeziehungen: 1 km = 103m

1 h = 3,6 103 s

also:

v = 15kmh

= 151km1h

= 15 103m3, 6 ⋅ 103s

= 153, 6

ms

b) Zugeschnittene Größengleichung

In der Technik benutzt man häufig Gleichungen, bei denen man Zahlenwerte für bestimmte

Einheiten rechts einsetzt und Zahlenwerte für andere Einheiten links erhält. Solche Gleichun-

gen nennt man zugeschnittene Größengleichungen.

Beispiel:

, wenn [l] = m, [t] = s und [v] = km/h.v = 3, 6 ⋅ lt

Koeffizienten wie hier die 3,6 sorgen dafür, daß die Gleichung trotz der unterschiedlichen

Einheiten richtige Ergebnisse liefert. Einem Physiker sind derartige Koeffizienten, die als

Zahlenwerte erscheinen suspekt. Er vermeidet sie daher nach Möglichkeit.

c) Grundeinheiten im SI - System

Das SI - System (Systeme International) führt alle Einheiten auf die 7 Grundeinheiten kg, m,

s, A (Ampere, zur Messung der elektrischen Stromstärke), K (Kelvin, zur Messung der Tem-

peratur), cd (Candela, zur Messung der Helligkeit) und mol (zur Messung der Stoffmenge)

9

Page 11: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

zurück. Die Grundeinheiten werden durch Meßvorschriften festgelegt. Das Kilogramm und

das Meter waren ursprünglich die Masse eines Probekörpers, des Urkilogramms, bzw der

Abstand zweier Markierungen auf einem anderen Probekörper, dem Urmeter. Die Körper

wurden so hergestellt, daß man darauf vertraute , daß sie ihre Eigenschaften beibehalten.

Verbesserungen in der Meßtechnik führen dazu, daß Definitionen der Grundgrößen verändert

werden. So legt man heute das Meter damit fest, daß man der Lichtgeschwindigkeit einen be-

stimmten Wert zuordnet (etwa 3 108 m/s ) und sagt, 1 m ist die Entfernung die das Licht im

Vakuum in 1/3·10-8 s zurücklegt. 1 s kann sehr genau über die Schwingungszeit einer be-

stimmten Linie des Cäsiumisotops Cs133 bestimmt werden. Die Messung erfolgt praktisch in

einer Atomuhr. Die zurückgelegte Strecke kann über die Resonanz in Hohlräumen sehr ge-

nau bestimmt werden. Generell kann man sagen, daß die Grundeinheiten verläßlicher wer-

den, wenn es gelingt, sie an atomare Eigenschaften anzuknüpfen. So kann man sich vorstel-

len, daß 1 A dadurch definiert wird, daß bei einer Stromstärke von einem Ampere die La-

dung 1Coulomb in einer Sekunde durch einen Leiterquerschnitt transportiert wird. 1 Cou-

lomb wäre dann die Ladung die durch einen Überschuß von einer bestimmten Anzahl von

Protonen oder elektrisch gleichwertigen Teilchen erzeugt wird. Heute wird 1A über die

Kraftwirkung zwischen zwei stromführenden Leitern definiert. Bei unseren Betrachtungen

benötigen wir die genauen Definitionen der Grundgrößen nicht. Die Definition der Tempera-

tureinheit werden wir im Teil "Wärmelehre" kennenlernen. 1 mol können wir uns als die

Stoffmenge vorstellen, die eine ganz bestimmte Anzahl von Teilchen enthält. Die Helligkeit

von Licht werden wir an die Einheit der Leistung in der Mechanik anknüpfen, die mit den

mechanischen Grundeinheiten kg, m, s definiert werden kann.

Die Anforderungen an die Genauigkeit der Grundeinheiten sind im Laufe der Zeit kontinu-

ierlich gestiegen. Während Heinrich I von England noch eine Elle über seine Armlänge fest-

legte, benötigt man heute für viele Zwecke eine Genauigkeit von 10 signifikanten Ziffern bei

der Festlegung einer Längeneinheit.

Oft wurden in der Physik Fortschritte dadurch erzeugt, daß Messungen für extreme Größen

entwickelt wurden, die bis dahin einer Messung nicht zugänglich waren. Man sollte sich da-

her klar machen, wie solche extremen Werte gemessen werden, etwa Längen im astronomi-

schen oder mikroskopischen Maßstab, Zeiten im Femtosekundenbereich oder in geologi-

schen Zeiträumen.

3. Bemerkungen zu Fehlern

10

Page 12: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Es gibt keine Messung ohne Fehler. Man unterscheidet absolute Fehler ∆x einer Meßgröße x

und relative Fehler ∆x/x. Ein absoluter Fehler ∆x = 2 mm kann eine sehr hohe Genauigkeit

bedeuten, etwa bei der Bestimmung des Abstandes zwischen Erde und Mond oder eine sehr

geringe Genauigkeit bei der Bestimmung der Größe einer Zelle. Selbst wenn der Stand der

Technik eingehalten wurde und systematische Fehler vermieden wurden, bleiben zufällige

Fehler. D.h. , wenn man eine Messung mehrmals hintereinander mit genügender Genauigkeit

ausführt, ergibt jede Einzelmessung im allgemeinen einen etwas unterschiedlichen Wert xi.

Trägt man die Anzahl der Messungen N(xi), die zu dem gleichen Wert xi führen gegen xi auf,

ergibt sich bei zufälligen Fehlern eine Gaußverteilung oder Normalverteilung.

N(x) = Ce−∆x2/2s2

Hierin ist C eine Konstante,

∆x die Abweichung des Meßwertes vom Mittelwert

der Mittelwert,x = x1 + x2 + ... + xnn = Σi=1

i=n xi

n

die Standardabweichung,s = 1n − 1 Σ (xi − x)2

der Fehler des Mittelwertes.∆s = sn

s gibt die Breite der Verteilung an. Bei Verteilungen von Größen aus einer Gruppe unter-

schiedlicher Objekte, etwa der Körpergröße einer Gruppe von Menschen, bleibt s unabhän-

gig von der Anzahl der Messungen. Bei mehreren Messungen an einem Objekt gibt der Mit-

telwert das eigentliche Resultat an, und der Fehler des Mittelwertes ∆x wird um so kleiner, je

mehr Messungen man durchführt. Die Gaußverteilung wird im Teil "Wärmelehre" abgeleitet.

Die Behandlung von Fehlern wird in der Physik kultiviert. Geben Sie keinen Zahlenwert in

Ziffern an, die nicht signifikant sind, da zu viele Ziffern eine zu hohe Genauigkeit vortäu-

schen und die Angabe falsch machen. Man schreibt daher in der Physik Zahlenangaben, be-

sonders von sehr großen oder sehr kleinen Zahlen, als Zahl mit Komma hinter der ersten Zif-

fer und Zehnerpotenz.

11

Page 13: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL B

Kinematik

Die Kinematik befaßt sich mit der Beschreibung einer Bewegung, die im allgemeinen Fall

sehr kompliziert sein kann. Man beschreibt eine solche Bewegung durch Koordinaten oder

Parameter in Abhängigkeit von der Zeit, etwa die Bewegung eines Punktes im dreidimensio-

nalen Raum durch die kartesischen Koordinaten x(t), y(t), z(t), die Bewegung eines ausge-

dehnten starren Körpers durch die Lage des Schwerpunktes im Raum und durch Winkel, die

seine Drehung angeben. Die Anzahl der unabhängigen Koordinaten, die zur Beschreibung ei-

ner Bewegung notwendig sind, nennt man die Zahl der Freiheitsgrade. Wir betrachten zu-

nächst die Bewegung von Teilchen, d.h. alle Effekte, die mit der Ausdehnung eines Körpers

zusammenhängen, werden auf später verschoben. Ein Teilchen hat maximal drei Freiheits-

grade. Zunächst interessiert uns der Zusammenhang von Weg - Zeit - Gesetz, Geschwindig-

keit und Beschleunigung.

1. Die geradlinige Bewegung

a) Geschwindigkeit als Ableitung

Wenn das Teilchen sich nur auf einer Geraden bewegen kann, wird die Bewegung durch die

Angabe der Position in Abhängigkeit von der Zeit, d.h. durch das Weg - Zeit - Gesetz x(t)

beschrieben. x kann positive oder negative Werte annehmen. Bei konstanter Geschwindigkeit

ist x(t) eine Gerade und v ist die Steigung der Geraden. Wenn man den Zeitnullpunkt so

wählt, daß bei ihm x = 0 ist, sind Weg und Zeit sogar proportional und

v = x(t)t

Abb. 3: Das Weg - Zeit - Gesetz bei konstanter Geschwindigkeit

Auch v kann positive und negative Werte annehmen. Bei einer beschleunigten Bewegung ist

x(t) im allgemeinen eine gekrümmte Kurve.

12

Harald Schüler
Page 14: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

v = x(t2) − x(t1)t2 − t1

Abb. 4: Das Weg - Zeit - Gesetz bei beschleunigter Bewegung

nennt man die mittlere Geschwindigkeit zwischen den Zeiten t1 und t2.

Beachte: Die mittlere Geschwindigkeit einer sinusförmigen Funktion bei Mittelung über gan-

ze Perioden ist Null.

Die Momentangeschwindigkeit, d.h. die Geschwindigkeit zu einem bestimmten Zeitpunkt, ist

der Grenzwert, den man erhält, wenn man die mittlere Geschwindigkeit in der Umgebung

des betrachteten Zeitpunktes ausrechnet und den Grenzwert für verschwindende Zeitinterval-

le bildet:

v(t) =∆t→0lim ∆x

∆t= dx

dt=•

x (t)

Abb. 5: Das Geschwindigkeits - Zeit - Gesetz bei

beschleunigter Bewegung

v(t) ist die Steigung der Kurve x(t) an der Stelle t. Im allgemeinen gilt nicht v = x/t. Wenn

x(t) numerisch gegeben ist, kann durch die mittlere Geschwindigkeit für kleine Zeitin-•x (t)

tervalle angenähert werden. . In der Physik ist die Benutzung von ∆x/∆t statt v ≈ ∆x/∆t

•x

für kleine Zeitintervalle ∆t legitim, da der Grenzübergang oft physikalisch nicht sinn-∆t →0

voll ist, wenn z. B. Abstände kleiner werden als atomare Abstände. Ist die Funktion x(t) ana-

lytisch gegeben, liefert die Mathematik einen Ausdruck für .•x (t)

Beispiel:

x = t2 •x = dx

dt=

∆t→0lim ∆x

∆t=

∆t→0lim

x(t2) − x(t1)t2 − t1

mit , also wirdt2 − t1 = ∆t t2 = t1 + ∆t

13

Page 15: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

∆x∆t

=(t1 + ∆t)2 − t1

2

∆t=

t12 + 2∆tt1 + ∆t2 − t1

2

∆t= 2t1 + ∆t

daraus folgt∆t→0lim ∆x

∆t= 2t1

In der Physik schreibt man gerne , denndydx

statt y /(x)

α) Die unabhängige Variable, nach der abgeleitet wird, ist zu erkennen. Dies ist wichtig,

da man es in der Physik meist mit mehrere unabhängigen Variablen zu tun hat.

β) Die Dimension der durch die Ableitung entstehenden Größe ist zu erkennen:

dx

dy =

xy

= [x]

[y]γ)Die Schreibweise suggeriert einen Näherungsausdruck für y/ (x):

dydx

≈∆y∆x

b) Differenziationsregeln

Ähnlich wie oben für die Funktion y = t2 kann man durch Grenzwertbildung für eine Reihe

von Funktionen Ausdrücke für die Ableitung finden. Im folgenden werden die Ableitungen

für einige elementare Funktionen angegeben.

Ausgangsfunktion differenzierte Funktion

sinx (x im Bogenmaß: x/x° = 2π/360°) cosx

cosx -sinx

x2 2x

(1/2)ax2 ax

xn nxn-1

const 0

ex (e = 2,718...) ex

Durch einige Rechenregeln lassen sich Funktionen, die aus den elementaren Funktionen zu-

sammengesetzt sind differezieren:

Rechenregeln:

14

Page 16: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Linearität: wenn folgt x = x1(t) + x2(t) dxdt

= dx1

dt+ dx2

dtBeispiel: x(t) = x1(t) + c → •

x (t) = x1(t)

Produktregel: wenn folgtx(t) = x1(t) • x2(t) dxdt

= dx1

dtx2 + x1

dx2

dtBeispiel: x(t) = cx1(t) → dx

dt= c

dx1

dt

Kettenregel: wenn folgtx = x1(x2(t)) dxdt

= dx1

dx2• dx2

dtBeispiel: x(t) = sin ω t → •

x (t) = ωcos ω t

Die Linearität besagt physikalisch, daß sich bei der Überlagerung zweier Bewegungen die

Geschwindigkeiten addieren, also, wenn ich in einem Fahrzeug sitze, das mit einer Ge-

schwindigkeit von 80 km/h fährt, und mich jemand überholt, wobei seine Geschwindigkeit

von meinem Fahrzeug aus gemessen 40 km/h beträgt, hat er eine Geschwindigkeit von 120

km/h. In der Relativitätstheorie gilt die lineare Überlagerung der Geschwindigkeiten nicht

mehr.

Beschleunigung

Die mittlere Beschleunigung im Zeitintervall ∆t ist die Geschwindigkeitsänderung in dieser

Zeit geteilt durch ∆t:

−a = ∆v

∆t

Die Momentanbeschleunigung ist

a = dvdt

= •v = d2x

dt2= d

dt

ddt

x

ist ein Operator. Ein Operator gibt eine Rechenvorschrift an, die auf den dahinter stehen-ddtden Ausdruck angewandt werden soll. Der Operator muß als Einheit betrachtet werden, in

der z.B. die Größen über und unter dem Bruchstrich nicht gekürzt werden dürfen.

c) Beispiel: die harmonische Schwingung

Betrachte die Projektion s eines mit konstanter Drehzahl rotierenden Punktes.

Nach Abb. 6 gilt

15

Page 17: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

. sR

= sin α

Abb. 6: Die harmonische Schwingung kann als die Bewegung aufge-

faßt werden, die die Projektion einer Kreisbewegung ausführt.

Der Drehwinkel α (im Bogenmaß gemessen) soll proportional zur Zeit anwachsen

α = ω t

Das Weg - Zeit - Gesetz der Projektion lautet also

s = R sin ω t

Die Konstante ω nennt man die Winkelgeschwindigkeit. Den Zusammenhang von Winkelge-

schwindigkeit und Umlaufperiode findet man, indem man in der Gleichung, mit der ω defi-

niert wurde, die Werte für eine Umdrehung einsetzt:

α = 2π, t = T

T ist die Zeit für einen Umlauf, die Periode. Damit wird die Winkelgeschwindigkeit

ω = 2πT

s hat sein Maximum, wenn sinωt = 1 ist. Dann ist also s = |R|. s0 = | R| nennt man die Ampli-

tude. Das Weg - Zeit - Gesetz hat also die Form

s = s0sin ω t

Die Geschwindigkeit ergibt sich dann durch Differenziation

v = •s = ω s0cos ω t =v0cos ω t

16

Page 18: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

In der obigen Formel wurde die Größe vor dem Kosinus, d.h. die Amplitude der Geschwin-

digkeit mit v0 = ωs0 abgekürzt. Die Beschleunigung ergibt sich durch nochmalige

Differenziation

Abb. 7: Der Ort (oben), die Geschwindigkeit (Mitte) und

die Beschleunigung (unten) in Abhängigkeit von der Zeit bei

der harmonischen Bewegung.

a = •v = −ω2s0sin ω t = a0sin ω

Die Amplitude der Beschleunigung ist also a0 = -ω2s0. Durch Vergleich des Beschleunigungs

- Zeit - Gesetzes und des Weg - Zeit - Gesetzes erkennt man, daß s(t) und a(t) bis auf den

konstanten Faktor -ω2s0 den gleichen Verlauf haben (s. Abb. 7):

a = -ω2s.

d) Die Ermittlung des Weg - Zeit - Gesetzes durch Integration

Im vorigen Abschnitt wurde gezeigt, wie man aus einem bekannten Weg - Zeit - Gesetz x(t)

die Geschwindigkeit und die Beschleunigung ermittelt. Im folgenden Abschnitt geht es um

die umgekehrte Aufgabe: v(t) sei bekannt und x(t) soll ermittelt werden. Diese Umkehrope-

ration muß bei einer der Grundaufgaben der Mechanik bewältigt werden: bei bekannten

Kräften auf einen Körper, seine Bewegung auszurechnen. Da F = ma, ist primär a bekannt

und aus a muß v(t) und schließlich x(t) bestimmt werden.

Wenn v konstant ist, gilt x = v0t. x ist geometrisch die Fläche des durch v und t aufgespann-

ten Rechtecks (Abb. 8 oben). Wenn v nicht konstant ist, teilt man die Gesamtzeit in Zeitinter-

valle ∆t ein, die so klein sind, daß sich innerhalb von ∆t v genügend wenig ändert. Für jedes

Teilintervall gilt ∆xi = vi∆t. ∆xi entspricht dem schraffierten Flächenstück unter der v(t) -

17

Page 19: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Kurve (Abb. 8 unten). Der gesamte zurückgelegte Weg ist geometrisch durch die Fläche ge-

geben, die

durch v(t), die t - Achse und durch die Parallelen zur v - Achse durch t1 und t2 begrenzt wird.

Man schreibt

Abb. 8: Bei konstanter Geschwindigkeit ist s = vt (oben). Daher ist

bei variabler Geschwindigkeit s die Fläche unter der Kurve v(t).

x =∆t→0lim Σv i(t)∆t = ∫t1

t2v(t)dt

Die Integration ist die Umkehrung der Differenziation. Man kann also die "Stammfunktion"

x(t) aus der Tabelle der Differenziationsformeln ablesen. Dabei ist zu beachten, daß die

Stammfunktion nicht eindeutig bestimmbar ist. Wenn v = at ist . Aber, wenn v =•v = a

at + c, ist ebenfalls , da Die Integralfunktion ist also nur bis auf eine unbe-•v = a d

dtc = 0.

stimmte Konstante bekannt. Sie heißt deshalb unbestimmtes Integral. Die additive Konstante

bestimmt man aus den Anfangsbedingungen. Das bestimmte Integral ist eine Zahl. Sie ergibt

sich aus:

∫ t

t2v(t)dt = [x(t)] t1

t2 = x(t2) − x(t1)

x(t) (wir schreiben im folgenden auch häufig s(t) ) ist die Stammfunktion von v(t). Analog

gilt

v = ∫ a(t)dt

Die wichtigsten Formeln für die Kinematik der geradlinigen Bewegung lauten also:

18

Page 20: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

v = dsdt

, a = dvdt

= d2s2

s(t) = ∫v(t)dt, v(t) = ∫ a(t)dt

e) Geradlinige Bewegung mit konstanter Beschleunigung

Es soll vorausgesetzt werden:

a = const und zur Zeit t = 0 sei v = v0 und s = s0.

Dann ist v = ∫ adt = at + c1

Durch Einsetzen der Anfangsbedingung für v ergibt sich

v0 = a ⋅ 0 + c1, v0 = c1

also v = at+v0

Durch nochmaliges Integrieren ergibt sich

s = ∫vdt = ∫ (at + v0)dt = 12

at2+v0t + c2

Durch Einsetzen der Anfangsbedingung für s erhält man die Konstante s2

s0 = 12

a ⋅ 02+v0 ⋅ 0 + c2, c2 = s0

Das Weg - Zeit - Gesetz lautet damit

s = 12

at2+v0t + s0

Sonderfälle

α) Freier Fall

Hier ist a = g. g ist die Erdbeschleunigung. v0 und s0 sollen zur Zeit t = 0 verschwinden. Dann

ist der beim Fall zurückgelegte Weg

s = 12

gt2

19

Page 21: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

und die Geschwindigkeit nach der Zeit t

v = gt

β) Bremsvorgang

Hier wird für eine Abschätzung a ebenfallsals konstant angesehen. Der Zahlenwert ist nega-

tiv. Das hat allerdings auf die formelmäßige Ausrechnung keinerlei Auswirkung. Die An-

fangsgeschwindigkeit ist jetzt ungleich Null v = v0. Der Bremsweg wird von dem Ort an ge-

messen, an dem sich das Fahrzeug zur Zeit t = 0 befand: s0 = 0. Das Weg - Zeit - Gesetz

heißt also:

s = 12

at2 + v0t

Das Geschwindigkeits - Zeit - Gesetz

v = at+v0t

Die Bremszeit ergibt sich aus der Bedingung v(tB) = 0

tB = −v0a

und mit dieser Zeit der zurückgelegte Weg aus dem Weg - Zeit - Gesetz

sB = 12

av0

2

a2−v0

v0a = −1

2v0

2

a

Als Anwendung wird die Bremsverzögerung ausgerechnet, die bei der Faustformel aus der

Fahrschule vorausgesetzt wird:

sBm =

v0

km/h ⋅ 10

2

=

v0 ⋅ 3, 6 ⋅ 103s103m ⋅ 10

2

=v02 3, 62

100s2

m2

Vergleich mit der Formel für den Bremsweg ergibt

−2a = 1003, 62

ms2

→ a = −3, 86 ms2

20

Page 22: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

2. Die krummlinige Bewegung von Teilchen

a) Vektoren

α) Vektoren als Zahlentripel

Zur Beschreibung der Bewegung eines Teilchens in drei Dimensionen gibt man seine drei

Koordinaten, z.B. die Projektionen seines Aufenthaltsortes auf die drei kartesischen Achsen

an: x(t), y(t), z(t) (s. Abb. 9). Zur Vereinfachung sagt man, die Position ist gegeben durch

den Ortsvektor x.

x(t) =

x(t)y(t)z(t)

Allgemein ist

a =

ax

ay

az

ax, ay, az sind die Komponenten von a. a enthält die Information über den Abstand des Punk-

tes vom Koordinatenursprung. Dies ist der Betrag des Vektors

,a = a = ax2 + ay

2 + az2

und die Richtung der Verbindungslinie zwischen Koordinatenursprung und der Position des

Punktes. Man kann daher einen Vektor geometrisch als Pfeil darstellen, dessen Schwanz im

Koordinatenursprung ruht, während seine Spitze auf den betrachteten Punkt zeigt. Alle phy-

sikalischen Größen, für die die Angabe der Richtung wichtig ist, wie s, v, a, F, B werden

durch Vektoren dargestellt.

v(t) =

vx(t)vy(t)vz(t)

, F =

Fx

Fy

Fz

Alle übrigen wie Masse, Energie, Zeit nennt man Skalare.

21

Page 23: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 9: Die Länge eines Vektors im dreidimensionalen Raum.

b) Einige Operationen mit Vektoren

Die Vektorschreibweise kürzt ab. Es bedeutet:

a + b = c: ax + bx = cx

ay +by = cy

az +bz = cz

b = αa: (α soll ein Skalar sein) bx = αax

by = αay

bz = αaz

v =•x

vx = •x

vy = •y

vz = •z

x(t) = ∫ v(t)dtx = ∫ vx(t)dty = ∫ vy(t)dtz = ∫ vz(t)dt

Es gibt verschiedene Produkte zwischen Vektoren, die bestimmten Erfordernissen in der

Physik angepaßt sind (s. Abschnitt e).

c) Realisierung von Vektoraddition: Überlagerung von Bewegungen

Bewegt sich ein Fahrzeug mit x0(t) auf einer Straße und beschreibt man die Bewegung eines

Körpers auf dem Fahrzeug relativ zum Fahrzeug mit xrel(t), so ist die Gesamtbewegung des

Körpers von der Straße aus gesehen (s. Abb. 10)

22

Page 24: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 10: Überlagerung von Bewegungen,

erklärt am eindimensionalen Fall.

xges(t) =x0(t) + xrel(t)

Durch Differentiation erhält man

vges(t) = v0(t) + vrel(t)

ages(t) = a0(t) + arel(t)

Geschwindigkeiten und Beschleunigungen addieren sich zur Gesamtgeschwindigkeit bzw.

zur Gesamtbeschleunigung. Die Überlagerung von zweidimensionalen Bewegungen ist in

Abb. 11 dargestellt. Danach gilt hier:

Abb. 11: Addition von Bewegungen in der Ebene.

xges(t) = x0(t) + xrel(t)

yges(t) = y0(t) + yrel(t)

usw.

d.h. xges(t) = x0(t) + xrel(t)

vges(t) = v0(t) + vrel(t)

ages(t) = a0(t) + a rel(t)

Geometrisch erhält man also die Vektoraddition, indem man durch Parallelverschiebung ei-

nen der Vektoren mit seinem Schwanz an den Kopf des anderen hängt. Der Summenvektor

23

Page 25: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ist dann der Pfeil zwischen Schwanz und Kopf des gesamten Gebildes (Abb. 12). Diese Kon-

struktion ist mit der Parallelogrammkonstruktion äquivalent. Der Differenzvektor ist der

Pfeil zwischen den Spitzen der Ausgangsvektoren (Abb. 13).

Abb. 12: Vektoraddition nach der Kopf - an Schwanz - Methode

Abb. 13: Die Differenz zweier Vektoren

d) Die Geschwindigkeit bei krummliniger Bewegung

Die Definition der Geschwindigkeit, wie sie oben vorgenommen wurde, weicht von dem Ge-

schwindigkeitsbegriff, wie er im täglichen Leben verwendet wird, ab. In der Physik benötigt

man zur Charakterisierung der Geschwindigkeit eines Körpers im Raum drei Zahlen. Im täg-

lichen Leben begnügt man sich mit einer Zahl, etwa der Anzeige des Tachometers im Auto.

Von der physikalischen Definition her ist dies der Betrag des Geschwindigkeitsvektors. Man

sagt auch die Bahngeschwindigkeit. Um uns den Zusammenhang zwischen dem Vektor der

Geschwindigkeit und seinem Betrag zu veranschaulichen, stellen wir uns vor, wir wollten die

Bahngeschwindigkeit eines Fisches, der in einem Aquarium auf einer gekrümmten Bahn

schwimmt, messen. Dazu nehmen wir mit drei Videokameras, die senkrecht auf drei Außen-

flächen des Aquariums ausgerichtet sind, den Fisch in gleichen Zeitabständen ∆t auf. In die-

ser Zeit ändert sich die Position in den drei Koordinatenrichtungen um ∆x, ∆y und ∆z. Der

Geschwindigkeitsvektor ist also

v =

∆x∆t∆y

∆t∆z∆t

Der Betrag der Geschwindigkeit ist durch den Betrag des zurückgelegten Weges

∆x = ∆x2 + ∆y2 + ∆z2

24

Page 26: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

geteilt durch ∆t näherungsweise gegeben. (Für den genauen Wert muß man den Grenzwert

bilden). Daher ist die Bahngeschwindigkeit näherungsweise

v ≈ ∆x∆t

=∆x2 + ∆y2 + ∆z2

∆t=

∆x∆t

2

+ ∆y∆t

2

+ ∆z∆t

2

und exakt nach dem Grenzübergang:

v =

dxdt

2

+

dydt

2

+

dzdt

2

= vx2 + vy

2 + vz2 = v

Die Bahngeschwindigkeit ist also identisch mit dem Betrag des Geschwindigkeitsvektors.

Entsprechendes gilt für den Betrag der Beschleunigung.

Beachte: Den Vektor der Beschleunigung erhält man aus der Differentiation des Vektors der

Geschwindigkeit, aber den Betrag der Beschleunigung erhält man im allgemeinen Fall nicht

aus Differentiation des Betrages der Geschwindigkeit.

Dies wird in den unten durchgerechneten Beispielen von krummlinigen Bewegungen (der

Kreisbewegung und dem waagerechten Wurf) deutlicher. Man kann es aber jetzt schon an-

schaulich einsehen. Bei einer Kreibewegung, die mit konstanter Bahngeschwindigkeit ver-

läuft, ändert sich der Betrag der Geschwindigkeit definitionsgemäß nicht. Die Richtung der

Geschwindigkeit ändert sich aber ununterbrochen. Der Geschwindigkeitsvektor ist also

zeitabhängig und der Beschleunigungsvektor ungleich Null. Der Grund dafür, daß man in der

Physik einen anderen Geschwindigkeits- und Beschleunigungsbegriff als im täglichen Leben

benutzt, liegt daran, daß man damit die Dynamik einheitlicher formulieren kann.

Mit der Vektorschreibweise können wir jetzt Geschwindigkeit und Beschleunigung allge-

mein definieren:

v(t) =∆t→0lim

∆x(t)∆t

= dx(t)dt

a(t) =∆t→0lim

∆v(t)∆t

= dv(t)dt

Beispiel für die Überlagerung von Geschwindigkeiten:

25

Page 27: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ein Windsurfer fahre mit der konstanten Geschwindigkeit v0. Der Wind habe die Geschwin-

digkeit vwind, von einem ruhenden Bezugssystem aus gemessen. Welche Richtung und welche

Stärke hat der Wind, vom Surfer aus gesehen?

Abb. 14: Windverhältnisse beim Segeln.

Die Verhältnisse sind in Abb. 14 dargestellt. Durch Vergleich mit der Betrachtung in Abb.

11 identifizieren wir vwind mit vges, und die Windgeschwindigkeit vom Surfer aus gesehen mit

vrel. Die quantitative Bestimmung würde über die Berechnung des Dreiecks der Geschwin-

digkeitsvektoren erfolgen, also z.B. nach dem Kosinussatz

vrel2 = vwind

2 + v02 − 2vwindv0cos α

e) Produkte von Vektoren

α) Das Skalarprodukt

Das Skalarprodukt ist definiert durch

a • b = ab cos α

wobei α der Winkel zwischen a und b ist. Bei der Verknüpfung der beiden Vektoren entsteht

ein Skalar. Das Skalarprodukt läßt sich aus den Komponenten der Einzelvektoren ermitteln.

Dazu stellen wir a und b in der kartesischen Basis ex, ey, ez dar (Abb. 15).

Abb. 15: Die Basisvektoren eines kartesischen Koordinatensystems.

ex =

100

, ey =

010

, ez =

001

26

Page 28: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

a =

ax

ay

az

= ax

100

+ ay

010

+ az

001

= axex + ayey + azez

In dieser Darstellung werden a und b multipliziert.

a • b = (axex + ayey + azez) • (bxex + byey + bzez)

Die Klammern werden wie gewohnt ausmultipliziert, wobei man beachtet, daß für , dai ≠ kes sich um eine kartesische Basis handeln soll, α = 90°, cosα = 0 und daher , füre i•ek = 0

i = k hingegen α = 0, cosα = 1, gilt. Man erhälte i • e i = 1

a • b = axbx + ayby + azbz

Anwendungen des skalaren Produktes

i. Ermittlung des Winkels zwischen zwei Vektoren, die durch ihre Komponenten gegeben

sind.

Da erhält man a • b = ab cos α cos α =axbx + ayby + azbz

ax2 + ay

2 + az2 bx

2 + by2 + bz

2

ii. Arbeit, wenn F und s nicht parallel sind (Abb. 16).

Abb. 16: Das skalare Produkt erzeugt die Projektion eines

Vektors auf eine vorgegebene Richtung.

W = Fs ⋅ s = Fs cos α = F • s

iii. Kosinussatz (Abb. 17)

Abb. 17: Der Kosinussatz ist mit dem Skalarprodukt leicht zu

beweisen.

c = a - b

27

Page 29: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

c2 = (a - b)·(a - b) = a2 + b2 - 2a·b = a2 + b2 - 2 ab cosα

β) Das Vektorprodukt

Das Vektorprodukt ordnet zwei Ausgangsvektoren einem Produktvektor zu nach folgender

Vorschrift:

. a × b = c

heißt

c = ab sinα

Abb. 18: Die Korkenzieherregel legt die Richtung des Produkt-

vektors im Vektorprodukt fest.

c steht senkrecht auf a und b

a, b und c bilden eine Rechtsschraube.

Die erste Bedingung legt den Betrag des Produktvektors fest, die zweite die Richtung, wobei

das Vorzeichen noch offen bleibt, das dann durch die dritte Bedingung geregelt wird. Diese

wird in Abb. 18 erläutert. Man legt den Griff eines Korkenziehers in Richtung des ersten

Vektors, hier a, dreht diesen auf dem kürzesten Weg so, daß er parallel zum zweiten Vektor

liegt. Der Korkenzieher schraubt sich dann - vorausgesetzt er ist nicht speziell als Sylvester-

scherz mit Linksgewinde ausgestattet - in Richtung des Produktvektors.

Um die Komponentendarstellung des Vektorproduktes zu erhalten, verfahren wir wie oben

beim skalaren Produkt. Die Einzelvektoren werden in einer kartesischen Basis dargestellt

unddas Vektorprodukt gebildet:

a × b = (axex + ayey + azez) × (bxex + byey + bzez)

Berücksichtigt man jetzt, daß laut Definition des Vekterproduktes

für i = ke i × ek = 0

und

28

Page 30: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ex × ey = ez

ey × ez = ex

ez × ex = ey

sowie die Tatsache, daß aufgrund der Korkenzieherregel das Produkt das Vorzeichen um-

kehrt, wenn die Reihenfolge der Faktoren umgekehrt wird, so erhält man

a × b =

aybz − azby

azbx − axbz

axby − aybx

x, y, z werden in jeder Zeile zyklisch vertauscht. Man kann die Komponentendarstellung for-

mal gewinnen, indem man eine Determinante aus den drei Baisvektoren und den Ausgangs-

vektoren des Vektorproduktes bildet.

a × b =ex ax bx

ey ay by

ez az bz

Anwendungen des Vektorproduktes

i. Flächeninhalt eines Parallelogrammes

Abb. 19: Der Flächeninhalt eines Parallelogramms

ist durch Grundlinie mal Höhe gegeben.

Nach Abb. 19 ist die Fläche A gegeben durch

A = a·h = absinα

Nach der Definition des Vektorproduktes kann man also schreiben

A = a × b

Häufig ordnet man in der Physik einer Fläche einen Vektor A zu, dessen Betrag gleich dem

Flächeninhalt der Fläche ist und der senkrecht auf der Fläche steht. Dann gilt für den Vektor

der Fläche, die durch die Vetoren a und b aufgespannt wird

29

Page 31: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

A = a × b

ii. Anwendungen aus der Physik

wir werden im Verlaufe dieses Grundkurses eine Reihe von weiteren Anwendungen des

Vektorproduktes kennenlernen. Die wichtigsten sind

das Drehmoment M = r × F

der Drehimpuls L = r × p

und die Lorentzkraft F = Qv × B

f) Beispiele für krummlinige Bewegungen

α) Der waagerechte Wurf

Setzt man voraus, daß ein Fallversuch, den man in einem Wagen ausführt, der sich mit kon-

stanter Geschwindigkeit geradlinig bewegt, gleich ausfällt, wie ein Fallversuch in einem ru-

henden System - vernachlässigbarer Luftwiderstand sei vorausgesetzt - so sieht ein ruhender

Beobachter den im Wagen durchgeführten Fallversuch als waagerechten Wurf. Der waage-

rechte Wurf kann also aufgefaßt werden als Überlagerung einer horizontalen Bewegung mit

konstanter Geschwindigkeit - der Bewegung des Wagens - und eines freien Falles. Das

Experiment zeigt, daß bei waagerechtem Wurf der Boden gleich schnell erreicht wird wie bei

freiem Fall aus gleicher Höhe. Die beiden Bewegungen überlagern sich also ungestört. Bei

einer solchen ungestörten Überlagerung sagt man auch, das Galileische Relativitätsprinzip

gilt. Die horizontale Bewegung wird also dargestellt durch

Abb. 20: Der waagerechte Wurf kann als Überlagerung einer

geradlinigen, gleichförmigen waagerechten Bewegung mit

dem freien Fall aufgefaßt werden.

vx = v0

x = v0t

30

Page 32: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

die vertikale durch

vy = gt

y = (1/2)gt2

Der Ortsvektor

x(t) =

v0t12gt2

ist die Bahnkurve in Parameterdarstellung, d.h., wenn man für t irgend welche positiven Zah-

len einsetzt, erhält man für x Punkte der Bahnkurve. Die Bahn in kartesischen Koordinaten

folgt hieraus durch Elimination von t.

t = xv0

also y = 12

g

v02x2

v =

v0

gt

v = v02 + (gt)2

Die Wurfbahn ist eine Parabel.

β) Die gleichförmige Kreisbewegung

Ein Punkt bewege sich mit konstanter Bahngeschwindigkeit auf einem Kreis. Die geometri-

schen Verhältnisse sind in Abb. 21 dargestellt. Der Drehwinkel wächst proportional mit der

Zeit.

Abb. 21: Die geometrischen Verhältnisse bei der gleich-

förmigen Kreisbewegung.

α = ω t

31

Page 33: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ω ist konstant, daher gilt und ω gibt die Geschwindigkeit an, mit der α wächst. ω•α = ωwird daher Winkelgeschwindigkeit genannt. Der Zusammenhang mit der Umlaufszeit T ist

wie bei der Schwingung

ω = 2πT

= 2πf

f ist die Anzahl der Umläufe pro Sekunde, d.h. die Umlauffrequenz oder Drehzahl. Die zu-

rückgelegte Strecke s ist die Bogenlänge. Um diese auf den Drehwinkel α zurückzuführen,

beachten wir, daß s proportional zu α ist: s = cα. Bei einer Umdrehung ist α = 2π und s =

2πR. Daher gilt

s = αR

•s = •α R

Mit erhält man •α = ω v = ωR

Da ω und R konstant sind, ist auch v konstant. Der Geschwindigkeitsvektor v ist nicht kon-

stant, da er stetig seine Richtung ändert. ∆v und damit zeigt, wie an Abb. 21 zu er-a ≈ ∆v∆t

kennen ist - zumindest im Grenzübergang - zum Kreismittelpunkt.

Aus folgt∆vv = s

R, ∆v = a∆t und s =∆t

a∆tv = v∆t

RT

und damit a = v2

R= ω2R

Die Bewegung ist also beschleunigt, obwohl die Bahngeschwindigkeit v konstant ist.

Die oben durch geometrische Betrachtungen gewonnenen Ausdrücke für die Geschwindig-

keit und die Beschleunigung bei der Kreisbewegung lassen sich ganz formal durch Differen-

tiation des vektoriellen Weg - Zeit - Gesetzes finden. Nach Abb. 22 ist

x = R cos α

32

Page 34: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

y = R sin α

Mit sind also die Komponenten des Ortsvektors des bewegten Punktes gegeben durchα = ωt

Abb. 22: Die Koordinaten des Ortsvektors r

x = R cos ωty = R sin ωt

Der Ortsvektor schreibt sich r =

R cos ωtR sin ωt

Sein Betrg ist =R ( ).r = R2cos2ωt + R2sin2ωt cos2α + sin2α = 1

Differentiation der Komponenten ergibt

vx = •x = −Rωsin ωt

vy = •y = Rωcos ωt

Der Geschwindigkeitsvektor ist v = Rω

−sin ωtcos ωt

Sein Betrag v = vx2 + vy

2 = Rω

r • v = R2ω(−sin ωt cos ωt + cos ωt sin ωt) = 0

v steht also senkrecht auf r. Die Beschleunigung ergibt sich durch Ableitung der Komponen-

ten des Geschwindigkeitsvektors.

ax = •vx = −Rω2cos ωt

ay = •vy = −Rω2sin ωt

a = −Rω2

cos ωtsin ωt

33

Page 35: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

a = a2 = Rω2

Durch Vergleich der Formeln für r und a erhält man

a = −ω2r

Der Vektor der Beschleunigung ist also zu jeder Zeit entgegengesetzt zum Ortsvektor gerich-

tet. Er zeigt also auf den Mittelpunkt des Kreises.

Abb. 23: Die Hintereinanderausführung zweier Drehungen ist nicht vertauschbar.

γ) Ergänzung: Die Winkelgeschwindigkeit als Vektor.

Zur Charakterisierung der Winkelgeschwindigkeit ist eine Richtung notwendig, nämlich die

Richtung der Drehachse, und ein Betrag. Es liegt daher nahe, auch der Winkelgeschwindig-

keit einen Vektor zuzuordnen. Versucht man zunächst die Drehung um einen endlichen Win-

kel als Vektor aufzufassen, wobei die Hintereinanderausführung zweier Drehungen analog

zu der Hintereinanderausführung zweier Verschiebungen der Addition der Vektoren ent-

spricht, so erleidet man Schiffbruch. Wie Abb. 23 zeigt, hängt das Ergebnis von der Reihen-

folge der Operationen ab. Dahingegen sind infinitesimale Drehungen dα Vektoren (s. Abb.

24), da sie in einem Körper lineare Verschiebungen erzeugen, und diese sind durch Vektoren

darstellbar.

Abb. 24: Eine infinitesimale Drehung führt zu einer

infinitesimalen Verschiebung sämtlicher Punkte im

Körper. Diese haben Vektorcharakter.

34

Page 36: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Da dα Vektorcharakter hat, hat auch Vektorcharakter. Man definiert ω so, daß derω = dαdt

Vektor parallel zur Drehachse ausgerichtet ist und mit der Drehrichtung eine Rechtsschraube

bildet (Abb. 25). Außerdem ist . Mit Dieser Definition kann man jetzt den Zusammen-ω = ωhang zwischen v und r bei der Kreisbewegung auch vektoriell schreiben.

Abb. 25: Die Winkelgeschwindigkeit als Vektor

Betrachte Abb. 25. Aus v = Rω folgt mit R = r sinγ v = rω sinγ. Da v senkrecht zu r und ω,

und ω, r, v eine Rechtsschraube bilden, kann man schreiben

v = ωω× r

Der Ortsvektor r hat seinen Ursprung auf der Drehachse.

Für die Beschleunigung erhält man, wenn ω konstant ist

a = dvdt

= ωω× drdt

= ωω× v = ωω× (ω× r)

Abb. 26: Die Vektoren r, v, a bei der gleichförmigen

Kreisbewegung.

δ) Der schiefe Wurf

i. Die Bahn

Auch der schiefe Wurf kann als Überlagerung einer waagerechten, gleichförmigen Bewe-

gung und einer senkrechten Bewegung mit konstanter Beschleunigung aufgefaßt werden. Als

Unterschied zum waagerechten Wurf gibt es eine senkrechte Anfangsgeschwindigkeit.

35

Page 37: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 27: Die Bahn beim schiefen Wurf.

vx(0) =v0x = v0cos αvy(0) =v0y = v0sinα

Die Geschwindigkeit ist jetzt also gegeben durch

vx = v0cos αvy = v0sin α − gt

und damit die Koordinaten des Wurfkörpers

x = v0t cos αy = v0t sin α − 1

2gt2

Dabei wurden als Anfangsbedingungen vorausgesetzt, daß bei t = 0 auch x = 0 und y = 0 sein

sollen. Die Bahnkurve in kartesischen Koordinaten ergibt sich dann durch Elimination von t.

eingesetzt (1)t = xv0cos α y = sin α

cos α x − 12

g

v2x2

cos2α

Die Bahnkurve ist wie beim waagerechten Wurf eine Parabel, allerdings liegt jetzt der Schei-

telpunkt der Parabel nicht im Abwurfpunkt.

ii. Bestimmung der Wurfhöhe

Die Wurfhöhe ist das Maximum der Wurfparabel. Man erhält es durch die Bedingung

dy/dx = 0. Wegen der Kettenregel und der Bedingung ist dies gleichbe-dydt

= dydx

dxdt

dxdt

≠ 0

deutend mit vy = 0, wie anschaulich sofort zu verstehen ist.

Aus vy(tmax) = 0 folgt

vy = v0sin α − gtmax = 0 → tmax = vosin αg

36

Page 38: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Einsetzen in y(t) ergibt h =v0

2sin2αg − 1

2v0

2sin2αg =

v02

2gsin2α

iii. Bestimmung der Wurfweite xw

Abwurfhöhe und Auftreffhöhe sollen gleich sein. Aus Gleichung (1) ergibt sich dann für y =

0.

sin αcos α xw −

gxw2

2v2cos2α= 0

2 sin α cos α = gxw

v2

Abb. 28: Eine bestimmte Wurfweite kann man mit zwei Ab-

wurfwinkeln erreichen.

xw =v0

2

g sin 2α

Die maximale Wurfweite erhält man für sin2α = 1, d.h. αmax = 45°.

xw max =v0

2

g

Vergleich mit h zeigt, daß sie doppelt so groß ist wie die maximal erreichbare Höhe. Wenn

die Wurfweite vorgegeben ist, ergeben sich für zwei Winkel mit α2 = 90 - α1. Wennα ≠ 45

x und y des Auftreffpunktes vorgegeben sind, läßt sich der Abwurfwinkel aus der Bahnglei-

chung berechnen.

cos2α = a ± a2 − bc2c

mit a = 1 - y/2h, b = (x/2h)2, c = 1 + (y/x)2, 2h = v02/g

37

Page 39: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

h ist die Wurfhöhe bei senkrechtem Wurf bei gleichem v0.

g) Approximation von Kurven

α) Die Taylorentwicklung

Die Taylorentwicklung ermöglicht die Beschreibung des Verlaufs einer Kurve in der Umge-

bung eines Anfangspunktes, indem nur ihre Eigenschaften in diesem Anfangspunkt ausge-

nutzt werden. Betrachte z.B. die Preisentwicklung im Laufe der Zeit P(t) (Abb. 29).

Abb. 29: Preisanstieg und Änderung der Preisanstiegsrate.

Nullte Näherung

Man nimmt an, die Preise bleiben konstant P = P(t0).

Erste Näherung

Die Preise erhöhen sich gemäß der augenblicklichen Preissteigerungsrate

P = P(t0) +

dPdt

t(t − t0)

P = P0 + P /(t0)∆t

Zweite Näherung

Die Änderung der Preissteigerungsrate wird mit einem quadratischen Ansatz berücksichtigt:

P = a0 + a1∆t + a2∆t2

Man bestimmt die Konstanten a0, a1 und a2 so, daß die ursprüngliche Funktion P(t) und das

Polynom für ∆t = 0 in der nullten, ersten und zweiten Ableitung übereinstimmen.

Nullte Ableitung: P(∆t) = a0 +a1∆t + a2∆t2. Aus ∆t = 0 folgt a0 = P(t0).

Erste Ableitung: P/(t) = a1 + 2a2∆t. Aus ∆t = 0 folgt a1 = P/(t0).

zweite Ableitung: P//(t) = 2a2. Aus ∆t = 0 folgt a2 = (1/2)P//(t0)

38

Page 40: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die zweite Näherung lautet also:

P = P0 + P / (t0)∆t + 12

P //(t0)(∆t)2

Im Prinzip kann man so fortfahren. Diese Entwicklung heißt Taylorentwicklung. Mit ihr läßt

sich bei bekannten Ableitungen am Punkt t = t0 der weitere Verlauf einer analytischen Funk-

tion beliebig genau vorhersagen. Die Approximation ist um so besser, je kleiner ∆t ist. In der

Physik begnügt man sich in den allermeisten Fällen mit der Entwicklung bis zur ersten Ord-

nung. Die zweite Ordnung wird dann allenfalls zur Abschätzung des Fehlers verwendet.

Abb. 30: Die Tangente der Kurve r(t) ist durch ihre Ableitung gegeben.

β) Approximation von Raumkurven (Bogenlänge, Krümmung und Torsion)

Eine Raumkurve sei durch eine Parameterdarstellung r(t) gegeben. Einige Formeln werden

besonders übersichtlich, wenn man als Parameter die Bogenlänge s der Kurve vom Anfangs-

punkt aus wählt. Die Bogenlänge ergibt sich aus

v = dsdt

= vx2 + vy

2 + vz2

s = ∫ •x

2+•

y2

+•z

2dt

i. Lineare Näherung

In erster Näherung wird die Kurve r(t) durch die Tangente beschrieben. Die Richtung der

Tangente ist gegeben durch . Der Tangenteneinheitsvektor ist daher . Mitv = •r e t = dr

dt1v

erhält man v = dsdt

et = drdt

⋅ dtds

= drds

39

Page 41: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

e t = drds

Manchmal ist es bequemer mit zu rechnen.e t =•rv

ii. Quadratische Näherung

Für die quadratische Näherung sucht man den Kreis, dessen erste und zweite Ableitung im

Berührungspunkt mit den entsprechenden Ableitungen der Kurve gleich ist. Dieser Kreis

heißt Schmiegungskreis. Sein Radius R ist der Krümmungsradius der Kurve, κ = 1/R ist die

Krümmung. Jede Bewegung auf einer gekrümmten Bahn läßt sich in der Umgebung eines

Punktes durch eine Kreisbewegung annähern. In einer ebenen Bewegung liegt der Krüm-

mungskreis in der Bewegungsebene. Zur Angabe der Ausrichtung des Schmiegungskreises

in einer allgemeinen Bewegung benötigt man den Normalen Einheitsvektor. Er steht senk-

recht auf dem Tangentenvektor und in der Ebene des Schmiegungskreises. Um ihn aus der

gegebenen Raumkurve zu berechnen, betrachten wir die Beschleunigung, wobei v(t) mit Hil-

fe des Tangenten Einheitsvektors dargestellt wird, der selbst zeitabhängig ist.

v = v(t) ⋅ e t(t)

(2)dvdt

= dvdt

et+vde t

dt= dv

dte t + v2 de t

ds

a setzt sich zusammen aus der Tangentialbeschleunigung

a t = dvdt

et

und der Normalbeschleunigung

an =v2 de t

ds

Die Bewegung verläuft also in der Ebene, die durch at und an aufgespannt wird. Dies ist de-

finitionsgemäß die Schmiegungsebene. Bei der gleichförmigen Kreisbewegung ist at = 0 und

an = v2/R. Die obige allgemeine Formel ergibt für at = 0 . Durch Vergleich erhältan = v2 det

dsman

40

Page 42: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

de t

ds= d2r(s)

ds2= 1

R

Die zweite Ableitung des Ortsvektors nach der Bogenlänge ergibt die Krümmung der Kurve.

Der Vektor liegt also, da er proportinal zur Normalbeschleunigung ist, senkrecht zurde t

dsTangente der Kurve und außerdem in der Schmiegungsebene. Der Normaleneinheitsvektor

ist damit

en = Rdet

ds

et, en, und bilden eine rechtwinklige Basis, die im Punkte r(t) an die Kurve gehef-eb = et × en

tet ist. Bei Durchlaufen des Parameters t läuft die Basis an der Kurve entlang und ändert im

allgemeinen die Richtung seiner Achsen. Diese Basis nennt man das begleitende Dreibein. eb

ist der Binormalenvektor. gibt ein Maß für die Torsion. Eine ebene Kurve hat die Torsi-d3r3

on Null.

41

Page 43: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL C

Dynamik von Massenpunkten

1. Die Newtonschen Axiome

a) Newtons Formulierung der Axiome

Die Dynamik soll die Bewegung eines Körpers aus den Kräften, die auf den Körper wirken

"erklären", d.h. auf Axiome zurückführen. Ein Axiomensystem soll in sich widerspruchsfrei,

vollständig und frei von überflüssigen Annahmen sein. Im Grunde beruht das Axiomensystem

der klassischen (nichtrelativistischen) Mechanik auf den von Isaak Newton (1643 -1727) aus-

gesprochenen Prinzipien. In vereinfachter Form sind dies:

Das Trägheitsprinzip

Ein kräftefreier Körper bewegt sich gleichförmig, geradlinig.

Das Aktionsprinzip

Wirkt auf einen Körper eine Kraft F, so erhält er eine Beschleunigung a = F/m.

Das Reaktionsprinzip

Übt ein Körper A auf B eine Kraft F aus, so übt B auf A eine Kraft -F aus.

b) Das Trägheitsprinzip

Das Trägheitsprinzip widerspricht in vieler Hinsicht menschlicher Erfahrung: Ein nicht gezo-

gener Wagen kommt zum Stillstand. Das Trägheitsprinzip wurde zuerst von Galileo Galilei

(1564 - 1624) formuliert. Galileis Vorstellungen zur Mechanik entwickelten sich an den Be-

mühungen, die Widersprüche in der bis dahin geltenden Bewegungslehre des Aristoteles (384

- 322 v. Chr., Schüler Platons und Lehrer Alexander des Großen) und seiner Nachfolger

(Scholastiker, Peripatetiker) zu vermeiden. Nach Aristoteles fallen z.B. schwere Körper

schneller als leichte. Ein leichter Körper müßte also eigentlich einen schwereren bremsen. An-

dererseits müßte das Gesamtsystem aus leichtem und schwerem Körper schneller als die Ein-

zelkörper fallen, da es ja insgesamt schwerer als jeder einzelne Teil ist. Galilei versuchte

durch genaue Experimente seine Aussagen zu belegen. Um die Meßgenauigkeit zu erhöhen -

Zeiten wurden durch ausfließende Wassermengen gemessen - untersuchte Galilei später statt

des freien Falls die Bewegung auf einer schiefen Ebene. Er fand als erster experimentell die

Gesetze der gleichförmig beschleunigten Bewegung und formulierte sie mathematisch. Die

Popularität verdankt Galilei seinen astronomischen Entdeckungen (Mondkrater, Jupitermon-

de) und dem Inquisitionsprozeß der katholischen Kirche gegen ihn.

42

Harald Schüler
Page 44: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 31: Eine Kugel rollt um so

weiter, je weniger die rechte Ebe-

ne geneigt ist, im Grenzfall gegen

unendlich, wenn Reibung vernach-

lässigt werden kann.

Das Trägheitsgesetz begründete Galilei mit einem Gedankenexperiment (Abb. 31): Eine Ku-

gel rolle eine schiefe Ebene herunter, und nachdem sie unten angekommen ist, an der anderen

Seite mit ihrem Schwung eine schiefe Ebene hinauf. Ohne Reibung würde die Kugel bis zur

Ausgangshöhe hinaufrollen. Gibt man nun der zweiten schiefen Ebene unterschiedliche Nei-

gungen, so würde im Grenzfall der Neigung Null die Kugel bis ins Unendliche laufen. Ähn-

lich wie bei einer schiefen Ebene erreicht auch bei einem reibungsfreien Pendel die Kugel die

Ausgangshöhe, auch wenn man das Pendel bei der Bewegung verkürzt wie beim Galileischen

Pendel (Abb. 32).

Abb. 32: Das Fadenpendel erreicht die ursprüngliche Höhe,

auch wenn ein Hindernis in den Weg des Fadens geschoben

wird.

c) Das Aktionsprinzip

α) Definition einer Kraftskala

Das Aktionsprinzip wurde von Newton formuliert. Es führt gegenüber der Kinematik zwei

neue Größen ein: die Masse und die Kraft. Newton stellt sich die Masse als eine dem Volu-

men proportionale Stoffeigenschaft vor. In heutiger Sprechweise würde man sagen, die Masse

ist proportional der Anzahl Protonen und Neutronen. Um genauer zu sein muß man eine Mas-

senskala definieren. Man kann z.B. mit ein und derselben Kraft mit verschiedenen Massen Be-

schleunigungsversuche machen. Eine Kraftskala ergibt sich dann aus Beschleunigungsversu-

chen mit einer Masse und verschiedenen Kräften. Wenn a und m festgelegt sind, definiert das

Aktionsgesetz die Kraft. Die Definition der Kraft über die Beschleunigung kann leicht zu dem

Mißverständnis führen, daß in einer statischen Situation keine Kräfte vorhanden sind. Dies ist

aber nicht richtig. Zwar verschwindet dann die Summe aller Kräfte auf einen Körper, aber es

kann innere Kräfte in einem Körper geben, die z.B. bei Festigkeitsbetrachtungen eine Rolle

spielen. Ein anderes Beispiel ist ein Magnetvertschluß.

43

Page 45: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Das Aktionsgesetz

F = ma

legt die Dimension der Kraft fest: [F] = [m] [a] =kgm/s2 . Hierfür gilt die Abkürzung N (New-

ton). Ein Newton ist die Kraft, die notwendig ist, einen Körper der Masse 1kg die Beschleuni-

gung 1m/s2 zu erteilen. Ein Körper der Masse 1kg wird im Erdfeld an der Erdoberfläche im

freien Fall um 9,81 m/s2 beschleunigt, d.h. auf 1kg wirkt die Gravitationskraft von 9,81 N.

Wenn die Kräfte, die auf einen Körper wirken, und seine Masse bekannt sind, kann man das

Aktionsgesetz benutzen, um die Beschleunigung zu ermitteln und daraus durch zweimalige In-

tegration die Bewegung r(t) abzuleiten. Dies ist eine der Grundaufgaben der Dynamik.

Beispiele:

Schiefer Wurf:

Fx = 0, also ax = 0.

Fy = -gm, also ay = -g.

Die weitere Rechnung wurde oben in der Kinematik vorgeführt.

Kreisbewegung:

a = Rω2 = v2/R

Die Kreisbewegung wird durch eine Kraft F = mRω2, die auf den Kreismittelpunkt gerichtet

ist, erzwungen (Zentripetalkraft).

β) Zerlegung von Kräften

Da Kräfte durch F = ma definiert sind, haben sie wie a Vektorcharakter. Man kann daher eine

Kraft als Summe mehrerer Kräfte auffassen (Kraftzerlegung) oder mehrere Kräfte zu einer re-

sultierenden zusammenfassen. Dabei gilt die bei Vektoren eingeführte Dreiecks -, bzw.

Parallelogrammkonstruktion.

Beispiel:

Schiefe Ebene (s. Abb. 33)

Welche Gesamtkraft beschleunigt den Körper auf der schiefen Ebene? Lösung: Zerlege die

Gewichtskraft FG in eine Tangentialkomponente Ft und eine Normalkomponente Fn. Fn wird

durch die Kraft, die durch die Auflage auf den Körper ausgeübt wird, kompensiert. Die

44

Page 46: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 33: Kräftezerlegung an der schiefen Ebene

Ft = FG sinα

Fn = FGcosα

Abb. 34: Kräftezerlegung beim Fadenpendel

resultierende Kraft ist Ft. Die gleiche Zerlegung gilt für das Fadenpendel. Der Faden übt eine

Kraft aus, die die Richtung des Fadens besitzt (Abb. 34).

Daß die Kraft entlang eines gewichtslosen Fadens überall gleich ist, erleichtert manchmal die

Lösung dynamischer Probleme. Betrachte das Beispiel von Abb. 35 . Hier gilt

Ma = F1

mg - F2= ma

F1 = F2

daraus folgt

mg - Ma = ma

und a = mgM + m

a = g 11 + M

Abb. 35: Hier wird über den Faden eine zusätzliche Kraft zu

der Schwerkraft ausgeübt

45

Page 47: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

d) Das Reaktionsprinzip

α) Begründung des Reaktionsprinzips

Das Reaktionsprinzip besagt, daß Kräfte zwischen Körpern immer in entgegengesetzt gleichen

Paaren auftreten. Man spricht daher in der Physik anstatt von Kräften häufig von Wechselwir-

kungen. Das Reaktionsprinzip zeigt die Erfahrung. Heute würde man es am deutlichsten mit

der Unmöglichkeit eines Perpetuum Mobile begründen (s. Abb. 36).

Abb. 36: Würde das Reaktionsprinzip nicht gelten, müßte

sich das Gebilde von zwei Massen von selbst in Rotation

versetzen.

Bringt man zwei Körper m1 und m2, von denen m1 auf m2 die Kraft F21 und m2 auf m1 die

Kraft F12 ausübt, am Umfang eines Rades an, so würde dieses einen Antrieb erfahren, wenn

F12 ungleich -F21 wäre.

Die Angriffspunkte der entgegengesetzten Kräfte liegen im allgemeinen an unterschiedlichen

Stellen. Bei Körpern, die auf einer Unterlage liegen, wird die Schwerkraft von der elastischen

Kraft der Unterlage kompensiert.

β) Definition des Impulses

Betrachtet man zwei Körper mit den Massen m1 und m2, zwischen denen eine Kraft wirkt

(Abb. 37), so gilt

Abb. 37: Zur Definition des Impulses

F12 = m1•v1 , und F21 = m2

•v2

wegen F12 = - F21 folgt daraus , d.h. und daherm1•v1 = −m2

•v2 m1

•v1 + m2

•v2 = 0

m1v1 + m2v2 = const.

Physikalische Größen, die bei bestimmten Prozessen konstant bleiben, sind angenehm für die

Beschreibung von Vorgängen. Man nennt sie Erhaltungsgrößen. Man definiert daher

46

Page 48: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

mv = p

p ist der Impus eines Körpers (englisch momentum). Bei mehreren Körpern ist

pges = m1 v1 + m2 v2 + ... = Σmi vi

der Gesamtimpuls. Der Gesamtimpuls ist die vektorielle Summe der Einzelimpulse. Das Akti-

onsgesetz schreibt sich dann

F = •p

γ) Der Impulssatz

Aus dem im vorigen Abschnitt gesagten folgt sofort, daß der Gesamtimpuls von Körpern, die

nur inneren Kräften ausgesetzt sind, konstant bleibt. In der klassischen Mechanik ist der Im-

pulssatz äquivalent mit dem Reaktionsprinzip. In der relativistischen Mechanik zeigt sich, daß

das Reaktionsprinzip nicht mehr gilt, während der Impulssatz nicht angetastet wird. Nach ei-

nem Satz von Emmy Nöther (1882 - 1935) ist der Impulssatz eine Folge der Tatsache, daß der

Raum homogen ist, d.h. daß Experimente an verschiedenen Stellen des Raumes gleich

ausfallen.

Beispiele:

In Antriebssystemen von Raketen, Flugzeugen und Schiffen wird Masse nach hinten ausgesto-

ßen. Da der Gesamtimpuls - bei Vernachlässigung der Reibung - konstant bleiben muß, resul-

tiert ein Antrieb des Fahrzeuges. Bei Hochheben eines Gewichtes wird die Erde - wenigstens

im Prinzip - beschleunigt. Die Impulserhaltung wird mit Personen auf Rollbrettern demon-

striert, die aufeinander Kräfte ausüben.

e) Historische Randbemerkungen

Im 16. Jahrhundert wurde die Physik in drei Richtungen erweitert:

Die Bedeutung des quantitativen Experimentes wurde erkannt.

Man erkannte, daß die auf der Erde gültige Physik auch am Himmel gilt.

Die Begriffe von Masse und Kraft kristallisierten sich heraus.

Aus heutiger Sicht muß man sagen, daß die Newtonschen Axiome weder vollständig noch mi-

nimal sind. Das erste folgt aus dem zweiten. Der besondere Hinweis des ersten Axioms ist hi-

storisch verständlich. Wie man aus relativistischen Effekten weiß, enthält Newtons Mechanik

47

Page 49: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

die nicht korrekte Annahme vom absoluten Raum und absoluter Zeit, d.h. man setzt voraus,

daß unabhängig von Körpern ein fundamentales Bezugssystem und eine Uhrzeit definiert wer-

den können, die für alle anderen Bezugssysteme gilt. Da dies nicht möglich ist, wird es

schwierig, ein "Inertialsystem" anzugeben, d.h. ein Koordinatensystem, in dem sich ein kräfte-

freier Körper ohne Beschleunigung bewegt. Auf der Erde gibt es nur in gewisser Näherung

ein Inertialsystem, da die Erde um ihre eigene Achse rotiert und eine Umlaufbahn um die Son-

ne vollführt. Auch die Sonne bewegt sich im Milchstraßensystem auf einer gekrümmten Bahn.

2. Kräfte

a) Die Grundkräfte

Um die Bewegung aus der Wirkung der Kräfte berechnen zu können, benötigt man genauere

Angaben über die Kräfte. Die verschiedenen in der Natur auftretenden Kräfte lassen sich auf

wenige Grundkräfte zwischen Elementarteilchen zurückführen.

Gravitation (Massenanziehung)

elektrostatische Kraft (Kraft zwischen ruhenden Ladungen)

magnetische Kraft (zusätzliche Kraft zwischen bewegten Ladungen)

starke Wechselwirkung (Kräfte zwischen Quarks)

schwache Wechselwiorkung (Kraft zwischen Neutrinos)

Nach heutigem Wissen können die elektrostatische, die elektromagnetische und die schwache

Kraft als verschiedene Erscheinungsformen einer Kraft verstanden werden. Dies leistet die

"vereinheitlichte Theorie". Alle diese Kräfte sind Fernkräfte in dem Sinne, daß keine Berüh-

rung zwischen Oberflächen von wechselwirkenden Körpern stattfindet. Zwischen den Ele-

mentarteilchen sind in jedem Fall, auch wenn wir nicht den Eindruck haben, riesige Zwischen-

räume. Die im täglichen Leben vorkommenden Kräfte lassen sich entweder auf Gravitation

oder - wie bei Reibung, Elastizität, Kräften durch chemische Prozesse oder Wärme - auf elek-

tromagnetische Kräfte zurückführen. Scheinkräfte wie die Corioliskraft oder die Zentrifugal-

kraft muß man in Rechnung stellen, wenn man eine Bewegung in einem beschleunigten Be-

zugssystem beschreibt. Im unbeschleunigtem System, also einem Inertialsystem, sind Schein-

kräfte überflüssig.

48

Page 50: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

b) Die Gravitation

α) Historische Vorbemerkungen

An der Erdoberfläche ist die Gravitationskraft FG = mger. Newton bemerkte, daß ein waage-

rechter Wurf mit zunehmender Anfangsgeschwindigkeit stetig in eine Umlaufbahn um die Er-

de übergeht (Abb. 38).

Abb. 38: Wie man einen waagerechten Wurf in eine Planeten-

bahn überführen kann.

Umgekehrt kann man eine Umlaufbahn etwa des Mondes um die Erde lokal als Näherung ei-

ner Wurfparabel betrachten. Aus der kinematisch bekannten Wurfparabel ergibt sich die Er-

danziehung im Abstand des Mondbahnradius von der Erde. Diese kann man nun vergleichen

mit der bekannten Erdanziehung an der Erdoberfläche und so eine Aussage über die Abhän-

gigkeit der Erdanziehung in Abhängigkeit vom Abstand des Körpers vom Erdmittelpunkt er-

halten. Wir gehen diesen Weg im folgenden nicht, sondern einen etwas eleganteren, indem wir

die Erdanziehung der Zentripetalkraft mrω2 gleichsetzen. Das Ergebnis ist das gleiche wie wie

bei einem Vergleich mit der Wurfparabel. Die Abhängigkeit der Kraft vom Abstand der Mas-

sen ergibt sich dann aus Keplers dritten Gesetz, das die Halbachsen der Bahnellipsen der Pla-

neten mit ihrer Umlaufszeit T verknüpft. In der Näherung von Kreisbahnen mit dem Radius r

besagt das Keplersche Gesetz: und damit für alle Planeten. Setzt manr3

T2= const r3ω2 = const

voraus, daß die Zentripetalkraft von der Massenanziehung herrührt, die eine Funktion des Ab-

standes zwischen Sonne und Planeten ist, also die Form |F| = f(r) besitzt, so gilt für zwei

Planeten

m1r1ω12 = f(r1)

m2r2ω22 = f(r2)

Rechnet man ω auf die Umlaufszeit T um und dividiert beide Gleichungen, so erhält man

T12

T2= m1r1f(r2)

m2r2f(r1)

49

Page 51: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Das 3. Keplersche Gesetz ist nur erfüllt, wenn

f(r) ∼ mr2

d.h. wenn und .f(r1) = m1c

r2f(r2) = m2c

r2

β) Das Gravitationsgesetz

Abb. 39: Zwei Massen im Abstand r ziehen sich an.

Wir verallgemeinern die Anziehung zwischen Sonne und Planeten auf die Anziehung zweier

beliebiger Körper mit den Massen m1 und m2 (Abb. 39). Vorläufig sehen wir von speziellen

Effekten, die durch die Ausdehnung der Körper hervorgerufen werden ab, d.h. wir stellen uns

die Körper als kleine Kugeln vor. Wegen der Symmetrie der Anordnung nehmen wir an, daß

die Anziehungskraft F zwischen den Körpern beiden Massen proportional ist. Wir schreiben

daher für den Betrag der Kraft

(1)F = γm1m2

r2

und vektoriell

F = −γm1m2

r2rr

Die Proportionalitätskonstante γ nennt man die Gravitätskonstante. Für sie ergibt sich experi-

mentell der Wert γ = 6,67 10−11 Nm2/kg2 (s. nächsten Abschnitt). Aus Gleichung (1) folgt für

einen Körper an der Erdoberfläche (r = RE)

und damit mg = γmMR2

g = γMR2

(RE : Radius der Erde, M: Masse der Erde, m: Masse des Körpers) Wenn γ bekannt ist, läßt

sich also aus den bekannten Größen Erdbeschleunigung g und Radius der Erde RE die Masse

der Erde bestimmen.

50

Page 52: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

In Laborexperimenten rechnet man gewöhnlich mit einer konstanten Erdanziehung. Um den

relativen Fehler zu bestimmen, den man macht, wenn man für g den Wert an der Erdoberflä-

che nimmt, obwohl man sich in einer Höhe h befindet, entwickelt man F(r) in der Umgebung

von r = RE in einer Taylorreihe.

F(h) =γmM

(RE + h)2=

γmM

RE2

1

1 + h

RE

2

Für die Funktion f(∆x) = (1 + ∆x)n ergibt die Taylorentwicklung f(∆x) ≈ f(0) +

dfdx

∆ =

∆x

mit f(0) = 1 und f/(∆x) = n(1 + ∆x)n - 1, also erhhält man (1 + ∆x)n ~ 1 + n∆x. Mit

dfdx

∆x=0

= n

∆x = h/RE und n = 2 ergibt sich schließlich

F(h) =γmM

R2 1 − 2 h

RE

Der prozentuale Fehler ist also 2h/RE.

γ) Messung der Gravitationskonstanten

Abb. 40: Gravitationswaage nach Cavendish.

Die Massen M können auf die andere Seite der

Massen m herumgeschwenkt werden.

Die Gravitationskonstante kann durch Messungen im Labor bestimmt werden. Dies erfolgte

erstmals durch Cavendish 1787 (Henry Cavendish 1731 - 1810). Zwei Massen m hängen an

einem Torsionsfaden, dessen Verdrehung über einen Spiegel empfindlich gemessen werden

kann (Abb. 40). Bringt man zur Zeit t = 0 zwei Massen M in die Nähe der aufgehängten Mas-

sen, so fangen diese aufgrund der gegenseitigen Anziehungskraft an, sich zu bewegen. Aus

der Beschleunigung dieser Bewegung und aus der neuen Ruhelage ergibt sich γ.

51

Page 53: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

c) Kraft zwischen ausgedehnten Körpern

α) Integration über Massenelemente

Bei ausgedehnten Körpern muß über die Kräfte zwischen allen Einzelteilchen summiert wer-

den. Für die Kraft zwischen einem punktförmigen Teilchen der Masse mp und einer homoge-

nen Kugel ergibt sich (s. Abb.41)

Abb. 41: Um die Kraft auf einen homogenen Körper aus-

zurechnen, muß im allgemeinen Fall integriert werden.

F ≈ γmpΣ ∆mi

r2

riri

Nach dem Grenzübergang

F = γmp∫ rr3

dm

dm = ρdxdydz

r = rp − s = (xp − x)2 + (yp − y)2 + (zp − z)2

Die Integration ist nach geeigneter Transformation durchführbar (s. z.B. Alonso - Finn BdI,

Kap. 13.7). Es ergibt sich der Satz: Homogene Kugeln haben im Außenraum die gleiche Gra-

vitationswirkung wie ein Massenpunkt der gleichen Masse im Mittelpunkt der Kugel. Vor-

sicht: Dieser Satz gilt für Kugeln. Für Körper mit anderen Formen gilt er im allgemeinen

nicht, auch wenn man den Mittelpunkt durch den Schwerpunkt ersetzt, wie man sofort am

Beispiel des Ringes erkennt. Würde nämlich ein Ring durch einen Massenpunkt im Scher-

punkt, der im Mittelpunkt des Ringes liegt, zu ersetzen sein, ergäbe sich auf einen anderen

Körper, der sich im Schwerpunkt befindet, eine unendliche Kraft

F =r→0lim γmMR

2

In Wirklichkeit heben sich die Kräfte, die alle Teilelemente des Ringes auf eine Masse im

Mittelpunkt ausüben, gegenseitig auf. Es gibt eine sehr elegante Möglichkeit, zu beweisen,

daß eine Kugel im Außenraum die gleichen Anziehungskräfte hat wie ein Massenpunkt im

52

Page 54: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Zentrum. Zu diesem Zweck symmetrisiert man das Problem, indem man nicht die Wechsel-

wirkung zwischen zwei Massen betrachtet, sondern die Veränderung des Raumes, die durch

eine Masse in ihrer Umgebung hervorgerufen wird. Diese Veränderung nennt man Feld.

β) Feldstärke

Die Kraft in der Umgebung einer Masse M hängt von M aber auch von der Probemasse mp ab,

auf der diese Kraft ausgeübt wird. Um eine von der Probemasse unabhängige Größe zu erhal-

ten, definiert man die Feldstärke G des Gravitationsfeldes:

G = Fmp

= −γM2

rr

Jedem Punkt in der Umgebung der Masse M ist also ein Feldstärkevektor zugeordnet. Man

sagt, in der Umgebung der Masse M existiert ein Feld, in diesem Fall ein kugelsymmetrisches

Feld. G hat die gleiche Richtung wie F. Man erhält die Kraft, die im Feld G auf eine Masse m

ausgeübt wird aus

F = mG

γ) Der Fluß

Wir stellen uns jetzt eine strömende Flüssigkeit vor. An jedem Ort in einem gewissen Raum

hat die Flüssigkeit eine lokale Geschwindigkeit v(r). Es liegt also ein Geschwindigkeitsfeld

vor. Als Fluß durch die Fläche A bezeichnet man dann das Flüssigkeitsvolumen, das in einer

Zeiteinheit durch A strömt.

Beispiel: Wie hängt der Verkehrsfluß mit der Verkehrsdichte und der Geschwindigkeit der

Fahrzeuge zusammen?

Abb. 42: Die Anzahl der Fahrzeuge (schwarze Punkte),

die in einem Zeitintervall die Kontrollfläche K passieren,

sind alle die, die sich zwischen K und dem letzten Fahr-

zeug befinden, das K in dem betrachteten Zeitintervall K

N: Gesamtzahl der Wagen, l: Gesamtstrecke, n = N/l: Verkehrsdichte

In der Zeit ∆t fahren alle Fahrzeuge durch die Kontrolle K, die nicht weiter als l = v∆t vom

Kontrollpunkt entfernt sind. Durch die Verkehrsdichte ausgedrückt sind dies ∆N = ln also

∆N = vn∆t Fahrzeuge. Als Fluß ergibt sich also

53

Page 55: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Φ = ∆N∆t

= nv

Abb. 43: Im dreidimensionalen Fall strömt das schaffrierte

Volumen durch die Fläche A.

In einer dreidimensionalen Strömung definiert man als Dichte n = N/V, worin V das Volumen

ist, das N Teilchen enthält. Um alle Teilchen zu erfassen, die durch die Fläche A strömen, muß

man jetzt die Flüssigkeitsmenge betrachten, die in der Zeit ∆t durch A strömt. In Abb. 43 ist

sie schraffiert gezeichnet. Das Volumen dieser Flüssigkeitsmenge ergibt sich aus Grundfläche

A mal Höhe h = l cosα. Die Anzahl der Teilchen, die in der Zeit ∆t durch A strömen ist also

∆N = nV = nAh = nAl cos α = nAv∆t cos α

und der Fluß ∆N∆t

= nA • v

Mit N = nV wird daraus für den Fluß

∆V∆t

= A • v

Man definiert daher für ein beliebiges Vektorfeld v(r) den Fluß des Feldes durch die Fläche A

als , wenn v über A konstant ist, sonst . Die Bedeutung des BegriffesΦ = A•v Φ = ∫ v • dA

Fluß rührt daher, daß der Gesamtfluß, der durch eine Fläche geht, die eine Quelle ganz um-

schließt, unabhängig von der Form und Größe der Fläche ist. Als Fluß des Gravitationsfeldes

definiert man

, oder allgemeinΦ = A • G

Φ = ∫ G • dA

Wir stellen uns dieses Integral als Summe aller Flüsse durch die Flächenelemente ∆Ai vor.

Φ ≈ Σ G i • A i

54

Page 56: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

δ) Das Gesetz von Gauß

Für eine Punktmasse gilt für den Fluß durch eine Kugeloberfläche mit dem Radius r, in deren

Mittelpunkt die Masse liegt

Φ = A • G = AG = 4πr2 γM

r2= 4πγM = const

Der Gesamtfluß ist also unabhängig vom Radius der Fläche. Daraus folgt sofort, wie aus der

Analogie zum Fluß in einem Strömungsfeld mit einer lokalisierten Quelle zu ersehen ist, daß

der Gesamtfluß durch eine geschlossene Fläche, die die Masse umgibt, auch unabhängig von

der Form der Fläche ist, denn im stationären Zustand muß die gesamte Flüssigkeitsmenge, die

die Quelle liefert, auch durch diese Fläche strömen. Die obige Formel für den Gesamtfluß des

Gravitationsfeldes einer Punktmasse gilt aber auch für beliebige Massenverteilungen mit der

Gesamtmasse M. Dies liegt daran, daß sich die Flüsse einzelner Massen linear superponieren,

d.h., daß der Fluß durch ein Flächenelement A von mehreren Massen gleich der Summe der

Flüsse der einzelnen Massen durch dieses Flächenelement ist (Abb. 44).

Abb. 44: Der Fluß des Feldes der einzelnen Massen addiert

sich zum Gesamtfluß.

Φges = γ Σ mi

r3r i

• A = γΣ

mi

r3ri • A

= Σ Φi

Der Fluß durch eine geschlossene Fläche kann durch Summierung der Flüsse durch die

Teilflächen erhalten werden. D.h. der Gesamtfluß durch eine geschlossene Fläche um eine

Masse M, die sich aus Teilmassen mi zusammensetzt: M = m1 + m2 + ... = Σmi ist gleich der

Summe der Flüsse durch diese geschlosene Fläche die von den einzelnen Teilmassen ausge-

hen. Da der Fluß für jede Teilmasse unabhängig von der Größe und Form der geschlossenen

Fläche ist, gilt das auch für den Gesamtfluß aller Massen und damit für den Fluß von M. Diese

Tatsache wird als Gesetz von Gauß bezeichnet. Wir formulieren es so:

55

Page 57: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Der gesamte Fluß der Gravitationsfeldstärke einer Masse M durch eine geschlossene Fläche,

die M ganz umgibt, ist , unabhängig von der Form und Größe der Fläche.Φ = 4πγM

Der Gesamtfluß kann also sofort angegeben werden.

ε) Beispiele

i. Gravitationsfeld einer ausgedehnten Kugel im Abstand r

Abb. 45: Aus dem Fluß im Abstand r läßt sich bei einer Ku-

gel die Feldstärke des Gravitationsfeldes berechnen.

Der Fluß durch eine konzentrische Kugelfläche mit dem Radius r (wobei r größer als der Ku-

gelradius sein muß) ist nach dem Gesetz von Gauß

Φ = ∫ G • dA = 4πγM

Da aus Symmetriegründen G konstant und G parallel zu A ist, gilt

∫ G • dA = G ⋅ 4πr2

Daraus folgt undG = γM2

F = γmM2

Für die Kraftwirkung außerhalb einer homogenen Kugel kann diese durch einen Massenpunkt

der Masse M im Mittelpunkt der Kugel ersetzt werden.

ii. Kraft im Innern einer Kugelschale

Abb. 46: Zur Berechnung des Gravitationsfeldes im Innern

einer Kugelschale.

Die Kugelschale ist in Abb. 46 schraffiert gezeichnet. Um die Feldstärke im Innern auszurech-

nen wird eine Kugelfläche betrachtet, die ganz im Innern der Schale liegt. Wegen der gleichen

56

Page 58: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Symmetrie wie im vorigen Beispiel erhält man das gleiche Ergebnis. Nur umschließt die Ku-

gelfläche in diesem Falle keine Masse, d.h. M = 0. Daraus folgt Φ = 0 und damit G = 0. Im In-

nern der Kugelschale gibt es keinerlei Gravitationskraft. Während das Ergebnis von Aufgabe

i. oft intuitiv richtig geraten wird, ist das von Aufgabe ii. weit weniger unmittelbar einsichtig.

Mit dem Gesetz von Gauß kann man also Feldstärken und damit auch Kräfte ausrechnen.

Dummerweise funktioniert das Verfahren nur, wenn man, wie in den obigen Beispielen aus

Symmetriegründen von vorneherein sagen kann, daß die Feldstärke - zumindest über be-

stimmte Raumbereiche - konstant bleibt. In praxi gibt es also nur sehr wenige Situationen, in

denen man das Gaußsche Gesetz zur Berechnung einer Feldstärke wirklich anwenden kann.

Für Abschätzungen und grundsätzliche Betrachtungen ist es aber ein sehr mächtiges

Hilfsmittel.

d) Andere Grundkräfte

α) Die elektrostatische Kraft

Für die Kraft zwischen ruhenden geladenen Teilchen gilt das Coulombgesetz.

F =Q1Q2

4πε0

1r2

rr

Die Form ist identisch mit dem Gravitationsgesetz. Daher gelten die Ausführungen, die für

das Gravitationsgesetz gemacht wurden auch für das Coulombgesetz. Q sind Ladungen, die im

Gegensatz zur Masse auch negative Werte annehmen können. Die Dielektrizitätskonstante ε0

ist wie γ eine experimentell zu ermittelnde Konstante

14πε0

= 9 ⋅ 109 Nm2

(As)2

Die Ladungen von Elementarteilchen sind ganze Vielfache der Elementarladung

. Ausnahmen bilden die Quarks mit 1/3 und 2/3 der Elementarladung. Diesee0 =1, 6 ⋅10−19As

werden aber nicht einzeln beobachtet. Das Gesetz von Gauß heißt in der Elektrostatik

∫ E • dA =Qε

E ist die elektrische Feldstärke, die ähnlch wie bei der Gravitation gebildet wird

57

Page 59: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

E = FQp

F ist die Kraft, die durch das Feld auf die Probeladung ausgeübt wird.

β) Die Lorentzkraft

Bewegte Ladungen erfahren zusätzlich die Lorentzkraft

F = Qv × B

γ) Kernkräfte

In der Kern- und Elementarteilchenphysik spielen außer den bisher behandelten Kräften die

starke und die schwache Wechselwirkung eine Rolle. Es gibt Teilchen wie die Neutrinos, die

nur die schwache Wechselwirkung zeigen. Andere wie die Elektronen zeigen die schwache

und die elektromagnetische Wechselwirkung. Die Quarks zeigen neben diesen beiden Wech-

selwirkungen die starke Wechselwirkung, die dann alle übrigen Kräfte dominiert. Die starke

Wechselwirkung kann auf eine Größe zurückgeführt werden, die der Ladung in der Elektro-

statik analog ist. Man nennt sie Farbladung. Es gibt drei verschiedene Farbladungen und ihre

komplementären Ladungen. Die Quarks streben die Gesamt"farbe" weiß an. Dies ist möglich,

indem sich zwei Quarks mit komplementären Farben verbinden. Man erhält dann Mesonen. Es

ist aber auch möglich, indem sich drei Quarks mit allen drei unterschiedlichen Grundfarben

verbinden. Man erhält dann Baryonen, z.B. Protronen und Neutronen. In der Quantenfeldtheo-

rie benötigt man weitere Teilchen, die für den Quantencharakter bei der Kraftüberttragung

sorgen. Bei der Gravitation sind dies Gravitonen, bei der Elektromagnetik Photonen, bei der

starken Wechselwirkung Gluonen, bei der schwachen Wechselwirkung W und Z Teilchen.

Die Kraftteilchen können selber Kräften ausgesetzt sein wie bei den Gluonen oder neutral er-

scheinen wie bei den Photonen.

e) Kräfte zwischen makroskopischen Körpern

Bisher wurden Kräfte zwischen einzelnen Körpern betrachtet, von deren Ausdehnung abgese-

hen wurde. Streng genommen gelten die besprochenen Kraftgesetze für Massenpunkte. In pra-

xi können wir uns darunter die elementaren Teilchen der Materie vorstellen. Die Kräfte zwi-

schen zusammengesetzten Körpern ergeben sich dann durch Addition der Kräfte zwischen al-

len Elemenarteilchen. Diese Addition ist in den seltensten Fällen wirklich durchführbar. In ei-

nigen Fällen gibt es für die Kraft eines zusammengesetzten Körpers einfache Erfahrungssätze.

Diese werden im folgenden besprochen. Sie haben natürlich nicht den fundamentalen

58

Page 60: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Charakter wie die Grundkräfte und deswegen auch nur einenbegrenzten Gültigkeitsbereich.

Typisch für diese makroskopischen Kräfte sind Materialkonstanten, die durch eine übergeord-

nete Theorie oder experimentell bestimmt werden müssen.

α) Kraft durch elastische Verformung

Abb. 47: Das Spannungs - Dehnungs - Diagramm von

festen Körpern.

Dehnt man einen Körper, etwa einen Draht mit dem Querschnitt A, indem man an beiden En-

den eine Kraft F aufwendet, so ergibt sich für die relative Längenänderung dl/l in Abhängig-

keit von der angewandten Spannung σ = F/A typischerweise das in Abb.47 dargestellte Ver-

halten: Bei kleinen Auslenkungen ist die Dehnung der Spannung proportional

σ = FA

= Edll

Die Proportionalitätskonstante E nennt man den Elastizitätsmodul. Diese lineare Näherung des

eigentlichen Spannungs/Dehnungs Gesetzes nennt man das Hookesche Gesetz, den Bereich, in

dem es gilt, den Proportionalitätsbereich (in Abb. 47 geht er bis zum Punkt P). Überschreitet

man den Bereich, muß man höhere Glieder der Taylorentwicklung mit berücksichtigen. Ab ei-

ner bestimmten Grenze (E) verformt sich ein Körper bleibend. Der Elastizitätsbereich ist über-

schritten. Bei noch größeren Verformungen fängt der Körper an, zu fließen (F) oder er bricht.

Die Festigkeit eines Körpers ist die Grenzspannung, bei der er reißt. Ähnliche Gesetze wie für

die Dehnung gelten für die Scherung, d.h. die Belastung eines Körpers mit einer Kraft, die

parallel zur belasteten Fläche ausgerichtet ist. Bei der Dehnung einer Spiralfeder wird der

Draht torsionell verformt. Für den Zusammenhang von äußerer Kraft und Längenenderung der

Feder gilt in einem weiten Bereich das Hookesch Gesetz

F = Dx

D ist die Federkonstante, die die Steifigkeit der Feder beschreibt.

59

Page 61: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

β) Reibungskraft

i. Reibung zwischen festen Körpern

Abb. 48: Ein fester Körper mit glatter Oberfläche auf ei-

ner festen Unterlage.

Bei festen Körpern mit ebenen Grenzflächen ist die Reibungskraft FR parallel zur Berührungs-

fläche ausgerichtet und der Kraft, die beide Körper aufeinanderdrückt, der sogenannten Nor-

malkraft, proportional (Abb. 48). Bei Grenzflächen zwischen festen Körpern ist FR von der

Flächengröße unabhängig. Der Grund liegt darin, daß nur wenige Auflagepunkte existieren,

deren Anzahl etwa unabhängig von der Flächengröße ist.

FR = µFN

Der Reibungskoeffizient µ wird experimentell bestimmt. Er unterscheidet sich für Haft-,

Gleit-, und Rollreibung. Eine nahezu reibungsfreie Bewegung kann auf einer Luftkissenbahn

realisiert werden. Durch das Wechselspiel von Gleit- und Haftreibung können interessante Be-

wegungsabläufe resultieren etwa wie bei dem Spielzeug Hackspecht.

Eine einfache Möglichkeit zur Bestimmung des Reibungskoeffizienten besteht darin, einen

Körper auf eine schiefe Ebene zu lege und den Neigungswinkel zu messen, bei dem er anfängt

zu gleiten (dies ergibt den Koeffizienten der Haftreibung), oder bei dem er gerade noch gleitet

(dies ergibt den Koeffizienten der Gleitreibung). Nach Abb. 49 ist

Abb. 49: Bestimmung des Reibungskoeffizienten auf

der schiefen Ebene.

Ft = mg sin α

FN = mg cos α

60

Page 62: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Im Grenzfall ist Ft = FR = µFN, also mg·sinα = µmg·cosα und µ = tan α

ii. Reibung in Flüssigkeiten und Gasen

Wir stellen uns zunächst einen Körper in einer mit der Geschwindigkeit v strömenden Flüs-

sigkeit vor, etwa ein Fahrzeug, das sich mit der Geschwindigkeit v in der umgebenden Luft

bewegt. Bei hohen Geschwindigkeiten erzeugen die anströmenden Teilchen die Reibung

durch Stoß auf die Wand. Man erhält dann eine Reibungskraft, die proportional zum Impus-

verlust aller Teilchen ist. Der Impulsverlust wird ein bestimmter Bruchteil ihres Anfangsim-

pulses sein. Wenn ∆N Teilchen in der Zeit ∆t anströmen, gilt

FR ∼ ∆N∆t

mv

Nach Abschnitt C.2.c gilt . Hierin ist n die Anzahl der Teilchen pro Volumen. Die∆N∆t

= vnA

Reibungskraft ist also proportional

FR ∼ Anmv2

Man schreibt FR = cWA12

ρv2

cW ist der Widerstandsbeiwert, der von der Form und der Oberflächenbeschaffenheit des Kör-

pers abhängt, nm = ρ ist die Dichte der Flüssigkeit bzw. des Gases.

Bei kleineren Geschwindigkeiten stoßen die strömenden Teilchen nicht mehr frontal gegen

den Körper, sondern sie umströmen ihn auf einer glatten Bahn. Man spricht dann von lamina-

rer Strömung. Die Reibung entsteht durch Impulsaustausch von Teilchen, die zwischen anein-

ander vorbeigleitenden Flüssigkeitsschichten ausgetauscht werden. Diese Reibung nennt man

innere Reibung von Flüssigkeiten. Sie wird durch den Koeffizienten der Viskosität η beschrie-

ben. Nach Newton definiert man für eine ebene Strömung in Richtung x, deren Geschwindig-

keit sich in einer Richtung y senkrecht zu den Flüssigkeitsschichten ändert: dvx

dy≠ 0

FR = ηdvx

dyA

Im Gegensatz zur Reibung zwischen festen Körpern ist die innere Reibung von der Fläche ab-

hängig. Der Viskositätskoeffizient hat gemäß der obigen Definition die Dimension

61

Page 63: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

[η] = Ns/m2. Strömungen werden genauer im Kapitel Hydrodynamik (Kapitel D.4.c) behan-

delt. Zur Berechnung einfacher Bewegungen unter dem Einfluß einer Reibungskraft benötigen

wir im folgenden nur die Reibung auf eine Kugel mit dem Radius R bei laminarer Strömung

(s. Abb. 50).

Abb. 50: Die Stromlinien bei laminarer Strömung um ei-

ne Kugel.

Hierfür gilt das Stokesche Gesetz

FR = 6πηRv

Bei laminarer Strömung ist die Reibungskraft also proportional zur Geschwindigkeit. Bei hö-

heren Geschwindigkeiten ist sie, wie wir gesehen hatten, proportional zu v2. In der Nähe der

Schallgeschwindigkeit nimmt FR dramatisch zu. Insgesamt ergibt sich für FR/v2 in Abhängig-

keit von v nebenstehender Verlauf (Abb. 51). Bei kleinen Geschwindigkeiten ist FR/v2 ~ 1/v

(FR ~ v), in einem weiten Bereich ist FR/v2 konstant (FR ~ v2).

Abb.51: Wie die Reibungskraft an einem Körper in einer

Strömung von der Geschwindigkeit der Strömung abhängt.

3. Beispiele für einfache Bewegungen

a) In zäher Flüssigkeit fallende Kugel

Abb. 52: Auf eine in einer zähen Flüssigkeit fallenden Ku-

gel wirkt neben der Schwerkraft die Reibungskraft, even-

tuell noch die Auftriebskraft.

62

Page 64: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Bewegungsgleichung lautet

m•v = FG − FR

FG ist die um den Auftrieb verringerte Gewichtskraft. Im folgenden wird angenommen, daß

der Auftrieb vernachlässigbar ist FG = mg. Für die Reibungskraft wird das Stokessche Gesetz

vorausgesetzt: FR = mαv, wobei α = 6πηR/m. Damit erhält man aus der Bewegungsgleichung

eine Differentialgleichung für v

•v = g − αv

Man dividiert durch die rechte Seite und kann sofort integrieren.

∫dvdt

dtg − αv = ∫ dv

g − αv = t

Das erste Gleichheitszeichen verwendet die Substitutionsregel ∫ F[z(x)]dx = ∫ F(z)dxdz

dz

Man substituiert g - αv = z. Mit dz = -αdv erhält man

−1α ∫ dz

z = −1α ln z − c = −1

α ln (g − αv) − c = t

Die Integrationskonstante c wird aus den Anfangsbedingungen bestimmt. Es soll gelten für

t = 0 v = 0. Dies in die Endformel eingesetzt ergibt

c = −1α ln g

Damit wird das Gesamtergebnis

−1α ln (g − αv) + 1

α ln g = t ln (g − αv) − ln g = −αt

lng − αv

g = −αt

63

Page 65: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Um das v(t) Gesetz zu erhalten, muß nach v aufgelöst werden. Zunächst wird nach dem Argu-

ment von ln: (1 - αv/g) über die Beziehung lnex = x aufgelöst

-

1 − αg v = e−αt

Das v(t) Gesetz lautet damit

v = gα (1 − e−αt) =v0(1 − e−αt)

Für t >> 1/α wird v = v0. v0 ist die asymptotisch erreichte Grenzgeschwindigkeit.

da v0 = gα = gm

6πηR∼ R2 m = ρ4π

3R3

Abb. 53: Oben: die e - Funktion. Unten: die Entwicklung der

Geschwindigkeit des fallenden Tropfens.

Die Grenzgeschwindigkeit v0 ist nach einigen Zeiten t0 = 1/α erreicht, was u.U. eine sehr kur-

ze Zeit sein kann. Man kann also so rechnen, als ob der Körper abgesehen von einer kurzen

Anfangsphase mit der Geschwindigkeit v0 fliegt. Daher fallen große Regentropfen schneller

als kleine. In Wolken sind die Wassertröpfchen extrem klein. Sie fallen daher so langsam, daß

sie praktisch schweben. In der anfänglichen Beschleunigungsphase entspricht das Verhalten

von v dem der Ladung Q beim Aufladen eines Kondensators. dv/dt nimmt laut Bewegungs-

gleichung mit steigendem v ab. Beim Kondensator nimmt dQ/dt durch das Gegenfeld ab.

b) Reibungsfreie Bewegung auf einer schiefen Ebene

Die antreibende Kraft in Bewegungsrichtung ist (s. Abb. 54) Ft = mg·sinα. Es ergibt sich also

eine konstant beschleunigte Bewegung mit der gegenüber dem freien Fall reduzierten

Beschleunigung

a = g·sinα

64

Page 66: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 54: Die schiefe Ebene eignet sich dazu, eine gleich-

förmig beschleunigte Bewegung zu untersuchen.

Um v(t) und s(t) zu finden geht man also wie bei der Behandlung der gleichförmig beschleu-

nigten Bewegung in Kap. B.e vor.

c) Die Atwoodsche Fallmaschine

Abb. 55: Bei der Atwoodschen Fallmaschine ist die Trägheit

durch die Summe der Massen, die antreibende Kraft durch

die Differenz der Gewichte der Massen gegeben.

Betrachtet wird ein System aus zwei Massen, die an den beiden Seiten eines Fadens hängen,

der über eine Rolle geführt wird (Abb. 55). Auf die Massen wirkt neben der Schwerkraft die

Kraft, die von der jeweils anderen Masse über den Faden übertragen wird. Wenn man in sol-

cher Situation unsicher ist, ob eine Kraft übertragen wird, schneide man den Faden in einem

Gedankenexperiment durch und prüfe, ob die Dynamik sich ändert. Die Kraft F, mit der der

Faden gespannt wird, wird zunächst als Unbekannte eingeführt. Es ergeben sich zwei Bewe-

gungsgleichungen für die Massen m1 und m2, aus denen die unbekannte Kraft F eliminiert

werden kann.

m2g − F = m2••x

F − m1g = m1••x

Durch Addition beider Gleichungen erhält man

(m2 − m1)g = (m1 + m2)••x

••x= m2 − m1

m1 + m2g

65

Page 67: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Bei dieser Betrachtung wurde die Trägheit der Rolle vernachlässigt. Man erhält also wieder

eine gleichförmig beschleunigte Bewegung. Die zu beschleunigende Masse ist hier m1 + m2,

die antreibende Kraft (m2 - m1)g. Die Fadenspannung ergibt sich aus einer der beiden Aus-

gangsgleichungen zu

F = 2m1m2

m1 + m2g

die Kraft, die die Aufhängung aufbringen muß ist 2F

d) Die Rakete

Abb. 56: Zur Ableitung der Raketengleichung. dm ist ein Mas-

senelement des Treibstoffs. Alle Geschwindigkeiten werden in

Vorwärtsrichtung als positiv gerechnet.

Betrachtet wird eine Rakete im Weltraum in so großer Entfernung von den anderen Himmels-

körpern, daß die Gravitationskräfte keine Rolle spielen. Im ruhenden Bezugssystem ist die Ge-

schwindigkeit der Rakete v, die des Gases vgas, die Ausströmgeschwindigkeit des vom Antrieb

ausgestoßenen Gases von der Rakete aus betrachtet ve, wobei die positive Richtung für alle

Geschwindigkeiten in Bewegungsrichtung der Rakete zeigen soll. ve und vgas hängen über die

Raketengeschwindigkeit v voneinander ab. v + ve = vgas. Um auszurechnen, wie sich v in Ab-

hängigkeit vom Massenausstoß entwickelt, wird der Impulssatz dp/dt = 0 für das gesamte Sy-

stem betrachtet. Wenn die Raketenmasse um |dm| abnimmt, nimmt die Masse des ausgestoße-

nen Gases um |dm| zu: dmRakete = - dmgas.

p(t + dt) = (m + dm)(v +dv) − dmvgas

Beim Grenzübergang verschwinden Terme zweiter Ordnung

p(t + dt) = mv +mdv + vdm − dmvgas

Da v + ve = vgas und damit vdm - vgasdm = -vedm, wird daraus

66

Page 68: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

p(t + dt) = mv +mdv - vedm

Die Impulsänderung dp = p(t + dt) - p(t) wird damit

dp = mdv - vedm

Diese soll verschwinden, da nur innere Kräfte wirken

mdv = vedm, d.h. dv = vedmm

Diese Gleichung läßt sich sofort integrieren: v = velnm + C

Die Integrationskonstante C wird durch die Anfangsbedingungen festgelegt: v = v0, wenn

m = m0. Eingesetzt ergibt dies: C = v0 - velnm0 und

v = velnm + v0 - ve lnm0

mit dem Ergebnis

v = v0 − velnm0m

Da m0 > m und nach Definition ve < 0, nimmt v zu. Bei chemischen Raketen kann die Aus-

strömgeschwindigkeit ve einen gewissen Wert nicht überschreiten. Außerdem hat m0/m einen

maximalen Wert, da man ein gewisses Strukturgewicht m0 braucht, um den Treibstoff m - m0

zu halten. Als Konsequenz kann die Rakete eine gewisse Endgeschwindigkeit nicht über-

schreiten. Als Ausweg bieten sich mehrstufige Raketen an und elektrische Antriebe, die sehr

viel höhere Ausstoßgeschwindigkeiten erlauben als chemische Antriebe, meisten allerdings

nur relativ kleine Massendurchflüsse.

e) Dynamik der Kreisbewegung

Für den allgemeinen Fall spaltet man die Bewegungsgleichung in einen tangentialen und einen

normalen Anteil auf (s. Abb. 58). Da p = p·et und et von der Zeit abhängt, gilt

F =dpdt

=•p e t + p

•e t

67

Page 69: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 57: Die Kreisbewegung wird in eine tangentiale und

eine normale Bewegung aufgespalten.

Hier sind die tangentiale Impulsänderung und . Nach dem bei der Kinema-F t =•p et Fn = p

•e t

tik der Kreisbewegung gesagtem (Kap. B.2.f) kann man hierfür schreiben

Fn = mRω2en

Bei einer gleichförmigen Kreisbewegung ist . Der Körper erfährt nur eine Beschleuni-•p = 0

gung mRω2 senkrecht zur Bahn. Diese muß durch eine Kraft, die senkrecht zur Bahn steht und

konstanten Betrag besitzt, erzeugt werden. Umgekehrt kann man sagen, daß ein Körper, der

nur eine konstante Beschleunigung senkrecht zu v erfährt, eine Kreisbewegung ausführt.

f) Geladenes Teilchen im Magnetfeld

Abb. 58: Die Lorentzkraft steht immer senkrecht auf der

Geschwindigkeit. Daher ergibt sich eine Kreisbewegung.

Die Kraft auf ein geladenes Teilchen der Ladung e0 im Magnetfeld ist

F = e0v × B

Nach Definition des Vektorproduktes (s. Abb. 58) steht F immer senkrecht zu v. Damit steht

auch a senkrecht zu v. Die Teilchen vollführen also eine Kreisbahn. (Wenn v eine Komponen-

te in B - Richtung hat, laufen sie auf einer Spirale). Die Zentripetalkraft ist die Lorentzkraft.

mrω2 = e0vB

Mit v = ωr erhält man . Hieraus ergibt sich die Kreisfrequenz des Um-mrω2 = e0ωrB

laufes, die Gyrations- oder Zyklotronfrequenz ωc und der Radius der Kreisbahn, der soge-

nannten Gyrationsradius.

ωc = e0Bm rc = v

ω = vme0B

68

Page 70: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 59: Prinzipieller Aufbau eines Zyklotrons

Im Zyklotron (Abb. 59) werden Teilchen beschleunigt, indem sie durch ein Magnetfeld nahe-

zu auf Kreisbahnen gehalten werden und dadurch wiederholt in einem elektrischen Feld zwi-

schen den D förmigen Elektroden eine Beschleunigung in Bahnrichtung erhalten. Der Radius

der Bahn nimmt mit zunehmender Geschwindigkeit zu, die Frequenz bleibt, solange klassisch

gerechnet werden kann, konstant. Eine andere Anwendung der Gyrationsbewegung ist der

Einschluß von geladenen Teilchen in heißen Gasen senkrecht zum Magnetfeld.

g) Kurvenneigung

Abb. 60: Die Fahrbahn muß in der Kurve geneigt sein, um

eine radiale Kraftkomponente der Schwerkraft zu erhalten,

die die Kreisbewegung ermöglicht.

Die optimale Neigung der Fahrbahn liegt dann vor, wenn der Motorradfahrer bei Kurvenfahrt

senkrecht zur Straßendecke steht (s. Abb. 60). Die Schwerkraft hat zwei Aufgaben: Aufbrin-

gen der Auflagekraft FN und der Zentripetalkraft Fp. Wir zerlegen daher die Schwerkraft in ei-

ne horizontale Komponente und eine, die senkrecht auf der Fahrbahn steht. Dann ist der Win-

kel α in dem Kräfteparallelogram in Abb. 60 gerade der Neigungswinkel der Bahn. Aus dem

Kräfteparallelogramm ermittelt man

tan α =Fp

FG= mRω2

mg = v2

Rg

h) Das Geoid

Abb. 61: Die Oberfläche stellt sich so ein, daß sie senkrecht auf

der Komponente steht, die übrig bleibt, wenn man die Zentripe-

talkraft die die Kreisbewegung besorgt, abzieht. Anschaulicher ist

die Erklärung über Scheinkräfte (s. Abb. 106).

69

Page 71: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ein frei bewegliches Massenelement an der Oberfläche der Erde bewegt sich auf der Oberflä-

che solange, bis es keine parallel zur Oberfläche wirkende Kraft mehr spürt. Die Schwerkraft

FG, die zum Erdmittelpunkt gerichtet ist, muß die Normalkraft FN und die für die Kreisbewe-

gung erforderliche Zentripetalkraft Fp aufbringen. Die entsprechende Kraftzerlegung wird in

Abb. 62 gezeigt. Man erkennt, daß die Erdoberfläche, die sich ja senkrecht zu FN einstellen

muß, gegen der Kugeloberfläche geneigt ist. Die radiale Richtung, die auf den Erdmittelpunkt

zeigt, ist verschieden von der vertikalen Richtung, die ein Lot anzeigt.

4. Drehimpuls und Drehmoment

Während die Grundgesetze der Dynamik wie die meisten Grundgesetze der Physik leicht hin-

zuschreiben sind, ist ihre Anwendung im allgemeinen außerordentlich mühselig. In der Regel

muß man daher fast immer drastische Vereinfachungen vornehmen. Selbst dann wären viele

Probleme nicht zu bewältigen, wenn man nicht auf einige nützliche Hilfsbegriffe wie Impuls,

Drehimpuls, Energie zurückgreifen könnte. Um diese Hilfsbegriffe geht es in den folgenden

Abschnitten.

Drehimpuls und Drehmoment sind Größen, die besonders für die Beschreibung von Drehbe-

wegungen geeignet sind. Sie sind aber für eine beliebige Bewegung eines Massenpunktes de-

finiert. Drehmoment und Drehimpuls erfordern einen Bezugspunkt. Bei einer Drehung um ei-

ne Achse wählt man häufig als Bezugspunkt einen Punkt auf dieser Drehachse. Bei einer

Bahnbewegung etwa der Planeten ist das Kraftzentrum ein geeigneter Punkt. Man kann aber

auch jeden beliebigen anderen Punkt wählen.

a) Der Drehimpuls

Man definiert den Drehimpuls eines Massenpunktes bezüglich eines Bezugspunktes als

(2)L = r × p

Abb. 62: Zur Definition des Drehimpulses

Dies ist gleichbedeutend mit . r ist dabei der Vektor, der vom Bezugspunkt zumL = mr × v

Massenpunkt zeigt. Da bei einer ebenen Bewegung, wenn r in der Bahnebene liegt, der

70

Page 72: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Vektor ω senkrecht zu r und v steht, steht in dieser Geometrie L parallel zu ω, und man kann

schreiben

L = mr2ω

Wenn r nicht in der Bahnebene liegt, hat L nicht die gleiche Richtung wie ω. Die Richtung

von L ändert sich während der Bewegung. Zerlegt man v in einen radialen und einen azimuta-

len Anteil (s. Abb.63)

Abb. 63: Zerlegung der Geschwindigkeit in Radial - und Azi-

mutalanteil.

v = vθ +vr

erhält man, da r × vr = 0

L = mr × (vθ + vr) = mr × vθ + mr × vr = mr × vθ

Für den Drehimpuls ist also nur die zu r senkrechte Geschwindigkeitskomponente maßgeb-

lich. Für eine ebene Bewegung, bei der r in der Ebene der Bewegung liegt, gilt

, und damit vθ = rω ω =•θ L = mr2

•θ = mrvθ

b) Das Drehmoment

Durch Ableitung des Drehimpulses nach der Zeit erhält man

dLdt

= drdt

× p + r × dpdt

Da und p = mv, verschwindet der erste Term auf der rechten Seite. Da außerdemdrdt

= v

, erhält mandpdt

= F

dLdt

= r × F

71

Page 73: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 64: Zur Definition des Drehmomentes. Die radia-

le Komponente von F liefert keinen Beitrag.

Es ist daher sinnvoll, die rechte Seite als eine neue Größe zu definieren. Man nennt sie das

Drehmoment.

(3)M = r × F

Man erhält dann für die Änderung des Drehimpulses eine Gleichung, die völlig analog zum

Aktionsgesetz ist. Man muß nur die Kraft durch das Drehmoment und den Impuls durch den

Drehimpuls ersetzen.

(4)M = dLdt

Das Drehmoment übernimmt also bei Drehbewegungen die Rolle der Kraft in Translationen,

der Drehimpuls die Rolle des Impulses. Mit der gleichen Argumentation wie oben beim Dreh-

impuls findet man, daß zum Drehmoment nur die Kraftkomponente beiträgt, die senkrecht auf

r steht. Bei der Beschreibung von Drehbewegungen ist es häufig zweckmäßig, Polarkoordina-

ten einzuführen. Statt s nimmt man den Drehwinkel θ, statt nimmt man . Derv = •s ω =

•θ

Vergleich von p = mv und L = mr2ω zeigt, daß man statt der Masse bei Drehbewegungen

zweckmäßigerweise das Trägheitsmoment J = mr2 verwendet. Man definiert daher das Träg-

heitsmoment eines Massenpunktes auf einer Kreisbahn mit Radius R:

(5)J = mR2

c) Der Flächensatz

Abb. 65: Beim Flächensatz geht es um die Fläche, die der

Fahrstrahl r überstreicht.

72

Page 74: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Wenn kein äußeres Drehmoment wirkt (M = 0), d.h. wenn F = 0, oder wenn F parallel zu r

steht, d.h. eine Zentralkraft wirkt, wird nach Gleichung (4) und L bleibt konstant. Dar-dLdt

= 0

aus folgt zunächst, daß die Bewegung eben ist. Außerdem ist L = mrv konstant, d.h. je größer

r, z.B. der Abstand zum Kraftzentrum ist, desto kleiner wird die Geschwindigkeit. Nach Ke-

pler drückt man diese Tatsache mit dem Flächensatz aus. Die bei dem Fortschreiten um einen

Winkel dθ vom Fahrstrahl, d. h. dem Strahl, der vom Kraftzentrum zum umlaufenden Körper

zeigt, überstrichene Fläche ist nach Abb. 65

dA = 12

r ⋅ rdθ

Die Gesamtfläche bei Fortschreiten um einen endlichen Winkel ist dann

A =∆θ→0lim Σ 1

2r2∆θ = 1

2 ∫θ1

θ2r2dθ

Damit wird die Geschwindigkeit, mit der die überstrichene Fläche sich ändert

dAdt

= dAdθ

dθdt

= 12

r2 dθdt

Dieser Ausdruck ist konstant, da nach dem Drehimpulssatz beim Fehlen äußerer Drehmomen-

te L = mr2dθ/dt konstant ist. Der Drehimpulssatz und der Flächensatz beschreiben also den

gleichen Sachverhalt. Für die Planetenbewegung besagt der Drehimpulssatz, daß der Fahr-

strahl von der Sonne zu einem Planeten in gleichen Zeiten gleiche Flächen überstreicht.

Man beachte, daß der Drehimpuls eines Körpers auf einer Bahn auch dann noch konstant blei-

ben kann, wenn äußere Kräfte auf den Körper wirken, nämlich, wenn diese Zentralkräfte sind.

Man beachte außerdem, daß auch ein gleichförmig geradlinig bewegter Körper einen Drehim-

puls bezüglich eines Punktes, der nicht auf seiner Bahn liegt, hat. Für eine geradlinige Bewe-

gung ist L = mrv sinα = m·d·v = const. (s. Abb.66).

Abb. 66: Auch eine geradlinige Bewegung hat einen

Drehimpuls

73

Page 75: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

5. Arbeit, Leistung, Energie

a) Grundbegriffe

Der Begriff Arbeit leitet sich aus den schon in der Antike bekannten Tatsachen her, daß man

mit einfachen Maschinen wie Hebelarmen oder Flaschenzügen zwar die Kraft, die notwendig

ist, ein Gewicht zu heben, verkleinern kann, dafür aber eine entsprechend größere Strecke zu-

rücklegen muß. D.h. F·s bleibt gleich. Man sagt daher, wenn ein Körper durch eine Kraft ver-

schoben oder verformt wird, leistet die Kraft eine Arbeit. Bei konstanter Kraft ist die Arbeit

W = Fs·s, wobei Fs die Komponente der Kraft in Richtung der Verschiebung ist. Bei unter-

schiedlicher Richtung von F und s kann man die Kraftkomponente von F in Richtung s durch

F und den Winkel ausdrücken: W = F·s·cos α.

Abb. 67: Nur die Kraftkomponente in Richtung der

Verschiebung leistet Arbeit.

Für eine veränderliche Kraft gilt für genügend kleine Wegstrecken ∆s

∆W = F(s) · ∆s

Daher ist die allgemeine Definition der Arbeit

(6)W = ∫s1

s2F • ds

Die Dimension der Arbeit ist [W] = Nm = kgm2/s2 =J(Joule).

Die Leistung ist ein Maß dafür, wieviel Arbeit pro Zeiteinheit verrichtet wird

P = dWdt

Die Dimension der Leistung ergibt sich aus der Definition [P]=Nm/s = Joule/s = W (Watt).

74

Page 76: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Energie ist die Fähigkeit, Arbeit zu leisten. Sie hat also die gleiche Dimension wie Arbeit.

Wirkungsgrad η ist das Verhältnis von Nutzarbeit zu aufgewendeter Arbeit, ist also eine di-

mensionslose Konstante, im allgemeinen kleiner als eins.

b) Berechnung des Integrals ∫ F • ds ist eine neue Form eines Integrals. Bisher war ds ein Skalar. Es gibt verschiedene∫ F • ds

Möglichkeiten, aus dem Skalarprodukt Integrale der üblichen skalaren Schreibweise zu erhal-

ten, indem man formal die verschiedenen Schreibweisen des Skalarproduktes anwendet.

F • ds = Fxdx + Fydy + Fzdz

∫ F • ds = ∫ Fxdx + ∫ Fydy + ∫ Fzdz

Man erhält die Summe von drei Integralen über die verschiedenen Koordinaten. Oder

F • ds = (F cos α)ds

Hier muß man sich Gedanken machen, wie sich in dem konkreten Beispiel α entlang des We-

ges ändert. Ist diese Funktion bekannt, liegt wieder ein normales Integral vor. Besonders ein-

fach wird die Berechnung in diesem Fall, wenn α konstant oder wenigstens stückweise kon-

stant ist. Wenn Fs (s) = Fs(s)cosα(s) bekannt ist, erhält man

W = ∫s

s2Fs(s)ds

mit der Umkehrung

Fs(s) = dW(s)ds

Wenn die Bahnkurve in Parameterdarstellung bekannt ist, r = r(t), transformiert man im Inte-

gral die Variablen x,y,z auf t:

W = ∫r1

r2F(r) • dr = ∫ F[r(t)] • dr = ∫ t1

t2 F(t) • dr

dt dt

75

Page 77: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Arbeit hat ein Vorzeichen. Wenn man als Kraft die äußere Kraft wählt, die auf das System

wirkt, heißt positive Arbeit, daß an dem System Arbeit geleistet wird. Die Energie des Sy-

stems erhöht sich. Negative Arbeit ist vom System geleistete Arbeit. Nach dem Reaktionsprin-

zip existiert zu jeder Kraft eine gleich große Gegenkraft. Wenn man diese Gegenkraft, die

vom System auf die Umgebung wirkt, zur Berechnung der Arbeit verwendet, ist positive Ar-

beit die, die das System leistet.

Man sagt, ist ein Kurvenintegral entlang der Kurve C.∫CF(r) • dr

Beispiel:

i. Welche Arbeit benötigt man zum Ausziehen einer Feder um die Strecke h?

Kraftgesetz: F = Dx

W = ∫0

hDxdx =

12

Dx2 0

h

= 12

Dh2

ii. Arbeit der Zentripetalkraft bei gleichförmiger Kreisbewegung

Parameterdarstellung der Bahn (s. Abb. 68):

x = Rcos ωt

y = Rsin ωt

dx = -Rωsin ωt

dy = Rωcos ωt

Fx = -(mv2/R)cosωt

Fy = -(mv2/R)sinωt

W = ∫ Fxdx + ∫ Fydy = mv2ω ∫ sin ωt cos ωtdt − ∫ cos ωt sin ωtdt =

Abb. 68: Welche Arbeit leistet die Zentripetalkraft?

76

Page 78: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Dieses Ergebnis ergibt sich auch sofort aus der Bedingung, daß die Zentripetalkraft senkrecht

auf der Bewegungsrichtung des Körpers steht.

c) Die potentielle Energie

α) Was ist potentielle Energie

Bei manchen Kraftfeldern F(r) wie dem Gravitationsfeld ist die Arbeit, die man benötigt, um

einen Körper von einem Anfangspunkt zu einem Endpunkt zu bewegen, unabhängig von der

Form des dazwischen liegenden Weges. Diese Kraftfelder heißen konservativ. Als Beispiel

wird im folgenden gezeigt, daß das Gravitationsfeld in der Nähe der Erdoberfläche, d.h. bei

F = const konservativ ist. Dazu betrachten wir einen Körper, der in diesem Feld auf einer

schiefen Ebene von A nach B bewegt wird (Abb. 69).

Abb. 69: Die Arbeit beim Heben einer Masse m auf der

schiefen Ebene.

Dabei leistet das Gravitationsfeld die Arbeit

W = Fts = mgs sin α = mgH

Die Arbeit ist die gleiche, wie wenn der Körper senkrecht die Strecke H fallen würde. Daher

ist sie auch auf einer aus schiefen Ebenen mit unterschiedlicher Neigung zusammengesetzten

Bahn wie in Abb. 70 und folglich für eine Bahn beliebiger Form mgH.

(7)C∫A

BF • ds =

C∫A

BF • ds = −

C∫B

AF • ds

Abb. 70: Die Arbeit ist nur von H, nicht von der Neigung der

Ebene abhängig. daher ergibt sie sich auch bei zusammenge-

setzten Ebenen aus der Gesamthöhe.

Im Integral ganz rechts durchläuft man die Bahn C2 von B nach A. Gleichung (7) besagt, daß

die bei der Bewegung des Körpers von A nach B hinengesteckte Energie vollständig

77

Page 79: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 71: Die Arbeit entlang eines geschlossenen Weges

zurückgewonnen werden kann, wenn der Körper zum Anfangspunkt zurückkehrt. Dabei kann

die Form des Rückweges sich von der des Hinweges unterscheiden. Gleichung (7) kann auch

geschrieben werden

C∫A

BF • ds +

C∫B

AF • ds = 0

In einem konstanten Kraftfeld ist die Arbeit entlang eines geschlossenen Weges unabhängig

von der Form des Weges 0

∫ F • ds = 0

Der Kreis am Integralzeichen zeigt bei einem Linienintegral an, daß über einen geschlossenen

Weg integriert werden muß. Das Integral besagt anschaulich, daß man bei einer Radtour in

bergigem Gelände, die zum Ausgangspunkt zurückführt, genau so viel Energie in den Gefäl-

lestrecken gewinnt, wie man auf den Steigungen hineingesteckt hat, unabhhängig davon, wie

Strecken mit Steigung und Gefälle auf der gesamten Tour angeordnet sind. Reibungseffekte

müssen allerdings vernachlässigbar sein.

Die obige Überlegung kann man sofort auf ein Zentralfeld, in dem die Kraft nur vom Abstand

zum Zentrum abhängt, erweitern. An jedem Ort kann die Kraft F und das Wegelement ∆s in

eine radiale und eine azimuthale Komponente zerlegt werden.

F = Fθ + Fr

Damit wird die Arbeit entlang ∆s

∆W = F·∆s = Fθ ∆sθ + Fr ∆r

78

Page 80: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Da Fθ = 0 - Dies gilt für alle Zentralfelder- ist ∆W = Fr∆r, und

W = ∫rA

rBFrdr

Die Arbeit längs des krummlinigen Weges von A nach B ist die gleiche wie wenn der Körper

vom Anfangs- zum Endradius bewegt wird und und deshalb unabhängig von der Form des

Weges.

Konservativ sind alle Zentralfelder, ebenso elastische Kräfte. Nichtkonservativ sind Reibungs-

kräfte. Bei konservativen Kräften kann man die Arbeit, die angewandt werden muß, um einen

Körper von einem festen Anfangspunkt zu einem beliebigen anderen Punkt im Raum zu brin-

gen als Feldgröße definieren. Da diese Arbeit bei festem Anfangs - und Endpunkt unabhängig

vom Weg ist, kann man jedem Punkt im Raum einen bestimmten Arbeitswert zuordnen. Die-

sen nennt man potentielle Energie. Merke:

Eine potentielle Energie kann nur bei konservativen Kräften sinnvoll definiert werden

Die Potentielle Energie ist bezüglich eines beliebigen Anfangspunktes definiert.

Den Anfangspunkt muß man am Anfang einer Betrachtung festlegen.

β) Äquipotentialflächen

Abb. 72: Das Gravitationsfeld einer Kugel besteht aus ra-

dial gerichteten Kräften und kugelförmigen konzentrischen

Äquipotentialflächen.

Bewegt man sich in einem Kraftfeld senkrecht zur örtlichen Kraftrichtung, so wird keine Ar-

beit geleistet. Alle Punkte, die durch eine solche Bewegung erreichbar sind, haben gleiche po-

tentielle Energie. Sie liegen auf einer Fläche. Man nennt diese Flächen daher Äquipotentialflä-

chen. Bei kugelsymmetrischen Massen sind es konzentrische Kugelflächen, in homogenen

Kraftfeldern (F = const.) sind es parallele Ebenen.

Zur Definition der potentiellen Energie benutzt man daher statt eines Anfangspunktes eine

Anfangs Äquipotentialfläche, der man willkürlich das Potential 0 erteilt. Die Willkür stört in

der Anwendung nicht, da man sich nur für Differenzen der potentiellen Energie interessiert.

Bei ebenen Problemen nimmt man häufig die Fläche mit der niedrigst vorkommenden

79

Page 81: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

potentiellen Energie, z.B. den Laborfußboden. Bei kugelsymmetrischen Anordnungen bevor-

zugt man eine Fläche im Unendlichen.

γ) Das Vorzeichen

Man definiert die potentielle Energie des Kraftfeldes F(r) über

(8)Wpot(r) = −∫r0

rF(r) • dr

r0 ist ein Punkt auf dem Anfangsniveau. Durch das Minuszeichen erreicht man, daß Wpot posi-

tiv wird, wenn man Arbeit in das System hineinsteckt, d.h. wenn , aber zur Be-∫ Fext • dr > 0

rechnung der potentiellen Energie nicht die äußere Kraft Fext sondern die Kraft des Feldes

F = -Fext verwendet wird.

Abb. 73: In der Definition des Potentials steht die innere

Kraft des Systems. Diese ist z.B. beim Erdfeld nach unten

gerichtet.

Bewegt sich z.B. ein Körper im Erdfeld etwa auf grund seiner anfänglichen kinetischen Ener-

gie nach oben, so ist er nur der Anziehungskraft ausgesetzt, und diese ist entgegen seiner Be-

wegungsrichtung ausgerichtet (Abb. 73).

FG = -mg

Wpot = −∫h

(−mg)dx = mgh

Die potentielle Energie nimmt also zu, wie wir erwarten, wenn ein Körper angehoben wird.

δ) Arbeit im Potentialfeld

Der Potentialbegriff erlaubt es, Arbeit, die an einem Körper bei der Bewegung im Potential-

feld geleistet wurde, durch Differenzen der potentiellen Energie auszudrücken. Die Arbeit, die

die innere Kraft bei einer Bewegung von A nach B leistet, ist

WAB = ∫A

BF • dr = ∫A

r0F • dr + ∫r0

BF • dr = −∫r0

AF • dr + ∫r0

BF • dr

80

Page 82: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(9)WAB = Wpot(A) − Wpot(B)

Beispiel: Die potentielle Energie des Gravitationsfeldes einer Punktmasse M

Die Kraft auf eine Probemasse m im Abstand r ist gegeben durch

F = −γMm2

rr

Damit wird die potentielle Energie

Wpot = −∫r0

r −γmM

r2dr = γmM ∫r0

r 1r2

dr = −γMm

1r0

r0

r

= −γmM

1r − 1

r0

Das Anfangsniveau setzt man so, daß der zweite Term in der eckigen Klammer verschwindet

r0 = ∞

Die potentielle Energie ist also

Wpot = −γMm1r

Abb. 74: Das Gravitationspotential einer Punktmasse oder

einer Kugel.

ε) Das Potential

Um eine Größe unabhängig von der Probemasse m zu erhalten, definiert man ähnlich wie bei

der Feldsstärke G =F/m das Potential

V =Wpot

m

Damit wird das Potential eines Massenpunktes (oder einer Kugel) der Masse M

81

Page 83: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

V = −γMr

η) Potentialkurven

Abb. 75: Potentialkurven erlauben eine anschauliche Vor-

stellung von den möglichen Bewegungsvorgängen.

Bewegt sich ein Körper reibungsfrei im Gravitationsfeld der Erde in der Nähe der Erdoberflä-

che (bei F = const) auf einem Höhenprofil h(x), so hat er die potentielle Energie mgh(x) und

das Potential gh(x). Dieses bestimmt die Kraft und damit die Bewegung. Die tangentielle

Komponente der Schwerkraft ist Ft = mg sinα. Für α << 1 gilt sin α ~ tanα ~ α und damit

( )Ft ≈ mgα ≈ mgdh(x)

dxα ≈ tan α = dh(x)

dx

Andererseits bewegt sich ein Körper in einem vorgegebenen Feld mit der potentiellen Energie

W(x) unter der Kraft

Fx = dW(x)dx

Wenn man mgh(x) mit W(x) und Ft mit Fx identifiziert - was bei kleinen Winkeln nicht all zu

kühn ist - erkennt man, daß beide Bewegungen gleich sind. Wir können uns also die Bewe-

gung eines beliebigen Körpers im Potential V(x) durch die Bewegung einer Kugel im Höhen-

profil h(x) ~ V(x) veranschaulichen. Da uns von unserer Erfahrung Bewegungen im Potential-

gebirge an der Erdoberfläche vertraut sind, gibt uns dies die Möglichkeit intuitiv Bewegungs-

abläufe voraus zu sagen und damit Lösungsansätze für die Differentialgleichungen, zu denen

theoretische Betrachtungen führen, anzugeben. Dieses Verfahren läßt sich auch auf zweidi-

mensionale Potentialverteilungen V(x,y) erweitern. Man betrachtet dann die Bewegung einer

Kugel im Gebirge h(x,y), das sich über der xy - Ebene erhebt.

Beispiele:

82

Page 84: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

i. Molekül mit Ionenbindung

Abb. 76: Typisches Potential für die Bindung in einem Mo-

lekül. r ist der Abstand der Atome.

Für Ionenbindung kann die Bewegung eines Atoms im Feld des anderen oft durch ein Lennard

- Jones Potential angenähert werden.

Wpot = −2

r0r

6

+

r0r

12

Der Verlauf ist in Abb. 76 dargestellt. Der Gleichgewichtsabstand ergibt sich aus .dWpot

dr= 0

, mit der Lösung r = r0. Für r < r0 hat man eine abstoßende Kraft, für r > r0−12r0

6

7+ 12

r012

13= 0

eine anziehende. Die Energie W0 ist erforderlich, um den Abstand der Atome von r0 auf un-

endlich zu vergrößern. Dies entspricht der Dissoziation der Moleküls. W0 ist die

Dissoziationsarbeit.

ii. Die Wasserstoffusion

Abb.77: Außerhalb von r0 herrscht das Coulombpotenti-

al, innerhalb die Kernkräfte.

Bei der Verschmelzung zweier Deuteronen, d.h. zweier Kerne, die aus einem Proton und ei-

nem Neutron bestehen, zu Helium wird Energie frei. Bei großen Abständen gilt das

Coulombpotential

Vpot = 14πε0

e0r

83

Page 85: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Etwa im Abstand des Deuteronendurchmessers r0 = 10-15 m beginnen die anziehenden Kräfte

der starken Wechselwirkung. Das Potential hat qualitativ den Verlauf von Abb. 77. Die zu

überwindende Potentialbarriere hat die Höhe

eV0 = 14πε0

e0r0

= 9 ⋅ 199 1, 62(19−19)2

10−15Joule ≈ 2, 7 ⋅ 10−13Joule

Dies entspricht nach der Definition einer Temperatur Ekin = 32

kT

T = Ekin

1, 5k= 2, 7 ⋅ 10−13

1, 5 ⋅ 1, 4 ⋅ 10−23= 1010K

Quantenmechanisch gibt es eine gewisse Wahrscheinlichkeit, daß Teilchen mit kleinerer Ener-

gie den Potentialwall überwinden.

d) Die kinetische Energie

Abb. 78: Am Ende des Falls kann der Körper noch Arbeit

leisten. Er besitzt also Energie.

Um festzustellen, ob irgendein System einen Energieinhalt hat, kann man untersuchen, ob es

möglich ist, mit diesem System eine Spiralfeder zusammen zu drücken oder ein Gewicht zu

heben. Eine Masse mit der Geschwindigkeit v hat die Fähigkeit, eine Feder zusammenzudrük-

ken. Also besitzt sie aufgrund ihrer Bewegung eine Energie. Wir nennen diese Energie kineti-

sche Energie. Die kinetische Energie bestimmt man über die Arbeit, die bei der Beschleuni-

gung von v0 auf v aufgewandt wurde.

Behauptung: diese ist bis auf eine Konstante W = 12

mv2

Beweis:

Wir beweisen, daß , wobei wir für W = 1/2 mv2 setzen und Fs die Kraft ist, diedds

W(s) = Fs(s)

die Beschleunigung erzeugt hat.

dds

12

mv2 = mvdv

ds= mvdv

dtdtds

= mdvdt

= Fs

84

Page 86: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Dies gilt für einen beliebigen Weg, entlang dem sich der Körper in einem beliebigen Kraftfeld

bewegt hat. Durch Integration erhält man

∫ Fsds = 12

mv2 + C

Die Integrationskonstante C ergibt sich durch die Anfangsbedingungen: bei s = 0 sei v = v0.

Also C = -(1/2)mv02

Die aufgewendete Arbeit findet sich vollständig in der Zunahme von (1/2)mv2 wieder.

(10)∫ Fsds = 12

mv2 − 12

mv02

Am konkreten Beispiel der schiefen Ebene läßt sich verfolgen, wie man zu der Form

Ekin = (1/2)mv2 kommt. Wir stellen uns dazu vor, der Begriff der kinetischen Energie (und da-

mit der Energiesatz) seien noch nicht bekannt. Um die Endgeschwindigkeit auf der schiefen

Ebene auszurechnen, stellen wir die Bewegungsgleichung auf und drücken die Endgeschwin-

digkeit durch H aus. Die Bahnbeschleunigung auf der schiefen Ebene ist (s. Abb. 54)

a = g sinα

Durch zweimalige Integration erhält man

v = gt sin α + v

s = (1/2)gt2sinα + v0t

Durch Elimination von t erhält man mit t = v - v0

g sin α

s = g(v-v0)2g sin α2g2sin2α

+v0(v-v0)g sin α

gs sin α = gH = 12

(v-v0)2 + 2v0(v-v0) = 12

v2 − 2vv0 + v02 + 2vv0 − 2v0

2

85

Page 87: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

gH = 12

v2 − 12

v02

Die Endgeschwindigkeit ist nur von der durchlaufenen Höhe und der Anfangsgeschwindigkeit

abhängig, nicht von α, daher auch nicht von der Bahnform abhängig. Multipliziert man mit m,

erhält man den Energiesatz für dieses Problem

mgH + 12

mv02 = 1

2mv2

e) Der Energiesatz der Mechanik

Aus den Gleichungen (9) und (10) ergibt sich sofort der Energiesatz für die Bewegung eines

Körpers unter dem Einfluß einer konservativen Kraft.

(11)Wkin(A) + Wpot(A) = Wkin(B) + Wpot(B)

Die Summe aus kinetischer und potentieller Energie eines Körpers bleibt konstant, solange

nur konservative Kräfte auf ihn wirken. Beim Auftreffen eines Körpers auf einer Unterlage

nach dem freien Fall wird zumindest ein Teil der kinetischen Energie in Energie der chaoti-

schen Bewegung der Atome umgewandelt. Diese heißt Wärme. Wenn Wärme eine Rolle

spielt, gilt der Energiesatz in der obigen Form nicht. Dies ist der Grund, warum sich der Ener-

giesatz erst verhältnismäßig spät durchgesetzt hat. Im allgemeinen Fall muß man neben der ki-

netischen und der potentiellen Energie andere Energieformen mit berücksichtigen.

Die Grundkräfte zwischen Teilchen sind im allgemeinen konservativ, d.h. man kann für sie ei-

ne potentielle Energie definieren. Nur bei der magnetischen Kraft liegen die Verhältnisse

komplizierter. Bei der Bewegung eines ausgedehnten Körpers bewegt sich jedes der Teilchen,

aus denen der Körper besteht, in einem Potentialfeld. Wenn keine Energie in kinetische oder

potentielle Energie der ungeordneten Bewegung ("innere Energie") überführt wird, gilt der

Energiesatz in der einfachen Form der Gleichung (11) für das gesamte System. Daher ist die

Arbeit, die man bei einem Hebel oder Flaschenzug an einer Seite hineinsteckt, die gleiche, wie

die an der anderen Seite geleistete.

f) Verschiedene Energieformen

Die meisten Energieformen, mit denen man es im täglichen Leben zu tun hat, kann man auf

die potentielle Energie einer der Grundkräfte und die kinetische Energie zurückführen.

86

Page 88: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Chemische Energie ist die elektrostatische Energie der Moleküle, Kernenergie beruht im we-

sentlichen auf der potentiellen Energie der starken Wechselwirkung. Bei der Kernenergie wird

eine Eigenart der Energie wichtig, die für alle Energien gilt, aber klassisch im allgemeinen

keine Rolle spielt: Erhöht man die Energie in einem System, so erhöht sich laut Relativitäts-

theorie die Masse nach der Einsteinschen Formel

W = mc02 .

Darin ist c0 = 3·108 m/s die Lichtgeschwindigkeit. Im täglichen Leben ist die Massenerhöhung

wegen des Faktors c2 im allgemeinen verschwindend klein. Für Kernbausteine ist die Mas-

senänderung durch Veränderung der Anregungsenergie ein entscheidender Faktor.

Wärmeenergie hat mit der Energie der ungeordneten Bewegung der Teilchen zu tun. Die ge-

naue Begriffsbildung ist verwickelt und wird im Teil Wärme dieses Kurses erörtert. Einfach

definiert sind die Begriffe innere Energie und Temperatur. Die innere Energie U ist die Sum-

me von mittlerer kinetischer und potentieller Energie der ungeordneten Bewegung aller Teil-

chen eines Körpers. Die Temperatur ist proportional zur mittleren kinetischen Energie der

Translation der ungeordneten Bewegung pro Teilchen. Man definiert für N Teilchen

12

mv2 = 1N =

i=N

Σ 12

miv i2 = 3

2kT

Hierin sind k = 1,38·10-23 J/K die Boltzmann Konstante und T die absolute Temperatur in Kel-

vin, wobei die Umrechnung in die Celsiusskala durch eine lineare Abhängigkeit mit

273K = 0C und 373K = 100C gegeben ist.

g) Anwendungen des Energiesatzes

α) Der Looping

Abb. 79: Ein Körper wird bei A losgelassen und rutscht rei-

bungsfrei herunter. Fällt er bei B herunter?

87

Page 89: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ein Fahrzeug werde im Punkt A losgelassen, um reibungsfrei eine schleifenförmige Bahn zu

durchfahren (s. Abb. 79). Bei welcher Höhe h muß es starten, um bei B nicht herunter zu

fallen?

Der Grenzfall liegt vor, wenn bei B die Schwerkraft gerade gleich der Zentripetalkraft ist.

(Dann ist die Auflagekraft gerade Null).

mg = mv2

R→ v2 = Rg

Nach dem Energiesatz

Wpot(A) + Wkin(A) = Wpot(B) + Wkin(B)

gilt für v0 = 0 Wpot(A) = mgH, Wkin(A) = 0, Wpot(B) = 0, Wkin(B) = (1/2)mv2

gH + 0 = 0 + 12

mv2

mit v2 = Rg und H = h - 2R wird daraus

g(h − 2R) = 12

Rg →

h = 52

R

β) Der harmonische Oszillator

Eine Masse m hänge an einer elastischen Feder. Für die Kraft, die die Feder auf die Masse

ausübt, wenn sie um die Strecke x aus der Gleichgewichtslage ausgelenkt wird, gilt F = -Dx.

Daher lautet das Aktionsgesetz

m••x = −Dx

Für die Bewegung erhält man eine Differentialgleichung

••x= −D

mx

88

Page 90: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Wer die Theorie der Differentialgleichungen kennt, hat vermutlich keine Schwierigkeit mit

der Lösung. Man macht eine sinusförmige Bewegung als Lösungsansatz Wir finden einen

solchen Lösungsansatz über das Potential und die Analogie mit der Bewegung einer Kugel in

dem entsprechenden Gebirge.

Die potentielle Energie ist

Wpot = −∫ Fdx = 12

Dx2

Das Potential hat also einen parabelförmigen Verlauf. Eine Kugel in einem derartigen Gebirge

würde eine Schwingung vollführen. Wir machen also den Ansatz

x = sinωt

und setzen dies in die Differentialgleichung ein, wobei

•x = x0ωcos ωt••x = −x0ω2sin ωt

Es ergibt sich

−x0ω2sin ωt = −Dmx0sin ω

Der Ansatz löst also die Differentialgleichung, wenn ω2 = D/m. Der Körper schwingt sinusför-

mig (harmonisch) mit der Kreisfrequenz

ω = Dm

Die Schwingungsfrequenz beträgt damit , die Periode .f = 12π

Dm T = 2π m

D

Berücksichtigt man, daß zur Zeit t = 0 die Schwingung nicht im Nulldurchgang sein muß (an-

ders ausgedrückt, daß der Anfangspunkt der Zeitmessung willkürlich ist), erkennt man, daß

x = x0sin(ωt + ϕ0)

89

Page 91: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

auch eine Lösung ist. Dies ist sogar die allgemeine Lösung. ϕ0 heißt die Anfangsphase und

wird im Bogenmaß gemessen. ϕ = ωt variiert während einer Schwingungsperiode von 0 bis

2π. x0 ist die Amplitude der Schwingung. Formal ergeben sich die Konstanten ϕ0 und x0 aus

den Anfangsbedingungen, d.h. der Auslenkung und Geschwindigkeit zur Zeit t = 0.

γ) Das Fadenpendel

Abb. 80: Das Fadenpendel, manchmal auch "mathematisches

Pendel" genannt.

Wenn man von der Bewegungsgleichung (= dem Aktionsgesetz) ausgeht, muß man einmal in-

tegrieren, um die Geschwindigkeit zu erhalten. In den meisten Fällen kann man schon diese

Integration nicht wirklich ausführen. Der Energiesatz bringt hier eine große Hilfe, da er v oh-

ne Integration liefert. Als Beispiel wird das Fadenpendel (Abb. 80) betrachtet. Die Differenti-

algleichung für die Bewegung läßt sich leicht hinschreiben. Da Ft = -mg sinα und der zurück-

gelegte Weg die Bogenlänge ist s = lα, wird die Bewegungsgleichung Ft = m••s

−mg sin α = l••α m

und die Differentialgleichung der Bewegung

••α = −gl

sin α

Für kleine Winkel gilt die Näherung sinα = α erhält man die gleiche Differentialgleichung wie

bei der harmonischen Schwingung. Es ergibt sich also auch hier eine harmonische Schwin-

gung. Man erhält mit dem gleichen Verfahren wie beim Federpendel

,ω2 = lg T = 2π

gl

Für große Amplituden ist man auf den Energiesatz angewiesen. Setzt man im Aufhängepunkt

des Fadens Wpot = 0, schreibt sich der Energiesatz

90

Page 92: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

-mgl cosα0 = -mgl cosα + mv2/2

v2 = 2gl(cosα - cosα0)

v kann man auf α umschreiben mit . v = dsdt

= ldαdt

dαdt

=2gl

lcos α − cos α 0

dαcos α − cos α 0

= dt2gl

t2gl

= ∫ dαcos α − cos α 0

Das Integral enthält das Weg - Zeit Gesetz implizit. Dieses kann z.B. durch numerische Inte-

gration oder Reihenentwicklung gewonnen werden. Integrale dieser Art definieren elliptische

Funktionen.

Qualitativ kann man aus dem Energiesatz folgern, daß auch bei großen Amplituden noch eine

periodische Schwingung vorliegt. Diese ist allerdings nicht harmonisch, da die Bewegung

nicht durch die Differentialgleichung einer harmonischen Schwingung beschrieben wird.

δ) Anwendung des Energiesatzes bei Anwesenheit von Reibung.

Abb. 81: Im Gebiet (1) wird der Wagen beschleunigt. Im

Gebiet (2) durch die Reibung abgebremst.

Ein Wagen fahre reibungsfrei eine schiefe Ebene hinunter und laufe anschließend waagerecht

aus (Abb. 81). Wie weit kommt er?

Da der Wagen am Anfang und am Ende des Vorgangs ruht, wird seine gesamte anfängliche

potentielle Energie in Reibungsarbeit auf den beiden Streckenabschnitten l und L 2 verbraucht.

Wpot = WR1+ WR2

91

Page 93: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

WR1 = FRl = µFNl = µmglcosα = µmgL1

WR2 = FRL2 = µmgL2

mgh = µmgL1 + µmgL2

L2 =H − µL1

µ = Hµ − L1

ε) Wieviel Leistung liefert maximal ein Fluß mit einer Durchflußmenge Q = dm/dt und einem

Gefälle von H?

Ein Massenelement Wasser hat am Anfang des Gefälles die potentielle Energie dmgH. Pro Se-

kunde liefert der Fluß (dm/dt)gH = QgH an Energie. Diese Leistung steht zur Verfügung.

P = Qmg

Die vollständige Umsetzung setzt voraus, daß am Ende die kinetische Energie des Wassers

verschwindet und daß keine Energie in Wärme umgewandelt wurde.

ζ) Mit welcher Geschwindigkeit fließt eine Flüssigkeit am Boden eines bis zur Höhe H gefüll-

ten Behälters aus?

Betrachte die Gesamtenergie des Systems, bevor und nachdem dm ausgeströmt ist. Die Ab-

nahme der potentiellen Energie ist dmgH, die Zunahme der kinetischen Energie (1/2)dmv2.

Abb. 82: Wie man den Energiesatz bei Strömungsproble-

men anwenden kann.

dmgH = (1/2)dmv2

Es folgt die Ausströmgeschwindigkeit

v2 = 2gH

92

Page 94: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

h) Kraft bei mehrdimensionalen Potentialen

Im eindimensionalen Potential, d.h. einem Potential, das nur von einer Ortsvariablen s ab-

hängt, gilt

Fs = −dW(s)ds

Bei mehrdimensionalen Potentialen, etwa einem Höhenprofil W(x,y) = mgh(x,y) kann man das

Problem auf das eindimensionaler Potentiale zurückführen, indem man zunächst eine der Orts-

variablen konstant läßt.

Für die Kraftkomponente in x - Richtung erhält man (y bleibt konstant)Fx = −dWdx

Für die Kraftkomponente in y - Richtung (x bleibt konstant)Fy = −dWdy

Man schreibt Fx = −∂W∂x

Fy = −∂W∂y

Der Vektor gibt an jeder Stelle die Richtung des maximalen Gefälles im Potentialge-

Fx

Fy

birge an (Abb. 85). Man schreibt F = - grad W oder (sprich "Gradient W"). DerF = −∇ W

Operator

heißt der Nabla - Operator.∇ =

∂∂x∂∂y∂∂z

Abb. 83: Die Äquipotentiallinien sind die Höhenlinien im

Potentialgebirge. Sie gestatten es, die Größe und Richtung

der Kraft zu ermitteln.

93

Page 95: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

6. Das Keplerproblem

a) Historisches

Unter dem Keplerproblem verstehen wir die Aufgabe, bei gegebenen Kraftfeld dieF =γmM

2

Bahnkurve eines Satelliten r = r(θ) zu bestimmen. Es zeigt sich, daß die Bahnkurve ein Kegel-

schnitt ist, d.h. je nach Anfangsenergie eine Ellipse, Parabel oder Hyperbel.

Abb. 46 und 85:Satellitenbahnen sind Kegelschnitte.

Die Kepleraufgabe ist nicht nur in der Astronomie von Bedeutung sondern auch für Stöße

zwischen Teilchen, bei denen die Coulombkräfte, für die von der Form her das gleiche Kraft-

gesetz wie bei der Gravitation gilt, maßgeblich sind. Solche Stöße verwendet man in der

Kernphysik zur Untersuchung der Materie. In der Plasmaphysik bestimmen sie die "Trans-

portphänomene" wie elektrische Leitfähigkeit, Wärmeleitfähigkeit, Diffusion und Viskosität.

Bei bekannten Daten der Planetenbahn (s. Abb.86) (Halbachse a, Exzentrizität ε, Neigung ge-

gen die Erdbahn i, Ausrichtung der Schnittlinie Ω und der Ellipsenachse ω) und bekanntem

Bewegungsablauf, kann die Bahn am Himmel bestimmt werden.

Abb. 86: Bestimmungsgrößen (= Bahnelemente) von

Satellitenbahnen.

Die Bewegung am "Himmel" wird in einem Koordinatensystem dargestellt, das in den Fixster-

nen verankert ist, dem sogenannten Äquatorialsystem. Die wesentliche scheinbare Bewegung

der Fixsterne kommt durch die Erdrotation zustande (Abb. 87). Die Bahnbewegung der Erde

erzeugt wegen des großen Abstandes der Fixsterne gegen den Bahnradius nur für einzelne

94

Page 96: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 87: Im Äquatorialsystem haben Fixsterne eine im we-

sentlichen feste Position. Das Horizontsystem ist im Beobach-

tungsort fest verankert.

Sterne Abweichungen an der Grenze der Meßmöglichkeit. Wegen der Neigung der Erdachse

gegen die Erdbahn umwandert die Sonne im Laufe eines Jahres am Himmel einen Großkreis,

der gegen den Äquator geneigt ist, die Ekliptik.

Wenn alle Planetenbahnen in einer Ebene verlaufen würden, würden die Planeten von der Er-

de aus gesehen auf der Ekliptik entlang wandern (Abb. 90). Dabei ergibt sich beim Überhol-

vorgang eine kurzzeitige rückläufige Bewegung, wie in Abb.90 am Beispiel des Mars demon-

striert wird. Wegen der leicht unterschiedlichen Neigungen der Bahnen laufen der Mond und

die Planeten auf einer Straße endlicher Breite entlang der Ekliptik. Während der rückläufigen

Bewegung ergeben sich am Himmel charakteristische Schleifen (Abb.91).

Abb. 90: Erde (innen) und Mars (außen) auf ihren Bahnen.

Der Abstand der Punkte entspricht einem Monat. Die Linien

geben die Blickrichtung an, unter der der Mars von der Erde

erscheint.

Abb. 91: Durch den in Abb. 90 beschriebenen Mechanismus

ergibt sich am Himmel eine schleifenförmige Bahn.

95

Abb. 88 und 89: Die Ekliptik ist der Weg am Himmel, den die Sonne nimmt.

Page 97: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 92: So stellte sich Klaudius Ptolomäus das Zustande-

kommen der Schleifenbahn vor.

Die Aufgabe der Astronomie bis Kepler bestand darin, diese Scleifenbahnen zu erklären und

vorherzusagen. Bis Kopernikus (1473 - 1543) herrschte das geozentrische Weltsystem vor.

Zur Erklärung der scheinbaren Planetenbahn wurde angenommen, daß sich der Planet auf ei-

nem Kreis bewegt, dessen Mittelpunkt wiederum auf einer Kreisbahn um die Erde umläuft.

Die klassische Beschreibung dieses Weltbildes stammt von Klaudius Ptolomäus (70 - 147 n.

Ch.) und ist uns über die Araber im "Almagest" überliefert. Um Unregelmäßigkeiten im Laufe

der Sonne zu verstehen, wird die Erde als außerhalb des Kreiszentrums angenommen, ähnlich

für Mond und Planeten. Aus heutiger Sicht entspricht dies der Approximation der eigentlichen

Ellipsenbahn durch eine exzentrische Kreisbahn. Daß am Himmel der idealen Figur des Krei-

ses gegenüber der Ellipse der Vorzug zu geben ist, war im Altertum selbstverständlich.

Abb. 93: Wie Eratosthenes den Erdradius bestimmte

Es gab bereits im Altertum Ausmessungen des Planetensystems. Eratosthenes (276 - 195

v.Ch.) bestimmte den Erdradius ziemlich genau aus den unterschiedlichen Sonnenhöhen an

verschiedenen gegraphischen Breiten (Abb. 93). Aristarch v. Samos (280 v. Ch.) bestimmte

das Verhältnis Mondbahnradius RM zu Erdbahnradius RS aus dem Winkel zur Sonne bei Halb-

mond. Hipparch von Niccea (160 - 125 v. Ch.) bestimmte durch Parallaxenmessung, d.h.

durch Bestimmung der Verschiebung des Mondes gegenüber den Fixsternen bei Beobachtung

von verschiedenen Orten der Erde, den Abstand Erde - Mond recht genau zu 59 Erdradien.

Abb. 94: Aus dem Winkel zwischen Sonne und Mond bei

Halbmond läßt sich das Verhältnis der Entfernungen Er-

de/Mond und Erde/Sonne bestimmen.

96

Page 98: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Mit der gleichen Methode bestimmte er den Sonnenabstand zu 1200 Erdradien. Der wahre

Wert beträgt etwa RS/RE = 24000. Diese Messung war also mit einem Fehler von einem Faktor

20 behaftet, war trotzdem um vieles genauer als alles andere, was es zu der Zeit gab. Die all-

gemeine Ansicht war, die Sonne befände sich direkt über den Wolken.

Kepler (Johannes Kepler, 1541 - 1630) leitete seine Gesetze aus sehr genauen Beobachtungen

von Tycho Brahe (1546 - 1601) am Planeten Mars her. Tycho Brahe war Hofastronom am

Kaiserhof in Prag, Kepler sein Assistent und späterer Nachfolger. Kepler fand für die Bewe-

gung der Planeten:

Die Planeten bewegen sich auf Ellipsenbahnen, in deren einen Brennpunkt die Sonne

steht.

In gleichen Zeiten werden vom Fahrstrahl gleiche Flächen überstrichen.

a3/T2 ist gleich für alle Planeten. (a ist die große Halbachse der Ellipsenbahn, T die

Umlaufszeit).

b) Einige Eigenschaften von Kegelschnitten

Kegelschnitte sind die Schnittkurven, die man erhält, wenn man einen Doppelkegel mit einer

Ebene schneidet (Abb. 85).

α) Die Ellipse

Abb. 95: Geometrie der Ellipse

Die Ellipse ist die Menge aller Punkte, deren Summe der Abstände zu zwei festen Punkten

konstant ist. Die festen Punkte nennt man Brennpunkte. Mit dieser Definition wird zunächst

die Ellipsengleichung in Polarkoordinaten abgeleitet (s. Abb. 95).

r/ + r = 2a also r/ = 2a - r

Nach dem Kosinussatz gilt

97

Page 99: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

r/2 = r2 + (2εa)2 - 2(2εa)r cosθ

r/ wird ersetzt

(2a - r)2 = r2 + 4ε2a2 - aεar cosθ

4a2 - 4ar + r2 = r2 + 4ε2a2 - 4εar cosθ

a2(1 - ε2) = ar(1 - εcosθ)

(12)1r = 1 − εcos θ

a(1 − ε2)

ε ist die Exentrizität. Sie läßt sich aus a und b ausdrücken. Nach Abb. 96 gilt

a2 = b2 + (εa)2

b2 = a2(1 - ε2) (13)

Abb. 96: Zusammenhang von a, b und ε.

In kartesischen Koordinaten gilt

x2

2 +y2

2 = 1

Die Ellipse ist also ein in y - Richtung um den Faktor b/a gestauchter Kreis. Die Fläche wird

durch die Stauchung um den Faktor b/a gegenüber der Kreisfläche reduziert. A = πa2b/a =

πab.

A = πab

98

Page 100: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Damit r im Endlichen bleibt, muß für die Ellipse ε < 1 gelten.

β) Die Hyperbel

Abb. 97: Geometrie der Hyperbel

Die Hyperbel ist die Menge aller Punkte mit konstanter Abstandsdifferenz r/ - r = 2a. Es erge-

ben sich mit dieser Definition zwei Hyperbeläste. Geht r vom linken Brennpunkt aus und zeigt

auf den rechte Hyperbelast (Abb. 97), so leitet man wie oben bei der Ellipse die Darstellung in

Polarkoordinaten ab. Die funktionale Abhängigkeit r(θ) ist die gleiche wie bei der Ellipse.

Zum Unterschied ist hier ε > 1, und es gibt daher einen gewissen Winkel θ = θa, bei dem r ge-

gen unendlich strebt: cosθa =1/ε. Die Asymptoten bei den Winkeln haben die Steigung±θa

tan2θa = 1cos2θ

− 1 = (ε2 − 1) =

ba

2

Der Scheitelpunkt liegt wie bei der Ellipse im Abstand a vom Zentrum der Figur, der Brenn-

punkt im Abstand εa. In kartesischen Koordinaten erhält man

x2

2−

y2

2= 1

γ) Die Parabel

Läßt man in der allgemeinen Polarkoordinatendarstellung ε gegen 1 und a gegen unendlich

gehen, so daß (1 - ε2) konstant bleibt, erhält man eine Parabel (Abb. 98).

r = p1 − cos θ

Abb. 98: Die Parabel in Polarkoordinaten. F ist der Brennpunkt.

99

Page 101: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Für θ → 0 geht r → ∞ und tanθ → ∞. Es gibt keine Asymptote.

Einen gedrehten Kegelschnitt erhält man, indem man in der Polarkoordinatendarstellung θ

durch θ - θ0 ersetzt. Nach dem Additionstheorem gilt

cos(θ - θ0) = cosθ cosθ0 + sinθsinθ0

und damit für einen beliebigen Kegelschnitt mit der Abkürzung p = a(1 - ε2)

1r = 1

p(1 − εcos θ0cos θ − εsin θ0sin θ)

Statt der Konstanten ε und θ0, die sich aus den Anfangsbedingungen ergeben, kann man

schreiben

-εcosθ0 = A und -εsinθ0 = B

Wenn man außerdem statt der Konstanten a nach der Definition von p die Konstante p ein-

führt, hat die allgemeine Gleichung eines Kegelschnittes in Polarkoordinaten daher die Form

1r = 1

p(1 + A cos θ +B sin θ)

c) Herleitung der Bahngleichung

α) Die Differentialgleichung der Bahn

Wir gehen aus vom

Drehimpulssatz L = mr2•θ = const

und Energiesatz 12

mvr2 + 1

2mvθ

2 −γmM

r = E

Bei abstoßenden Kräften würde der das Potential beschreibende Term das umgekehrte−γmM

rVorzeichen haben. E ist die Gesamtenergie. Im folgenden werden vr und vθ durch r, L und

dr/dθ ausgedrückt.

100

Page 102: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(r/ =dr/dθ)vr =•r = dr

dt= dr

dθdθdt

= r / L2

vθ = r•θ = r L

2= L

mr

Der Energiesatz hat damit die Form

12

mr /2 L2

2 4+ 1

2m L2

2 2−

γmMr = E

r /2

4+ 1

2=

2γm2M2

1r + 2mE

2

Da die Ellipsenbahn besonders einfach in 1/r darzustellen ist, wird transformiert

ρ = 1r →

dρdt

= − 1r2

drdθ

ρ/2 + ρ2 =2γm2M

2ρ + 2mE

2

Die Konstanten auf der rechten Seite werden abgekürzt α =2γm2M

2, β = 2mE

2

(15)ρ/2 + ρ2 = αρ + β

Durch Differenzieren nach θ wird daraus eine lineare Differentialgleichung mit konstanten

Koeffizienten

(16)ρ// + ρ = 12

α

β) Lösung der Differentialgleichung

Man löst eine solche inhomogene Differentialgleichung, indem man zuerst die dazugehörige

homogene Gleichung löst:

ρ// + ρ = 0

mit der allgemeinen Lösung

101

Page 103: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ρ = ρ0sin(θ - θ0)

= ρ0(sinθ cosθ0 - cosθ sinθ0)

=Bsinθ + Acosθ

und dann eine spezielle Lösung der ursprünglichen inhomogenen Gleichung rät. Hierfür bietet

sich die rechte Seite der inhomogenen Gleichung an. Man geht also mit dem Ansatz

ρ = (1/2)α + Acosθ + Bsinθ

in die Gleichung (16) und stellt fest, daß hiermt die Gleichung gelöst wird. Die Bahnkurve ist

also ein Kegelschnitt.

γ) Abhängigkeit der Bahndaten von E und L

Durch geeignete Wahl der Anfangsrichtung, für die θ = 0 gilt, genügt es von der Lösung

ρ = (α/2) - Bcosθ (17)

auszugehen. Durch Vergleich mit der Form von Gleichung (12) erkennt man, daß

und (18)α2

= 1a(1 − ε2)

B = εa(1 − ε2)

Andererseits soll nach Gleichung (15) gelten

ρ/2 + ρ2 = αρ + β

mit und (19)α =2γm2M

2β = 2mE

2

Wir gehen also mit dem Lösungsansatz Gleichung (17) in diese Gleichung ein, wobei

und ρ/ = B sin θ = B2 − B2cos2θ ρ/2 = B2 − B2cos2θ

Durch das Einsetzen erhält man

102

Page 104: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

B2 − B2cos2θ + α 2

4− αB cos θ +B2cos2θ = α 2

2− αB cos θ + β

Die linke Seite vereinfacht sich zu B2 + α 2

4− αB cos θ

Man erkennt, daß beide Seiten für alle θ übereinstimmen, wenn

(20)B2 + α 2

4= α 2

2+ β

Aus Vergleich der Gleichungen (18) und (19) ergibt sich sofort der Gesamtimpuls2γm2M

L2= 2

a(1 − ε2)

(21)L2 = a(1 − ε2)γm2M

Aus dieser Beziehung ergibt sich das dritte Keplersche Gesetz. Nach dem Flächensatz ist,

wenn jetzt A die vom Fahrstrahl überstrichene Fläche ist,

•A = 1

2r2

•θ = 1

2mL

Da die Fläche der Ellipse AE = πab/T ist, gilt für einen Umlauf und damit •

A = πabT

L2 = 4m2•A

2= 4m2 a2b2

2π2

In Gleichung (21) eingesetzt

4m2 π2a2b2

2= a(1 − ε2)γm2M

(1 - ε2) kann nach Gl. (13) durch die Halbachsen der Ellipse ausgedrückt werden:

1 - ε2 = b2/a2. Dies ergibt

a3

T2=

γM

4π2

103

Page 105: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

unabhängig von ε und m.

Setzt man in Gleichung (20) die Beziehungen Gl. (18) ein, erhält man

ε2

a2(1 − ε2)2− 1

a2(1 − ε2)2= 2mE

L2

oder . Setzt man hier L2 aus Gl. (21) ein, ergibt sich für dieE = −L2 12ma2(1 − ε2)

Gesamtenergie

(22)E = −γmM2a

Die Gesamtenergie hängt nur von a ab, ist also bei gleichem a unabhängig von der Exzentrizi-

tät der Ellipse. Bahnen mit unterschiedlicher Exzentrizität unterscheiden sich im Drehimpuls.

Die Gesamtenergie ebenso die kinetische Energie beim Abstand a sind vom Betrage her halb

so groß wie die negative potentielle Energie im Abstand a. Für alle anderen Abstände verrin-

gert sich die kinetische Energie in dem Maße, wie sich die potentielle erhöht (s. Abb. 99).

Abb. 99: Bei der Keplerbewegung hat die kinetische

Energie und die Gesamtenergie den gleichen Betrag.

Um zu berechnen, wo sich ein Körper zu einer vorgegebenen Zeit auf dem Kegelschnitt befin-

det, dient die Keplersche Gleichung.

Für Hyperbeln, die z.B. beim Stoß gleich geladener Teilchen vorkommen, gilt Gl. (22) mit

positivem Vorzeichen von E.

7. Scheinkräfte

a) Was sind Scheinkräfte ?

Befindet sich ein Fahrer der Masse m in einem mit der Beschleunigung a beschleinigten Fahr-

zeug, so muß dieses die Kraft F = ma aufbringen, um den Fahrer mit zu beschleunigen. Der

104

Page 106: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 100: Der Fahrer wird beim Beschleunigen in

die Rücklehne gedrückt. Dies ist eine Scheinkraft.

Fahrer im Auto spürt eine Kraft, die ihn in die Sitzpolster drückt, d.h. im mitbeschleunigten

System scheint eine Kraft F = -ma entgegengesetzt zur Beschleunigung zu wirken. Diese

Kraft braucht man nicht zu berücksichtigen, wenn man den Vorgang von einem unbeschleu-

nigten System aus betrachtet. Man nennt solche Kräfte, die in beschleunigten Bezugssystemen

beobachtet werden, Scheinkräfte. Formal ergibt sich (s. Abb. 101)

Abb. 101: Wenn die Beschreibung der Bewegung von m

von einem Inertialsystem (ex , ey ) aus erfolgt, treten keine

Scheinkräfte auf, aber im beschleunigten System (e*x, e*y)

F = m••rr = r∗ + r0

F = m••r 0 + m

••r ∗

(23)m••r

∗= F − m

••r0

r* beschreibt die Lage der Masse m im beschleunigten Bezugsystem, r0 die Lage des beschleu-

nigten Bezugssystems von einem Inertialsystem aus betrachtet. Gleichung (23) besagt, daß

man in einem beschleunigten Bezugsystem, wenn man in ihm so rechnen will als ob man sich

in einem Inertialsystem befände, zu den tatsächlichen Kräften F die Scheinkräfte

Fs = −m••r0

hinzuzählen muß. Wenn sich das System mit konstanter Geschwindigkeit bewegt, treten keine

Scheinkräfte auf.

Beispiel

105

Page 107: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

In einem beschleunigten Fahrstuhl erhöht sich das Gewicht, wenn die Beschleunigung nach

oben gerichtet ist und erniedrigt sich, wenn die Beschleunigung nach unten weist. Im freien

Fall gilt Fs = - mg. Das scheinbare Gewicht ist daher 0. Der Körper befindet sich in Schwere-

losigkeit. Das gleiche würde auch gelten, wenn der Fahrstuhl auf einer Wurfparabel im schrä-

gen Wurf fliegen würde, solange nur die Gravitationskraft wirkt. Eine solche Situation kann

durch den freien (unangetriebenen) Flug einer Rakete auf einer Wurfparabel realisiert werden.

Die Scheinkraft ist auch dann

Fs = −m••r = −mg

und damit entgegengesetzt und vom Betrage her gleich groß wie die Schwerkraft.

Abb. 102: Fällt ein Fahrstuhl frei, so herrscht in ihm

Schwerelosigkeit.

b) Scheinkräfte im rotierenden System

α) Formale Herleitung

Um Scheinkräfte in einem rotierenden System zu berechnen, betrachtet man eine Bewegung,

die im ruhenden System durch r(t) beschrieben wird. Drückt man die Beschleunigung im ru-

henden System a durch Beschleunigung a* und Geschwindigkeit v* im bewegten System aus,

so stellt man fest, daß neben zwei weitere Terme auftauchen, die mit der Masse mul-a ∗ = ••x

tipliziert zur Zentrifugal - und Corioliskraft führen.

Wir betrachten zunächst einen beliebigen Vektor G, der sich in einem festen Bezugssystem in

einem Zeitintervall dt um dGfest und in einem mit konstanter Winkelgeschwindigkeit ω rotie-

renden Bezugssystem gemessen um dGrot ändert.

Abb. 103: dGfest und dGrot sind die Änderungen des Vektors

G vom festen bzw. vom rotierenden System aus gemessen.

dGzus ist der zusätzliche Effekt durch die Rotation.

106

Page 108: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Gesamtveränderung ist die, die im festen System gemessen wird. Sie setzt sich aus der

Änderung im rotierenden System dGrot und der zusätzlichen Änderung durch die Rotation

dGzus zusammen (Abb. 103).

dGfest = dGrot + dGzus

Die Änderung durch die Drehung ergibt sich nach Abb. 104 aus

dGzus = dϕ × G

Abb. 104: Der Zusammenhang von dϕ und dGzus.

Division durch dt und Berücksichtigung von ergibtω =dϕdt

(23)

dGdt

fest=

dGdt

rot+ ωω× G

G kann ein beliebiger Vektor sein, der sowohl im ortsfesten wie im rotierenden Koordinaten-

system dargestellt werden kann. Für einen körperfesten Vektor gilt z.B.

dGdt

rot= 0 →

dGdt

fest= ωω× G

Für einen raumfesten Vektor G

dGdt

fest= 0 →

dGdt

rot= −ωω× G

Für G = r erhält man die Transformation der Geschwindigkeiten

drdt

fest=

drdt

rot+ ωω× r

Da die Geschwindigkeiten im festen bzw. im rotierenden Be-

drdt

fest= v und

drdt

rot= v ∗

zugssystem sind, erhält man als Transformation der Geschwindigkeiten

(24)v = v ∗ + ωω×r

107

Page 109: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Gleichung (23) gilt auch, wenn man für G v einsetzt. Dies liefert uns die gewünschte Trans-

formation der Beschleunigungen.

dvdt

fest=

dvdt

rot+ ωω× v

In den beiden Termen auf der rechten Seite wird v aus Gleichung (24) eingesetzt. Die Ablei-

tungen der Geschwindigkeiten sind die Beschleunigungen im festen bzw. im rotierenden Sy-

stem. Es folgt

a =

dv ∗

dt + ωω×

drdt

+ ωω× v ∗ + ωω× (ω× r)

= a ∗ + 2ω× v ∗ + ωω× (ω× r)

Neben der Beschleunigung im rotierenden System a* erscheinen rechts zwei Terme von der

Dimension einer Beschleunigung, die multipliziert mit der Masse die Scheinkräfte ergeben.

Rechnet man also im rotierenden System so, als ob es ein Inertialsystem wäre, muß man die

Scheinkräfte

Fz = −mω× (ω× r) = m(ω× r) × ω

und Fc = −2mω× v = 2mv × ω

zu den wahren Kräften addieren.

β) Die Zentrifugalkraft

Die Kraft

Fz = m(ω× r) × ωω = mv × ω

Abb. 105: v×ωω hat radiale Richtung

108

Page 110: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ist die Zentrifugalkraft. Sie zeigt radial nach außen und hat den Betrag mrω2. Bei der rotieren-

den Erde ist die Zentrifugalkraft von der geographischen Breite λ abhängig. Nimmt man für

die Erde die Gestalt einer Kugel mit dem Radius R an, so hat man

Fz = mRω2cosλ

Die Resultierende von Fz und der Schwerkraft FG ist die Gesamtkraft auf ein Teilchen an der

Oberfläche der Erde. Solange sie eine Komponente parallel zur Oberfläche hat, werden sich

Teilchen entlang der Oberfläche verschieben. Das nimmt erst dann ein Ende, wenn sie genau

senkrecht zur Oberfläche steht. Die Erdoberfläche hat daher nicht Kugelgestalt sondern die

Gestalt einer abgeplatteten Kugel (eines Geoids) wie übertrieben in Abb. 106 dargestellt.

Abb. 106: Die Gesamtkraft auf ein Teilchen an der Erd-

oberfläche ist FG + Fz im rotierenden System. Die Erdober-

fläche stellt sich senkrecht zu dieser Kraft ein, da eine Ver-

schiebung des Teilchens möglich ist.

Die senkrecht zur Oberfläche wirkende Komponente der Zentrifugalkraft Fz cosλ führt zu ei-

ner Verringerung der effektiven Gravitationskraft. Man sieht, daß man die Diskussion der

Kraftverhältnisse an der Erdoberfläche vom ruhenden System aus betreiben kann, wie wir es

im Kapitel C.3.h gemacht haben, oder vom bewegten System aus, wobei als Zusätzliche Kräf-

te Scheinkräfte eingeführt werden müssen. Die Schlußfolgerungen sind die gleichen. Ähnlich

kann man die für Kurvenfahrt optimale Neigung der Fahrbahn anschaulich sehr bequem mit

der Zentrifugalkraft diskutieren (Abb. 107). Man sagt, die Neigung der Fahrbahn muß so sein,

daß die Resultierende aus Gewichtskraft FG und Zentrifugalkraft senkrecht zur Fahrbahn

stehen.

Abb. 107: Ähnlich wie beim Geoid muß bei der Kurven-

fahrt die Resultierende Kraft senkrecht auf der Fahrbahn

stehen.

109

Page 111: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

γ) Die Corioliskraft

i. Woher kommt die Corioliskraft?

Die Corioliskraft tritt nur bei Körpern auf, die sich vom rotierenden System aus gemessen be-

wegen. Man macht sich ihre Ursache am besten durch einen Wurfversuch am Nordpol klar,

wo die Drehachse senkrecht zur Erdoberfläche steht (Abb. 108).

Abb. 108: Der Mittelpunkt des Kreises ist der Nordpol. Im

Abstand ρ wird ein Stein radial nach außen geworfen. Durch

die Eigenbewegung der Erde erhält er eine azimutale Ge-

schwindigkeitskomponente. Diese ist kleiner als die am

Zielpunkt.

Ein mitrotierender Schütze würde sein Ziel verfehlen, da er dem Geschoß eine seitliche An-

fangsgeschwindigkeit v = ρω durch die Erddrehung mitliefert, und das Ziel im Abstand r sich

bei der Rotation schneller (V = ωr) bewegt als der Schütze im Abstand ρ < r. Das Ziel hat sich

in der Zeit ∆t von A nach B bewegt, das Geschoß von A nach C. Die seitliche Abweichung

vom Ziel ist also

s = AB - AC = rω∆t - ρω∆t = (r -ρ)ω∆t

(r - ρ) kann durch die Geschwindigkeit in Abschußrichtung v0 ausgedrückt werden. Wenn

man annimmt, daß die seitliche Bewegung sehr klein gegen die in Schußrichtung ist, erhält

man

(r - ρ) = v0∆t

s = v0ω∆t2

Vergleicht man dieses Ergebnis mit dem Weg - Zeit - Gesetz einer Bewegung mit konstanter

Beschleunigung, so erkennt man, daß die seitliche Bewegung im rotierenden System mit kon-

stanter Beschleunigung ac = 2v0ω verläuft. 2v0ω ist der Betrag der Beschleunigung, den wir

110

Page 112: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

von der Corioliskraft her erwarten. Bei bei beliebiger geographischer Breite gibt es eine verti-

kale und eine horizontale Komponente der Corioliskraft.

ii. Corioliskraft bei horizontaler Bewegung

Abb. 109: Nur ω⊥ führt zu einer Beeinflussung der horizonta-

len Bewegung.

Man zerlegt ω in eine vertikale und eine horizontale Komponente (Abb. 109). Die Horizontal-

komponente bewirkt eine senkrechte Kraft, die bei Bewegung auf einer Unterlage keinen Ein-

fluß auf den Bewegungsablauf hat. ω⊥ steht immer senkrecht auf v und erzeugt eine konstante

Beschleunigung 2v×ωω.

Abb. 110: ω⊥ steht immer senkrecht auf v.

Es resultiert wie beim Elektron im Magnetfeld eine Kreisbewegung. Am Äquator ist ω⊥ = 0

und damit ac = 0. Auf der Nordhalbkugel ergibt sich immer eine Ablenkung nach rechts, auf

der Südhalbkugel nach links. Dies führt zu den charakteristischen Wirbeln in der Bewegung

von Luft und Wasser, die auf der Nord - und Südhalbkugel umgekehrten Drehsinn haben.

Abb. 111: Der Umlaufsinn des Windes in Hoch- und Tief-

druckgebieten rührt von der Corioliskraft her.

iii. Corioliskraft bei vertikaler Bewegung

Bei vertikaler Bewegung bewirkt die parallel zur Oberfläche stehende Komponente von ω,

ω// = ωcosλ eine geringfügige seitliche Ablenkung. Beim freien Fall ist diese immer nach

Osten gerichtet (s. Abb. 112). Für die Berechnung der seitlichen Ablenkung gehen wir genau

111

Page 113: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

wie oben bei der Betrachtung des Schusses am Nordpol davon aus, daß die Bewegung nur we-

nig gestört wird und daher die Geschwindigkeit, die man in der Formel für die Corioliskraft

einsetzen muß, die ungestörte Geschwindigkeit des freien Falls ist.

vy = gt

Fc = 2mω//v = 2mωcosλ = 2mgωt cosλ = m(dvx/dt)

vx = gωcosλ t2

Nach Integration erhält man

x = gω(cos λ) t3

3

Abb. 112: Auch auf einen Körper im freien Fall wirkt die

Corioliskraft.

112

Page 114: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL D

Dynamik von Massenpunktsystemen

1. Der Massenmittelpunkt

a) Das Hebelgesetz

Unter dem Schwerpunkt von zwei starr verbundenen Massen versteht man den Punkt der Ver-

bindungslinie, bei dem das System unterstützt werden muß, um im Gleichgewicht zu bleiben.

Abb. 113: Bei symmetrischen Körpern liegt der Schwerpunkt

in der Mitte.

Wir vermuten, der Schwerpunkt unterteilt die Verbindungslinie im Verhältnis der Massen,

wobei der kürzere Teil der Verbindungslinie neben der größeren Masse liegt. Man nennt die-

sen Satz auch das Hebelgesetz. Das Hebelgesetz war schon im Altertum bekannt. Nach Archi-

medes kann man es ableiten, wenn man annimmt, daß bei gleichen Massen der Schwerpunkt

in der Mitte der Verbindungslinie liegt.

Abb. 114: Nach Archimedes kann man das Hebelgesetz für ra-

tionale Verhältnisse aus dem symmetrischen Fall (Abb. 113)

herleiten.

Man teilt die Masse m1 (s. Abb. 114) in zwei gleiche Teile und schiebt sie außeinander so daß

ihr Schwerpunkt fest bleibt und eine Hälfte auf dem Unterstützungspunkt liegt. Diese trägt

dann nicht mehr zum Gleichgewicht bei und kann auch entfernt werden. Da der Schwerpunkt

der beiden Teilmassen von m1 an seinem Ort geblieben ist, herrscht nach wie vor Gleichge-

wicht. Damit ist das Hebelverhältnis 2 : 1 bei einem Massenverhältnis 2 : 1 bewiesen. Durch

Aufteilung der Masse m2 im Verhältnis 2 : 1 und Anwendung des im ersten Schritt bewiese-

nen Satzes beweist man das Hebelverhältnis 2 : 3 und so durch geschickte Aufteilung der

Massen für alle rationalen Verhältnisse.

Heute leitet man das Hebelgesetz am einfachsten aus dem Energiesatz her. Man denkt sich ei-

ne massenfreie Stange, an deren beiden Enden die Kräfte m1g und m2g angreifen. Die Stange

werde an dem Punkt unterstützt, der zu einem Gleichgewicht führt. Kippt man die Stange so,

113

Harald Schüler
Page 115: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 115: Rechts und links muß nach dem Energiesatz

gleche Arbeit geleistet werden.

daß das eine Ende um die Strecke s1 verrückt wird, so leistet die Kraft m1g eine Arbeit m1gs1.

Da sich jedes Teilchen der gesamten Anordnung in einem Potentialfeld aufhält, gilt der Ener-

giesatz und damit m1gs1 = m2gs2. Wegen des Strahlensatzes hängen die Verschiebungen der

Enden von den Längen der Teilarme des Hebels ab (Abb.117): s1/s2=l1/l2, und daher

m1m2

= l2

l1

Wer sagt es denn!

Da g im Prinzip von der Position auf der Erde und damit von x abhängig ist, könnte man

streng genommen zwischen Schwerpunkt, beschrieben durch die Koordinaten x1 (s) und x2

(s)

vom Schwerpunkt aus gerechnet

m1gx1(s) + m2gx2

(s) = 0

und dem Massenmittelpunkt, gekennzeichnet durch die Position

m1x1(MM) + m2x2

(MM) = 0 (1)

Unterscheiden. x1(MM) und x2

(MM) sind die Koordinaten der beiden Massen vom Massenmittel-

punkt gemessen. Im folgenden wird auf diese Unterscheidung keinen Wert gelegt. Wir meinen

den Massenmittelpunkt, wenn wir Schwerpunkt sagen.

b) Der Schwerpunkt beliebiger Massenpunktsysteme

Auf n Massen verallgemeinert lautet die Definition des Schwerpunktes nach Gleichung (1)

Σ mixi(s) = 0

entsprechend für die anderen Koordinaten

und Σ miyi(s) = 0 Σ mizi

(s) = 0

114

Page 116: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

allgemein=

n

Σ mir i(s) = 0

Diese Definition hat die etwas unbequeme Eigenschaft, daß sich der Koordinatenursprung,

von dem aus die Positionen der Massen gemessen werden, im Schwerpunkt befinden muß.

Um eine Definition für ein beliebiges Koordinatensystem zu erhalten, betrachten wir Abb.

116. ri ist die Position der Masse i von diesem Koordinatensystem aus. rs die Position des

Schwerpunktes. Dann gilt laut Abb. 116

ri = ri(s) + rs

Σ mi(r i − rs) = 0

Σ mir i = Σ mirs = rsmges

mges ist die Gesamtmasse des Systems. Damit erhält man für die Position des Schwerpunktes

(2)rs = Σ mir imges

Abb. 116: Die geometrischen Verhältnisse bei der Berechnung

des Schwerpunktes.

c) Schwerpunkt als Mittelwert der gewichteten Massenpositionen

Gleichung (2) hat die Form einer gewichteten Mittelwertbildung. Betrachtet man z.B. die Kör-

perlänge einer Gruppe von Studenten. mi Studenten mögen die Länge ri haben. Dann ist der

Mittelwert

r = Σ miri

Σmi

115

Page 117: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

mi ist gewissermaßen das Gewicht, mit dem jede Länge berücksichtigt wird. Ein demokrati-

scher Mittelwert ist das arithmetische Mittel.

Man kann auch bei anderen Mittelwertbildungen ein gewichtetes Mittel einführen. Es sei z.B.

bei einer Entscheidung über eine quantifizierbare Größe, etwa die Note für eine Leistung, die

Meinung des Studenten MS, die Meinung des Professors MP. Dann erhielte man bei demokrati-

scher Mittelwertbildung

MD = MS + MP

2

Wichtet man mit der Kompetenz der Parteien, hätte ein gewichtetes Mittel die Form

MG = mSMS + mPMP

m + m

Abb. 117: Die Formel für den Schwerpunkt ist die Gleiche

wie diejenige die man üblicherweise zur Bildung des ge-

wichteten Mittelwertes anwendet

d) Schwerpunkt kontinuierlicher Massenverteilungen

α) Der Übergang von diskreten zu kontinuierlichen Massen

Für Künstler, die komplizerte Skulpturen schaffen, ist die Lage des Schwerpunktes eine we-

sentliche Größe. Der Schwerpunkt sollte im allgemeinen oberhalb der Fläche liegen auf der

die Statue unterstützt wird. Um die Lage des Schwerpunktes abzuschätzen, unterteilt man die

gesamte Figur in Teilelemente, deren Masse ∆mi und Schwerpunktslage ri man abschätzen

kann, etwa in Abb. 118 das Schwert, den Unterarm, den Oberarm u.s.w.. Die Lage des

Schwerpunktes ergibt sich aus

Abb. 118: Bei unregelmäßigen Körpern kann man in der

Praxis als dm Massenelemente beträchtlicher Ausdehnung

nehmen, z.B im abgebildeten Fall die Hand, das Schwert,

den Kopf.

116

Page 118: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

rs = Σr i∆mimges

Im Grenzfall ∆m → 0

rs = ∫ rdmmges

Abb. 119: dm bei einer eindimensionalen Massenverteilung

β) Das Massenelement

Um uns klar zu werden, was dm bedeutet, betrachten wir eine eindimensionale Massenvertei-

lung wie in Abb. 119. Wir können uns etwa einen Löffel vorstellen, bei dem wir letztendlich

die Lage seines Schwerpunktes in seiner Längsrichtung ermitteln wollen. m(x) ist die Masse

vom Anfang des Löffels bis zur Position x. ∆m ist dann die Masse zwischen den Positionen

m(x) und m(x + ∆x)

∆m = m(x + ∆x) − m(x) = m(x) + dmdx

∆x − m(x) = dmdx

∆x

m(x + ∆x) wurde dabei einer Taylorentwicklung bis zum ersten Gliede unterzogen. dm/dx = ρ

heißt die Massenbelegung oder die Liniendichte. Entsprechend gibt es dm/dA die Flächendich-

te und dm/dV die Volumendichte. Die Verteilung der Masse wird also praktischerweise nicht

durch m(x) sondern ρ(x) dargestellt. Wenn ρ unabhängig von x ist, spricht man von einem ho-

mogenen Körper. Ähnlich wird bei Geschwindigkeitsverteilungen von Teilchen nicht die Zahl

der Teilchen mit der Geschwindigkeit v, N(v), dargestellt, sondern die Anzahl der Teilchen

deren Geschwindigkeit zwischen v und v + dv liegt: ∆N = f(v)∆v. Für ∆v → 0 geht auch

∆N → 0. Kein Teilchen hat nämlich mit beliebiger Genauigkeit irgend eine vorgegebene Ge-

schwindigkeit. Der Schwerpunkt eines kontinuierlichen Körpers ergibt sich also aus

rs = ∫ rdm

∫ dm

Für einen homogenen Körper mit konstanter Dichte ρ und dm = ρdV

(3)rs = ∫ rdV

∫ dV= ∫ rdV

V

117

Page 119: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

V ist das Volumen des Körpers. Die Gl. (3) enthält drei Gleichungen für die drei kartesischen

Koordinaten des Schwerpunktes.

Abb. 120: Zuerst summiert man über alle Volumenele-

mente bei festgehaltenen zwei Koordinaten und laufender

dritten.

γ) Wie berechnet man Volumenintegrale?

Einen geometrisch einfachen Körper kann man durch Integration behandeln. Dazu unterteilt

man ihn in Teilmassen, indem man ihn mit einem Koordinatengitter durchsetzt, so daß für ei-

nen Schnitt eine Koordinate, z.B. ξ konstant gehalten wird. der benachbarte Schnitt läuft dann

bei ξ + ∆ξ. In kartesischen Koordinaten (s. Abb. 120) hat man Volumenelemente

∆V = ∆x∆y∆z. In Zylinderkoordinaten, in denen die Position durch r,θ,z beschrieben wird, ist

das Volumenelement ∆V = r∆r∆θ∆z (s. Abb. 121). Wer es nicht glaubt, berechne ein Würfel-

volumen auf der Erdoberfläche, indem er dieses durch den Erdradius, die geographische Brei-

te und eine Koordinate ∆z in Ost - West Richtung ausdrückt!

Abb. 121: Das Volumenelement in Zylinderkoordinaten.

Man summiert, indem man zuerst zwei Koordinaten konstant läßt, z.B. in kartesischen Koor-

dinaten x und y. Es ergibt sich der Schwerpunkt für eine Reihe von Volumenelementen. Er

hängt natürlich von dem speziell gewählten xi und yj ab (Abb. 120). Im allgemeinen ergibt sich

eine Funktion von x und y, so daß man nach diesem Schritt den Schwerpunkt für jede der Rei-

hen, die durch ein bestimmtes i und j gekennzeichet sind (i, j = 1,2, ....), kennt.

rs = 1V i

ΣjΣ

kΣ ri(x, y, z)∆z

∆x∆y = 1V i

ΣjΣ r(x, y)∆x∆y

118

Page 120: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 122: Bei der nächsten Integration summiert man über

alle Volumenelemente einer Scheibe.

Als nächstes läßt man eine der übrigen Koordinaten konstant, z.B. y und erhält den Schwer-

punkt jeder Scheibe (Abb. 122).

rs = 1V Σ r(x)∆x

Die letzte Summation ergibt den Schwerpunkt. Im Grenzübergang wird aus aus jeder Summa-

tion eine Integration

(4)rs = 1V ∫ ∫ ∫ rdxdydz

Man löst dieses sogenannte Volumenintegral, indem man wie bei der Summation nur eine Ko-

ordinate variabel läßt. Die Integrationsgrenzen sind durch die Körperform bestimmt und hän-

gen im allgemeinen von den noch nicht abgearbeiteten Variabeln ab.

Beispiel: Schwerpunkt einer homogenen Dreiecksfläche konstanter Dicke d.

Abb.123: Berechnung des Schwerpunktes eines Dreiecks

Das allgemeine Dreieck kann wie in Abb. 123 aus rechtwinkligen Dreiecken zusammenge-

setzt werden. Daher wird im folgenden nur ein rechtwinkliges Dreieck in dem dafür bequem-

sten Koordinatensystem berechnet. Nach Gleichung (4) gehen wir von der Formel aus

xs = 11bhd ∫ ∫ ∫ xdxdydz

119

Page 121: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

erster Schritt: x und y sind konstant

(das Integral in der Klammer ergibt d)xs = 2bhd ∫ ∫

0

d

∫ dz dxdy = 2

bh ∫ ∫ xdxdy

zweiter Schritt: x wird konstant gelassen

xs = 2bh ∫

y0

∫ dy xdx

Hierin isty0

∫ dy = y0 = hb

x

Die obere Grenze ist durch die Berandung des Körpers gegeben und hier von x abhängig. Die

letzte Integration ergibt dann die Lage des Schwerpunktes in x Richtung.

xs = 2b2

b

∫ x2dx = 2b2

b3

3= 2

3b

Die Lage des Schwerpunktes in y - Richtung ergibt sich mit der gleichen Betrachtung, in z -

Richtung ist die Lage trivialerweise xz = d/2. Bei der letzten Integration müssen alle möglichen

Werte der letzten Variablen ausgeschöpft werden. Z.B. wäre bei der Integration über den Qua-

dranten eines Kreises

y0 = R2 + x2

Bei der Integration über x wären die Grenzen 0 und R.

Abb. 124: Die Grenzkurve eines Kreisquadranten

δ) Experimentelle Bestimmung der Lage des Schwerpunktes

Außerhalb des Schwerpunktes aufgehängte Körper hängen so, daß der Schwerpunkt unterhalb

des Unterstützungspunktes liegt. Der Schwerpunkt liegt also auf einer Geraden, die durch den

120

Page 122: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 125: Wie man die Lage des Schwerpunkts eines Au-

tos in horizontaler Richtung bestimmen kann.

Unterstützungspunkt geht und vertikale Richtung hat. Durch Aufhängen an zwei unterschied-

lichen Unterstützungspunkten erhält man zwei Geraden, in deren Schnittpunkt der Schwer-

punkt liegt. Wenn ein Körper nicht bequem aufgehängt werden kann wie etwa ein Auto, kann

man auch folgenderweise vorgehen: Man wiegt das Fahrzeug an der Hinterachse, indem man

es auf der Vorderachse aufliegen läßt und an der Hinterachse auf eine Waage stellt. Das Ge-

wicht sei dann FH. Entsprechend wiegt man es unter der Vorderachse. Das entsprechende Ge-

wicht sei FV. Anwendung des Hebelgesetzes ergibt

FHL = Mgs

FVL = Mg(1-s)

Durch Division der beiden Gleichungen erhält man

FV

F=

1s − 1

und damit ls = FV

FH+ 1, s = l 1

FV

FH+ 1

M = FHlsg = FH

g

FV

FH+ 1

2. Bewegung des Schwerpunktes

a) Das Aktionsgesetz

Auf ein System von Teilchen wirken äußere Kräfte F1, F2, ...und innere Kräfte, d.h. irgend-

welche Wechselwirkungen zwischen zwei Teilchen des Systems, F12, F21, F13, ...Für jedes

Teilchen gilt das Aktionsgesetz

m1•v1 = F1 + F12...

121

Page 123: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 126: Zwei Massen unter dem Einfluß von inneren und

äußeren Kräften

m2•v2 = F2 + F21...

...

Die Gleichungen für alle Teilchen werden rechts und links addiert. Dabei heben sich nach der

Regel actio = reactio alle inneren Kräfte heraus, da es zu jeder Kraft eine gleich große entge-

gengesetzte gibt: F12 = - F21. Man erhält also

Σ mi•v i = Σ Fext

Die linke Seite kann man mit Hilfe der Definition des Schwerpunktes (Gleichung (2)) um-

schreiben, denn aus folgt durch Differentiation . ist diexsmges = Σ mix i•vs mges = Σ mi

•v i

•vs

Beschleunigung des Schwertpunktes.

(5)mges•vs = Σ Fext

Der Schwerpunkt eines Systems von Massen bewegt sich unter einer äußeren Kraft so, als ob

die gesamte Masse im Schwerpunkt vereinigt wäre. Ohne äußere Kraft bewegt sich also der

Schwerpunkt mit konstanter Geschwindigkeit. Bei einer Explosion fallen die Einzelteile nach

allen möglichen Richtungen auseinander, aber der Schwerpunkt bleibt - zumindest solange die

Splitter frei fliegen - an der Stelle, an der der explodierende Körper anfangs gestanden hatte.

b) Das Zweikörperproblem, reduzierte Masse

Bewegen sich zwei Körper unter der gegenseitigen Wechselwirkung, etwa wie die Erde um

die Sonne, so ist die äußere Kraft null und der Schwerpunkt ruht in einem Inertialsystem. Die

Kraft auf jeden Körper hat die Richtung der Verbindungslinie der beiden Körper und zeigt da-

her immer auf den Schwerpunkt. Man kann daher die Bewegung durch eine Zentralkraft, die

vom Schwerpunkt ausgeht, beschreiben. Das Problem ist auf das Keplerproblem zurückge-

führt. Die Körper bewegen sich auf Kegelschnitten um den Schwerpunkt. Würde man das Ko-

ordinatensystem in den Schwerpunkt eines der beiden Körper legen, dürfte das Aktionsgesetz

nicht ohne weiteres als Grundlage der Beschreibung verwendet werden, da hierfür das

122

Page 124: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 127: Zur Definition der reduzierten Masse

zugrundegelegte Koordinatensystem ein Inertialsystem sein müßte. Formal kann man die Be-

wegung auch in einem Koordinatensystem, das im Zentrum der Sonne verankert ist, beschrei-

ben. Man muß dann allerdings statt der wahren trägen Masse des umlaufenden Körpers seine

reduzierte Masse µ nehmen, die im folgenden erläutert wird.

Zunächst wird die Relativgeschwindigkeit v12 = v1 - v2 eingeführt (s. Abb. 127). Für jeden

Körper einzeln gilt

•v1 = F12

m1•v2 = F21

m2

Durch Subtraktion beider Gleichungen erhält man mit der Bedingung F12 = - F21

•v12 =

•v1 −•

v2 = F12

1m1

+ 1m2

Mit der Definition , wobei µ die reduzierte Masse ist, lautet die Bewegungsglei-1µ = 1

m1+ 1

m2

chung dann

µ •v12 = F12

Sie enthält die Beschleunigung von einem der beiden Körper aus gemessen, die wahre Anzie-

hungskraft - d.h. für das Gravitationsgesetz ist die wahre Masse einzusetzen - und als träge

Masse die reduzierte Masse.

Beispiel: System Proton - Elektron

memp

= 11840

µ =memp

me + mp= me

11 + me

mp

≈ me 1 − me

mp

D.h. man kann so rechnen, als ob das Proton unbeweghlich im Zentrum steht, das Elektron

aber eine um 0,06% verminderte träge Masse hätte.

123

Page 125: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

3. Dynamische Hilfsbegriffe

a) Der Impuls

Nach Definition des Schwerpunktes gilt

rs = 1mges Σ mir i

und daher mges•rs = Σ mi

•ri = Σ p i = pges

Die Summe aller Einzelimpulse ist genau so groß wie der Impuls der Gesamtmasse im

Schwerpunkt des Teilchensystems. Bezogen auf den Schwerpunkt ist der Gesamtimpuls

p ges = mgesvs = 0.

b) Der Drehimpuls

α) Die Bewegungsgleichung für Rotation

Wir haben wieder ein Teilchensystem mit den Massen m1, m2, u.s.w. auf die äußere Kräfte Fi

und innere Kräfte Fik wirken. Der Gesamtdrehimpuls L bezüglich eines beliebigen Bezugs-

punktes ist die Summe der Drehimpulse der Einzelteilchen.

L = L1 + L2 + ... = r1 × p1 + r2 × p2...

Für die einzelnen Drehimpulse gilt nach dem Aktionsgesetz für Drehungen (Kap. C.4.a)

•L1 = r1 × F1 + r1 × F12 + ...•L2 = r2 × F2 + r2 × F21 + ...

Durch Addition erhält man

•L = r1 × F1 + r2 × F2 + (r1 − r2) × F12 + ...

Bei Zentralkräften ist F12 parallel zu (r1 - r2) und damit das durch F12 bewirkte Drehmoment

Null. D.h., wenn alle inneren Kräfte Zentralkräfte sind, gilt bezüglich eines beliebigen Dreh-

punktes in einem Inertialsystem

124

Page 126: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(6)•L = Mext

Die Änderung des Gesamtdrehimpulses ist also nur durch die externen Drehmomente be-

stimmt. Beim Fehlen äußerer Kräfte bleibt L konstant. Der Drehimpulssatz gilt im allgemei-

nen nur für ein Inertialsystem. Beschreibt man die Bewegung aber vom Schwerpunkt aus, so

gilt der Drehimpulssatz auch, wenn der Schwerpunkt beschleunigt wird. Um dies zu beweisen,

drückt man den Drehimpuls L in einem Inertialsystem und das gesamte Drehmoment der äu-

ßeren Kräfte durch entsprechende Größen im Schwerpunktsystem aus, indem man

transformiert

ri = rs + ri(s)

(s. Abb.128). ri ist der Ortsvektor des iten Teilchens in einem Inertialsystem, ri(s) der im

Schwerpunktssystem. Die Bewegung des Schwerpunktes, die nicht geradlinig, gleichförmig

zu verlaufen braucht, bezeichnet man als Translation. Mit obiger Transformation ergibt sich

L = Σ ri × p i = Σ rs × p i +Σ ri(s) × p i

Die beiden Terme auf der rechten Seite lassen sich vereinfachen

Σ rs × p i = rs ×Σ p i = rs × pges

Σ r i(s) × p i = Σ ri

(s) × mi•rs +Σ r i

(s) × p i(s)

da . Andererseits ist nach Definition des Schwerpunktes p i = mi•rs + p i

(s) Σ r i

(s)mi

× rs = 0

also

Σ r i(s) × p i = Σ ri

(s) × p i(s)

125

Abb. 128: Transformation in das Schwerpunktsystem

Page 127: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Der Gesamtdrehimpuls von einem Inertialsystem aus gesehen besteht also aus einem Drehim-

puls des Schwerpunktes und einen Drehimpuls um den Schwer-Ls = rs × pges = mgesrs × vs

punkt L(s) =Σ r i(s) × p i

(s)

(7)L = Ls + L(s) = rs × pges +Σ r i(s) × p i

(s)

Ebenso gilt für das Drehmoment

Mext = Ms + M(s)

wobei das Drehmoment der äußeren Kräfte bezüglich des Koordinatenur-Ms = rs × Fext

sprungs und bezüglich des Schwerpunktes ist. Nach Gleichung (6) giltM(s)

= Σ r i(s) × r i

. Setzt man hier Gleichung (7) ein, erhält manMext = dLdt

Mext = •rs × pges + rs × •

pges +•L

(s)

da und , andererseits gilt•rs × pges = mges

•rs ו

rs = 0 rsוps = rs × Fges = Ms Mext = Ms + M(s)

hier

M(s) =•L

(s)

wie anfangs behauptet. Die Gesamtbewegung eines Körpers kann also immer als Überlage-

rung einer Translation des Schwerpunktes und einer "Rotation" um den Schwerpunkt aufge-

faßt werden, wobei man sich unter einer Rotation hier nicht unbedingt die Drehung eines star-

ren Körpers vorstellen muß, sondern eine beliebige Bewegung der verschiedenen Punktma-

ssen von einem Koordinatensystem aus gemessen, das im Schwerpunkt ruht. Für die Transla-

tion ist die Summe der äußeren Kräfte, für die Rotation die Summe der äußeren Drehmomente

bezüglich des Schwerpunktes verantwortlich. Die inneren Kräfte haben auf die Größe Ls und

pges keine Auswirkung.

β) Anwendungen

Bei Fehlen äußerer Drehmomente bleibt der Gesamtdrehimpuls erhalten. Aus diesem Grund

benötigt ein Hubschrauber einen Drehmomentenausgleich durch einen seitlichen Propeller

oder einen zweiten Rotor. Bei einem sich zusammenziehenden Stern (oder in ein Ausflußloch

126

Page 128: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

fließendem Wasser) nimmt die Winkelgeschwindigkeit bei der Kontraktion zu, denn da L kon-

stant ist und L = mr2dθ/dt gilt, muß dθ/dt zunehmen, wenn im Mittel r kleiner wird. Im freien

Fall können Turmspringer oder Katzen den Gesamtkörper drehen ohne äußere Drehmomente.

Im Prinzip ist dies bei der Katze möglich durch Drehen des Schwanzes. Messungen haben er-

geben, daß dieser Mechanismus die Geschwindigkeit, mit der Katzen sich drehen, nicht erklä-

ren kann.

Abb. 129: Es gibt verschiedene Möglichkeiten für die Kat-

ze, durch innere Kräfte ihren Körper zu drehen.

Ein Modell für die Katzenrolle ist das Abrollen zweier Zylinder mit Kegelspitzen (Abb. 129).

Die Abrollbewegung ist durch innere Kräfte möglich. Dadurch ergibt sich ein Drehimpuls in

den Achsen der Zylinder und ein entgegengesetzter Drehimpuls des Gesamtkörpers.

Teilchen haben einen Spin, den man sich mechanisch als Drehimpuls um die Körperachse vor-

stellt. Der Drehimpuls hat die Dimension

[L] = [mrv] = kgm2s−1 = Js

Größen der Dimension Js (Wirkung) sind gequantelt, d.h. es gibt kleinste Portionen. Der

kleinste vorkommende Drehimpuls ist 1/2h, wobei h = 10-34Js. Der Spin eines Teilchens ist da-

her ebenfalls gequantelt. Wegen der Quantelung von Drehimpulsen können sich diese bei

zwei Teilchen nur so addieren, daß wieder ein Vielfaches des Elementarquantums heraus-

kommt. Ein System aus zwei Teilchen mit dem Einzeldrehimpuls (1/2)h (Spin 1/2) hat also

den Spin 0 oder 1. Der Spin hat für jedes Teilchen einen fest vorgegebenen Wert. Es gibt Teil-

chen mit ungeradzahligem Spin (1/2, 3/2, ...) (Fermionen), und geradzahligem Spin (Bo-

sonen). Fermionen und Bosonen zeigen besonders hinsichtlich ihrer Statistik stark unter-

schiedliches Verhalten. Die Drehimpulserhaltung schließt gewisse Zerfälle aus. Beim Beta -

Zerfall eines Neutrons hatte man zunächst nur ein Proton und ein Elektron entdeckt. Da beide

Teilchen einen Spin 1/2 haben, zusammen also einen geradzahligen Spin aufbringen, das Aus-

gangsteilchen einen Spin 1/2 hat, wurde die Beteiligung eines weiteren Teilchens mit Spin 1/2

127

Page 129: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

gefordert, um die Drehimpulserhaltung zu retten. Dieses Teilchen wurde Neutrino genannt

und später direkt nachgewiesen.

c) Energie

Während die inneren Kräfte zum Drehimpils nicht beitragen, tragen sie zur Gesamtenergie ei-

nes Teilchensystems bei. Die Gesamtenergie erhält man durch Integration der Bewegungsglei-

chung über dri und Summation über alle Teilchen

mia i = F i+Σ F ik

Die linke Seite ergibt wie im Kap. C.5

Σ mi∫ a i • dr i = Σ 12

miv i2 −Σ 1

2miv0

2 = Ekin − Ekin0

Der erste Term auf der rechten Seite ergibt die Arbeit der äußeren Kräfte

Σ∫ F i • dr i = Wext

der zweite die Arbeitsleistung der inneren Kräfte

(rik = ri - rk)Σ∫ F ik • dr i + ∫ Fki • drk = Σ ∫ F ik • dr ik = Wint

Wenn die inneren oder äußeren Kräfte konservativ sind, kann man für sie ein Potential

definieren

-Wint = Epot int - Epot int 0

-Wext= Epot ext - Epot ext 0

Der Energiesatz hat dann die Form

Ekin + Epot ext + Epot int = E0

E0 ist die Gesamtenergie. Für eine sich zu einem Stern zusammenziehende Teilchenwolke

spielt die äußere potentielle Energie keine Rolle. Je kleiner die interne potentielle Energie bei

128

Page 130: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

der Kontraktion wird, desto größer wird die kinetische Energie. Diese geht über in Rotationse-

nergie und kinetische Energie der ungeordneten Bewegung der Teilchen. Die mittlere kineti-

sche Energie der ungeordneten Bewegung im Schwerpunktsystem Ekin(s) pro Teilchen ist pro-

portional zur Temperatur T. Die Kontraktion des Sternes führt also im allgemeinen dazu, daß

sich der Stern aufheizt. Umgekehrt kühlt sich ein Gas, das man in einer Düse entspannt, ab,

weil die Translationsenergie zunimmt.

In der Physik der Gase spielt die äußere potentielle Energie häufig keine Rolle. Statt dessen

interessiert man sich dafür, wo die äußere Arbeit verbleibt. ist im GrundeWext = Ekin(s) + Epotint

genommen der erste Hauptsatz der Wärmelehre.

4. Stoßgesetze

a) Was ist ein Stoß?

Abb. 130: Was heißt schon Berührung?

Ein Stoß ist eine kurzzeitige Krafteinwirkung, bei der nicht der Verlauf im Einzelnen, sondern

nur das Resultat interessiert. Z.B. möchte man beim Stoß von zwei Kugeln aus der Anfangssi-

tuation die Bewegung nach dem Stoß vorhersagen. Bei einem Stoß brauchen sich zwei Körper

nicht zu berühren. Z.B. spricht man von einem Stoß, wenn zwei elektrisch geladene Teilchen

nahe aneinander vorbeifliegen. (Genaugenommen gibt es überhaupt keine Berührung zweier

Körper, wenn man die Kontaktstelle mit atomarer Auflösung betrachtet.) Charakteristisch für

einen Stoß ist, daß die Wechselwirkung nur in einem begrenzten Gebiet wirksam ist.

Stoßprozesse sind besonders in der Teilchenphysik von Bedeutung, da die meisten Informatio-

nen über Teilchen durch Stoßexperimente gewonnen wurden. Bei Stoßprozessen zwischen

atomen oder Elementarteilchen sind die Teilchen vor und nach dem Stoß nicht identisch, da

Umsetzungen stattgefunden haben. Bei einer Stoßionisation z.B. hat man nach dem Stoß mehr

Teilchen als vorher. Häufig nehmen Teilchen Energie auf z.B. bei Stoßanregung. Statt der Er-

haltung der individuellen Teilchen gelten Erhaltungssätze für charakteristische Eigenschaften

der Teilchen wie Spin, Ladung, Leptonenzahl (= Zahl der Teilchen mit nur schwacher Wech-

selwirkung) u.s.w. Stöße behandelt man, indem man Erhaltungssätze, z.B. die Erhaltung der

129

Page 131: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Gesamtenergie und des Gesamtimpulses, auf die Situation vor und nach dem Stoß anwendet.

Ähnliche Methoden verwendet man bei Stoßwellen.

b) Grundbegriffe

Wir betrachten zwei Teilchen m1 und m2 mit den Geschwindigkeiten v1 und v2 vor dem Stoß

und u1 und u2 nach dem Stoß (s. Abb. 130). Die Erhaltungssätze sind dann

Energiesatz: 12

m1v12 + 1

2m2v2

2 = 12

m1u12 + 1

2m2v2

2 + Q

Impulssatz: m1v1 + m2v2 = m1u1 + m2u2

Q ist die Wärmetönung des Prozesses. Bei Q = 0 ist der Stoß elastisch. Die Hauptaufgabe be-

steht darin, aus m1, m2, v1, v2 die 6 unbekannten Größen u1 und u2 auszurechnen. Vollständig

läßt sich dieses Problem lösen, wenn sich die Schwerpunkte der Teilchen auf einer Geraden

bewegen - man spricht dann vom zentralen Stoß - und wenn der Stoß elastisch verläuft. Das

Problem ist meistens in einem im Labor festen Koordinatensystem gestellt, läßt sich aber be-

sonders einfach im Schwerpunktsystem der Teilchen behandeln, da hier die Impulse der

beiden

Abb. 131: Bei den Stoßgesetzen geht es um den Zusammen-

hang der Geschwindigkeiten vor und nach dem Stoß.

Teilchen untereinander, sowie vor und nach dem Stoß dem Betrage nach gleich sind. Die

möglichen Orte der Spitzen der Vektoren u1 und u2 liegen also auf einem Kreis.

c) Elastischer zentraler Stoß

α) Das Target ruht

Da es sich um einen zentralen Stoß handeln soll, gibt es nur eine Koordinate. Wir können z.B.

annehmen, es sei die x - Koordinate. Die Geschwindigkeiten können dann als Skalare ge-

schrieben werden. Das ruhende Teilchen habe den Index 2 (v2 = 0). Energie - und Impulssatz

haben dann die Form

130

Page 132: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

m1 v1 = m1u1 + m2 v2

m1v12 = m1u1

2 + m2v22

Die Gleichungen werden so umgeschrieben, daß die Daten des ersten Teilchens links stehen.

Die zweite Gleichung ergibt

m1(v12 - u1

2) = m2u22

m1(v1 - u1)(v1+ u1) = m2u22

Die erste Gleichung ergibt

m1(v1 - u1) = m2u2

Dividiert man nun beide Gleichungen, erhält man

v1 + u1 = u2

Man Eliminiert u2, indem man in die Impulsbilanz einsetzt.

m1v1 = m1u1 + m2v1 + m2u1

(8)u1 =v1m1 − m2

m1 + m2

u2 = v1 + u1 = v1 1 + m1 − m2

m1 + m2

= v1

m1 + m2 + m1 − m2

m1 + m2

(9)u2 =v12m1

m1 + m2

Diskussion

Für m1 = m2 = m wird u1 = 0 und u2 = v1. Die Teilchen tauschen die Geschwindigkeiten

aus. Die Energie des ersten Teilchens wird vollständig auf das zweite Teilchen

übertragen. Der Schwerpunkt bewegt sich im Laborsystem mit v1/2. Im

Schwerpunktsystem bewegt sich m2 mit v1/2 in entgegengesetzter Richtung. Nach dem

131

Page 133: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Zusammenstoß kehren beide Teilchen ihre Geschwindigkeiten um. Dadurch bewegt sich

im Laborsystem m1 mit u1 = v1/2 - v1/2 = 0 und m2 mit v1/2 + v1/2 = v1.

Für m2 << m1 wird u1 = v1 und u2 = 2v1. Das erste Teilchen behält seine

Geschwindigkeit bei, während das zweite Teilchen mit doppelter Geschwindigkeit des

ersten Teilchens den Stoßbereich verläßt. Da im zweiten Teilchen wegen der kleinen

Masse praktisch keine kinetische Energie steckt und sich m1 weiterhin mit v1 bewegt,

wird so gut wie keine Energie übertragen. Der Schwerpunkt des Systems ruht im

wesentlichen im schweren Teilchen. Im Schwerpunktsystem wird m2 an m1 reflektiert.

Wenn m2 >> m1 wird u1 = -v1. m1 wird reflektiert, währen m2 in Ruhe bleibt.

β) Die Energieübertragung

Mit den Formeln aus dem vorigen Abschnitt erhält man für die Energieübertragung q

q =12m2u2

2

12m1v1

2=

m24v12m1

2

(m1 + m2)2m1v12

=4m2

m1

(1 + m2m1 )

2

Zur Abkürzung wird das Massenverhältnis x genannt

q(x) = 4x(1 + x)2

Das Maximum dieser Funktion erhält man duch Nullsetzen der Ableitung

dqdx

= 4(1 + x)2 − 2x(1 + x)

(1 + x)4= 4(1 + x)(1 + x) − 2x

(1 + x)3

Abb. 132: Der Bruchteil der Energie, der auf den Stoßpart-

ner übertragen wird, hängt vom Massenverhältnis ab.

Das Maximum liegt also bei x = 1, d.h. m1 = m2. Es gibt eine Reihe von Anwendungen. Z.B.

müssen in einem Kernreaktor die durch die Reaktion entstehenden Neutronen abgebremst

132

Page 134: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

werden, da sonst die Wahrscheinlichkeit dafür, eine weitere Spaltung zu verursachen zu klein

wäre. Hierfür dient der Moderator. Als Moderator verwendet man bevorzugt wasserstoffhalti-

ge Substanzen wie H2O (Leichtwasser), D2O (Schwerwasser), aber auch andere leichte Ele-

mente, damit der Massenunterschied nicht zu groß ist. (H - Atome und Neutronen besitzen et-

wa die gleiche Masse).

Abb. 133: Viele Stoßprobleme gestalten sich besonders

einfach in einem Koordinatensystem, das im Schwer-

punkt ruht.

γ) Beide Teilchen bewegen sich

Um aus den Gleichungen (8) und (9) die Formel für den Stoß auf ein Teilchen zu erhalten, das

sich bewegt, transformiert man sie auf ein Bezugssystem, das sich mit v0 bewegt. Die Ge-

schwindigkeiten im bewegten System werden mit großen Buchstaben bezeichnet (s. Abb.

133). Für alle Geschwindigkeiten gilt v = V + v0.

0 = V2 + v0 → V2 = - v0

v1 = V1 + v0 = V1 - V2

u1= U1 + v0 = U1 - V2

u2 = U2 + v0 = U2 - V2

Setzt man dies in die Gleichungen (8) und (9) ein, so erhält man

U1 − V2 = (V1 − V2)m1 − m2

m + m

U1 = V1(m1 − m2) + V2(m1 − m2) + V2(m1 + m2)m + m

U1 = V1(m1 − m2) + 2m2V2

m1 + m2

Wegen der Symmetrie des Problems kann man die Indizes vertauschen.

133

Page 135: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

U2 = V2(m2 − m1) + 2m1V1

m1 + m2

Abb. 134: Den Stoß zweier Kugeln, die nicht frontal

aufeinander stoßen kann man wie einen frontalen Stoß

behandeln, der senkrecht zur Tangentialebene verläuft.

d) Stoß mit seitlicher Impulsänderung

Treffen zwei Kugeln nicht frontal aufeinander, so wirkt doch die wesentliche Kraft senkrecht

auf die Berührungsfläche. Wenn man diese Richtung kennt, könnte man v1 und v2 in Kompo-

nenten parallel und senkrecht zu ihr zerlegen. In der Tangentialrichtung ergibt sich keine Im-

pulsübertragung, in der senkrechten gilt das bisher gesagte. Häufig kennt man die Richtung

der Berührungsfläche nicht. Läßt man sie offen, kann man eine allgemeine Aussage über den

Ort der Spitzen von u1 und u2 machen. Es gilt der Energiesatz in der gleichen Form wie im vo-

rigen Abschnitt und der Impulssatz für den vektoriellen Impuls. Wir betrachten den Fall v2 = 0

und interessieren uns für p2 = m2u 2 , dessen Komponenten wir deshalb x und y nennen. Nach

Abb. 135 erhält man

x2 + y2 = m22u2

2

(m1v1 - x)2 + y2 = m12 u1

2

Abb. 135: Das Dreieck der beteiligten Impulse. Das

Teilchen 2 ruht vor dem Stoß.

Der Energiesatz lautet m1v12 = m1u1

2 + m2u22

Man eliminiert u12 und u2

2, v 1 wird als Parameter belassen.

m1v12 = 1

m1 (m1v1 − x)2 + y2 + 1

m2(x2 + y2) = m1v1

2 − 2v1x + 1m1

x2 + 1m1

y2 + 1m2

x2 + 1m2

y2

0 = −2v1x + 1µx2 + 1

µy2

x2 + y2 − 2µv1x = 0

134

Page 136: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Durch Hinzufügen der quadratischen Ergäzung auf beiden Seiten erhält man

(x − µv1)2 + y2 = (µv1)

2

Abb. 136: Der Impuls des anfangs ruhenden Teilchens kann unterschiedliche Richtungen annehmen. Die Spit-

zen aller möglichen Impulsvektoren liegen auf einem Kreis. Bei gleichen Massen ist dies der Thaleskreis und es

liegt ein rechter Winkel zwischen den Flugrichtungen nach dem Stoß.

Es ergibt sich ein Kreis mit dem Radius und der Verschiebung µv1 (Abb. 136).

ist der um das Massenverhältnis reduzierte Anfangsimpuls des Teil-µv1 = m2

m + mm1v1

chens 1. Wenn m1 = m2, liegt der Mittelpunkt des Kreises auf der Mitte des Vektors m1v1. D.h.

die Spitzen der Vektoren m2u2 liegen auf dem Thaleskreis. Die Bewegungsrichtungen der

Teilchen bilden nach dem Stoß einen rechten Winkel.

e) Der inelastische Stoß

Abb. 137: Beim volständig inelastischen Stoß kleben

die Stoßpartner nach dem Stoß zusammen.

Wenn die Wärmetönung Q bekannt ist, können u1 und u2 wieder aus Impuls- und Energiebe-

ziehung berechnet werden. Wenn Q nicht bekannt ist, aber beide Körper nach dem Stoß anein-

ander kleben, spricht man vom vollkommen unelastischen Stoß (Abb. 137). Dann gilt

u1 = u2 = u. u läßt sich alleine durch den Impulssatz bestimmen.

m1v1 + m2v2 = (m1 + m2)u

u = m1v1 + m2v2

m + m

Beispiel: das ballistische Pendel

135

Page 137: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 138: Mit dem ballistischen Pendel läßt sich die

Anfangsgeschwindigkeit von Geschossen mit Hilfe der

Gesetze des inelastischen Stoßes bestimmen.

Zur Bestimmung der Geschwindigkeit eines Geschosses schießt man in einen als Pendel auf-

gehängten Behälter, in dem das Geschoß stecken bleibt. Aus der Auslenkung des Pendels er-

gibt sich sofort mgh und daraus die kinetische Energie unmittelbar nach dem Stoß.

12

m2u2 = m2gh

Nach den Stoßgesetzen gilt (immer m2 >> m1 und v2 = 0 vorrausgesetzt)

u = m1m2

v1

Durch Eliminieren von u erhält man

12

m1m2

2

v12 = gh

v12 = 2gh

m2m1

2

136

Page 138: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL E

Mechanik von Flüssigkeiten und Gasen

1. Vorbemerkungen über Gase, Flüssigkeiten und feste Körper

Gase, Flüssigkeiten und Festkörper sind Vielteilchensysteme. Die einzelnen Teilchen bewe-

gen sich nach den Gesetzen der Mechanik im Kraftfeld der übrigen Teilchen und der Außen-

welt. Die inneren Kräfte sind am größten im festen Körper, wo sie nur ein Schwingen der Ato-

me um ihre Ruhelage zulassen, schwächer in der Flüssigkeit, wo eine Verschiebung der Ato-

me gegeneinander möglich ist und die schnellsten Atome den Verband verlassen können. Im

Gas bewegen sich die Teilchen überwiegend frei zwischen kurzzeitigen Wechselwirkungen

beim Stoß mit anderen Teilchen oder der Wand. Durch die Vielzahl der Stöße wird eine Kraft

auf die Wand ausgeübt, die sich als Druck bemerkbar macht.

Flüssigkeiten und Gase zeigen gemeinsam keine Formstabilität, mit Ausnahme von Flüssig-

keiten in kleinen Mengen, die zur Tropfenbildung neigen. Flüssigkeiten unterscheiden sich

von Gasen sehr stark in der Dichte. Die Dichte von Wasser, 1kg/l ist typisch für Flüssigkeiten,

die von Luft, 1,3g/l typisch für Gase. Gase sind im Gegensatz zu Flüssigkeiten stark kompri-

mierbar. Eine ideale Flüssigkeit ist nicht komprimierbar und hat keine Scherkräfte, d,h, Kräf-

te, die bei der Verschiebung zweier Flüssigkeitsschichten gegeneinander auftreten, d.h. keine

Viskosität.

2. Druck in Gasen

Abb. 139: Auf einer genügend kleinen Fläche bemerkt

man die Stöße der einzelnen Teilchen.

Der Druck wird durch die Stöße der Teilchen mit der Wand verursacht. Die Kraftwirkung auf

eine genügend kleine Fläche der Wand besteht aus einer Folge von Kraftimpulsen. Der Mittel-

wert der Kraft wird durch Verschmierung über die Zeit t0 erhalten.

Ft0 = ∫ F(t)dt F = 1t0 ∫ F(t)dt

137

Harald Schüler
Page 139: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Wir nehmen an, alle Teilchen haben eine Geschwindigkeit v auf die Wand zu. Die Teilchen-

dichte n, d.h. die Anzahl der Teilchen pro Volumen, und ihre Masse sei bekannt. Der Druck

auf die Fläche soll berechnet werden. Die Größe nennt man Kraftstoß. Sie ergibt sich∫ F(t)dt

aus Newtons Bewegungsgleichung.

•P = F(t)

durch Integration. Der Impuls ist hier groß geschrieben, um ihn vom Druck p zu unterscheiden

∫ F(t)dt = P2 − P1 = 2mv

Stößt ein Teilchen mit dem Anfangsimpuls mv auf eine Wand, so kehrt der Impuls um wie bei

einem Stoß mit einer unendlich großen Masse. Die Impulsänderung ist also 2mv. Damit wird

F = 12 ∫ F(t)dt = 2mv

t0

für z Stöße

F = 2mv zt

= 2mvν

ν ist die Stoßfrequenz. Für einen Teilchenstrahl, der senkrecht zur Fläche gerichtet ist, braucht

man nur alle Teilchen abzählen, die in der Zeit t auf die Fläche treffen werden. Das sind in

Abb. 140 alle Teilchen, die sich in dem Volumen der Grundfläche A und der Höhe vt

befinden.

Abb. 140: Die Stoßzahl auf eine Wand läßt sich durch die

Dichte und Geschwindigkeit der Teilchen ausdrücken.

ν = Nt

= nAvtt

= nAv

und F = 2mnv2A

138

Page 140: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Der Druck ist definiert als mit der Dimension (Pascal). Der normalep = FA

[p] = N2

= Pa

Druck der Atmosphäre ist 1bar = 105 N/m2. Der Druck, den ein Teilchenstrahl ausübt, ist also

p = 2mnv2.

Bei isotroper Geschwindigkeitsverteilung fliegen sicher weniger Teilchen auf die Wand als

bei einem auf die Wand gerichteten Teilchenstrahl. Bei korrekter Vorgehensweise muß man

eine Mittelung über alle Geschwindigkeiten in Richtung und Größe vornehmen. Die Mitte-

lung hat allerdings nur einen Einfluß auf einen Faktor vor dem Ausdruck für den Druck auf

die Wand. Die Abhängigkeit kommt korrekt heraus, wenn man statt der Mittelung von davon

ausgeht, daß alle Teilchen die gleiche Geschwindigkeit besitzen. Der Druck muß unabhängig

von der Form des Gefäßes sein. Wir dürfen daher annehmen, das Gas befände sich in einem

Würfel. Auf jede Fläche ströme 1/6 aller Teilchen. Die Zahl 6 rührt von den drei Dimensionen

mit ihren je zwei Richtungen her.

Abb. 141: Wegen der Isotropie der Geschwindigkeitsvertei-

lung treffen auf jede Wand eines Würfels nur 1/6 aller

Teilchen.

Die Stoßzahl ist jetzt

ν = 16

nAv

und damit p = 13

nmv2

Man geht zurück auf die Gesamtzahl der Teilchen N = nV

pV = 13

Nmv2

und definiert mit der Boltzmannkonstanten k = 1,38 10-23 J/K und erhält die allge-12

mv2 = 32

kT

meine Zustandsgleichung für ideale Gase

139

Page 141: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

pV = NkT

Hieraus folgt, da individuelle Eigenschaften der einzelnen Gase nicht vorkommen, der Satz

von Avogadro:

Zwei verschiedene Gase mit gleichem p,V und T enthalten die gleiche Anzahl der Teilchen

In einem Gasgemisch muß für N die Gesamtzahl der Teilchen eingesetzt werden, dabei ist zu

beachten, daß man in einem ionisierten Gas die freien Elektronen als Teilchen mitzählen muß.

Die Menge des Gases, die die Avogadrozahl NA = 6·1023 Teilchen enthält, nennt man ein

Mol. 1 Mol wiegt in g soviel, wie das Atomgewicht ausmacht. Führt man die Anzahl der Mole

nm = N/NA ein, schreibt sich die Zustandsgleichung

pV = nm(kNA)T

Und nach einführen der Gaskonstante R = kNA = 8,3 J/K erhält man die übliche Form

(10)pV = nmRT

Die Zustandsgleichung für ideale Gase enthält die Sonderfälle des Boyle - Mariotteschen Ge-

setzes pV = const für T = const und des Gay - Lussacschen Gesetzes p/T = const für V = const.

3. Hydrostatik

Die Hydrostatik befaßt sich mit den Druckverhältnissen in ruhenden Flüssigkeiten. Druck ist

in Flüssigkeiten und Gasen isotrop, d.h. unabhängig von der Ausrichtung der Fläche auf der er

ausgeübt wird.

a) Das Eigengewicht ist vernachlässigbar

Wenn das Eigengewicht keine Rolle spielt, ist ist der Druck sogar in der ganzen Flüssigkeit

konstant. Drückt man einen Kolben in ein Gefäß, sodaß keine Kompressionsarbeit im Medium

verrichtet wird, muß nach dem Energiesatz gelten

F1s1 = F2s2

und wegen der Konstanz des Volumens

140

Page 142: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 142: Die Tatsache, daß - bei Vernachlässigung des Ei-

gengewichtes der Druck in einer Flüssigkeit überall gleich

ist, folgt aus dem Energiesatz

A1s1 = A2s2

Durch Division beider Gleichungen ergibt sich

also p1 = p2

F1

A= F2

A

Man nutzt die gleichmäßige Druckausbreitung in Flüssigkeiten in der Hydraulik zur Kraft-

transformation aus, z.B. in Hebebühnen, Bremsen, oder zur Kraftübertragung zur Bewegung

von Maschinenteilen wie Flugzeugrudern, Baggerarmen und dergleichen.

b) Druck aufgrund des Eigengewichts

α) Zylindrisches Gefäß

Abb. 143: In einem zylindrischen Gefäß ist der Druck am Bo-

den die Gewichtskraft des Wassers geteilt durch die

Bodenfläche.

In einem zylindrischen Gefäß hat man am Boden den Druck

(11)FG

A=

ρVgA

=ρhAg

A= ρhg

Dies ist der Satz von Stevin (Simon Stevin 1548 - 1620). Er bildet die Grundlage zum Messen

von Drucken mit flüssigkeitsgefüllten U - Rohren. Eine 10 m hohe Wassersäule macht einen

Druck von 10·103·9,81 Pa ≈ 1 bar. Sie kann daher vom Luftdruck im Gleichgewicht gehalten

werden. Größere Saughöhen von Wasserpumpen sind nicht möglich. Da die Dichte von

Quecksilber 13,5 mal so hoch ist, wie die von Wasser, entsprechen 740 mm Hg - Säule 1 bar.

141

Page 143: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

1 mm Quecksilbersäule übt den Druck von 1 Torr aus. Die Einheit Torr ist nach dem italieni-

schen Physiker Evangelista Torricelli (1608 - 1647) benannt.

β) Das hydrostatische Paradoxon

Abb. 144: In diesem Gefäß ist der Druck genau so groß wie

in einem zylindrischen mit gleicher Grundfläche und damit

kleiner als das Gewicht der Flüssigkeit geteilt durch die

Bodenfläche

Der Druck durch das Eigengewicht einer Flüssigkeit ist unabhängig von der Form des Gefä-

ßes. In dem in Abb. 144 dargestellten Gefäß ist er z.B. kleiner als das Gesamtgewicht des

Wassers geteilt durch die Grundfläche. Den Grund für dieses Verhalten versteht man am be-

sten, wenn man sich vorstellt, man führe in ein mit Flüssigkeit gefülltes Gefäß wie in Abb.145

eine Trennwand ein, so daß zunächst beide Teilvolumen verbunden bleiben. Durch das Ein-

bringen dieser Wand ändern sich die Druckverhältnisse nicht. Versperrt man jetzt die Verbin-

dung der beiden Teilvolumina, ändert sich noch immer nichts am Druck. Nimmt man jetzt die

Flüssigkeit aus dem oberen Teil des Gefäßes, ändert sich am Druck wieder nichts, weil keine

Verbindung zwischen den Teilvolumina bestand. Die kleinere Wassermenge erzeugt den

gleichen Druck wie die ursprüngliche größere. Die fehlenden Kräfte werden durch Reaktions-

kräfte der Zwischenwand erzeugt.

Abb. 145: In dem durch die gestrichelten Flächen abgeteil-

ten Teilvolumen ist der Druck genau so groß wie in dem ge-

samten Volumen.

c) Der Auftrieb

α) Satz von Archimedes

Ein in eine Flüssigkeit eingetauchter Körper erfährt aufgrund des Satzes von Stevin auf seiner

Unterseite eine größere Kraft als auf seiner Oberseite. Die Resultierende ist die Auftriebskraft.

Bei einem Quader der Grundfläche A und der Höhe h ist die Kraft auf die Grundfläche

FU = ρFlg(H+h)A, auf die Deckfläche FO = ρFlgHA. Die Gesamtkraft FA = FO - FU = ρFlghA ist

142

Page 144: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 146: Durch den Druckunterschied zwischen der oberen

und unteren Begrenzungsfläche des Würfels entsteht ein

Auftrieb.

gleich dem Gewicht der verdrängten Flüssigkeit. Einen Körper beliebiger Form denkt man

sich aus derartigen Quadern zusammengesetzt. Man erhält den Satz von Archimedes:

Der Auftrieb ist gleich dem Gewicht der verdrängten Flüssigkeitsmenge

Nach Stevin beweist man den Satz wie folgt: Man ersetzt einen Körper beliebiger Form durch

einen Flüssigkeitskörper der gleichen Form. Dieser wird in Ruhe bleiben, da jetzt ja eine ho-

mogene Flüssigkeit vorliegt, für die es keinen Anlaß gibt, sich zu bewegen. Er erfährt also ei-

nen Auftrieb, der gleich seinem Gewicht ist. Da bei dem ursprünglichen Körper alle äußeren

Verhältnisse die gleichen sind, ist auch der Auftrieb gleich. Im folgenden werden einige An-

wendungen des Satzes von Archimedes gezeigt.

β) Schiffshebewerke

Da bei schwimmenden Körpern die verdrängte Flüssigkeit soviel wiegt wie der gesamte Kör-

per, wird ein Wasserbecken, in das ein Schiff fährt, dadurch nicht schwerer. Man kann also

zum Heben von Schiffen in solchen Becken das Gewicht durch ein Gegengewicht ausgleichen

und muß nur noch die Reibungskräfte überwinden.

γ) Bestimmung der Dichte eines Körpers

Man wägt einen Körper in Luft, erhält das Gewicht FL = mKg, taucht ihn in Wasser und erhält

das Gewicht FW = mKg - VKρWg. Der zweite Term berücksichtigt den Auftrieb. VK ist das Vo-

lumen des Körpers, ρW die Dichte des Wassers. Durch Division beider Gleichungen erhält

man

FW

FL= 1 −

VKρW

mK= 1 −

ρW

ρK

ρK = 1

1 − FW

F

ρW

Da nur das Verhältnis der Gewichte eingeht, kann man die Wägung mit einer ungeeichten Fe-

der durchführen. Mit dieser Methode konnte Archimedes angeblich die Echtheit einer golde-

nen Krone überprüfen. Gold hat eine deutlich höhere Dichte als die Metalle, mit denen man es

143

Page 145: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

fälschen kann. Die Methode ist auch geeignet, um bei bekannter Dichte eines Körpers die ei-

ner Flüssigkeit zu bestimmen.

δ) Das Aräometer

Abb. 147: Im Aräometer wird der Auftrieb zu Bestim-

mung der Dichte einer Flüssigkeit ausgenutzt.

Das Aräometer ist ein Schwimmkörper zur Bestimmung der Dichte einer Flüssigkeit, z.B. zur

Messung von Konzentrationen. Jeder schwimmende Körper sinkt so tief ein, bis die verdräng-

te Flüssigkeit genau so viel wiegt, wie der gesamte Körper. Wenn die Flüssigkeit spezifisch

schwerer ist, wird deshalb der Körper weniger tief einsinken als wenn sie leichter ist. Um eine

möglichst empfindliche Anzeige zu machen, wird der Körper wie in Abb. 147 geformt. Da-

durch verdrängt er im Bereich der Anzeige nur wenig mehr, wenn er eine größere Höhe

eintaucht.

d) Die Barometrische Höhenformel

Da Luft komprimierbar ist, ändert sich mit dem Druck die Dichte

(12)p = NkTV

= NmV

kTm = ρkT

m

m ist die Masse eines Moleküls. Dadurch ist der Satz von Stevin, der für konstante Dichte ab-

geleitet wurde, nicht mehr gültig. Um den Druck in Abhängigkeit von der Höhe p(h) zu be-

rechnen, teilt man die Luftsäule in Schichten der Höhe ∆h, die so klein sind, daß sich inner-

halb p nicht ändert. Dann gilt

∆p = −ρg∆h

Abb. 148: In der Athmosphäre gilt der Satz von Stevin wegen der

Kompressibilität der Luft nur für kleine Höhenunterschiede.

144

Page 146: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(Der Druck nimmt mit steigender Höhe ab). dp wird über Gleichung (12) durch dρ ersetzt.

dp = kTm dρ

also kTm dρ = −ρgdh

ρ wird auf die linke Seite geschafftdρρ = −

mgkT

dh

Integration rechts und links: , ∫ρ0

ρ dρρ = [ln ρ] ρ0

ρ = lnρρ0 ∫

hdh = h

ergibt ln ρ/ρ0 = −mghkT

rechts und links wird der Exponent gebildet, und dabei ausgenutzt, daß elnx = x.

(13)ρρ0

= emgh/kT = e−Epot/kT

Wegen Gleichung (12) ist das Verhältnis der Dichten gleich dem der Drucke. Schreibt man

außerdem den Exponenten in dimensionsloser Form, erhält man

pp0

= e−h/h0

mit h0 = 8000m. Dichte und Druck fallen bei konstanter Temperatur exponentiell ab (Abb.

149). Da die Temperatur in K gemessen wird, ist die Annahme konstanter Temperatur nicht

allzu kühn. Bei h = h0 hat der Druck auf 1/e abgenommen.

Abb. 149: Die Abnahme der Dichte der Luft mit der Höhe

nach der barometrischen Höhenformel.

145

Page 147: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

e) Die Oberflächenspannung

α) Was ist Oberflächenspannung?

Kräfte zwischen den Molekülen der Flüssigkeit (Kohäsionskräfte) und zwischen der Flüssig-

keit und einer Wand (Adhäsionskräfte) modifizieren das Verhalten der Flüssigkeit über kleine

Distanzen, z.B. in Tropfen und in wandnahen Zonen. Diese Phänomene beschreibt man durch

Oberflächenspannung. Im Innern einer Flüssigkeit heben sich alle Kohäsionskräfte auf. An der

Oberfläche sind nur ein Teil der Kohäsionskräfte vorhanden (s. Abb.150).

Abb. 150: Auf Teilchen an der Oberfläche wirkt eine andere

Gesamtkraft durch die Nachbarteilchen als auf Teilchen im

Innern.

Ein Teilchen hat durch diese Kräfte an der Oberfläche eine höhere Energie als im Zentrum.

Die Kräfte besitzen eine Reichweite von etwa 10-7cm. Da die Flüssigkeit bestrebt ist, den Zu-

stand kleinster Gesamtenergie einzunehmen, hält sie die Oberfläche möglichst klein. Dieses

Bestreben, die Oberfläche zusammen zu ziehen, erscheint wie eine Kraft, die tangential zur

Oberfläche wirkt und die zusätzlich zur Gravitation auftritt.

Beim Vergrößern der Oberfläche um ∆A muß eine Energie ∆E aufgebracht werden, die pro-

portional zur Oberfläche ist.

(14)∆E = σ∆A

σ ist die Oberflächenspannung. Sie hat nach ihrer Definition in Gleichung (13) die Dimension

[σ] = Nm2

= Nm−1

σ = 0,008N/m für Wasser. σ ist stark von der Verunreinigung abhängig. Zieht man mit einem

Drahtbügel eine Flüssigkeitslamelle aus einer Oberfläche, so ist

Fs = ∆E = σ∆A = 2σls

146

Page 148: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 151: Zur Messung der Oberflächenspannung wird

mit einem Drahtbügel eine Lamelle aus der Flüssigkeit ge-

zogen. Die Lamelle hat eine Oberfläche 2l·s (rechts).

σ = F/2l

Der Faktor 2 rührt daher, daß eine Flüssigkeitslamelle zwei Oberflächen besitzt (s. Abb. 151),

und daher ihre Gesamtoberfläche 2sl ist. Die Kraft ist nicht von der Fläche sondern nur von

der Länge, über die F angreift, abhängig. Die Oberflächenspannung kann man zur Beeinflus-

sung der Benetzung einer Fläche und zur Herstellung von Minimalflächen anwenden. Ihre

Messung dient z.B. zur Bestimmung der Reinheit einer Flüssigkeit.

β) Die Seifenblase

Abb. 153: Die Arbeit, eine Seifenblase um ∆r aufzublasen.

Um den Druck in einer Flüssigkeitskugel aufgrund der Oberflächenspannung auszurechnen,

betrachten wir die Arbeit ∆E, die der innere Druck p bei einer Vergrößerung des Radius um

∆r leistet.

∆Ep = F∆r = pA∆r = p4πr2∆r

Dies entspricht einer Vergrößerung der Oberflächenenergie

∆EO = σ∆A

Da A = 4πr2 folgt durch Differentiation und damit ∆EO = σ8πr∆r. Die hineinge-dAdr

= 8πr

steckte Arbeit wird in Energie der Oberfläche gewandelt. Also gilt ∆Ep = ∆EO und damit

147

Page 149: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

p4πr2∆r = σ8πr∆r

p = 2σr

Wegen der äußeren und inneren Oberfläche der Haut einer Seifenblase gilt für diese

p = 4σr

Der Druck in einer kleinen Seifenblase ist größer als in einer großen.

γ) Die Haftspannung

Abb. 153: Die Wölbung der Oberfläche am Rand hängt mit

den Oberflächenspannungen an den verschiedenen Grenzflä-

chen zusammen.

Wenn wir bisher von Oberflächenspannung gesprochen haben, haben wir an die Grenzfläche

zwischen Flüssigkeit und Luft gedacht. Natürlich gibt es auch eine Oberflächenspannung an

der Grenzfläche zwischen Flüssigkeit und einer Wand. Der Koeffizient der Oberflächenspan-

nung hängt von dem angrenzenden Medium ab. Im Randbereich von Flüssigkeiten in Gefäßen

sind daher drei verschiedene Oberflächen mit den Kräften Fik = σikl maßgeblich (s. Abb. 153).

Die Neigung der Oberfläche stellt sich so ein, daß - wenn möglich - sich diese drei Kräfte im

Gleichgewicht befinden. Da alle drei Kräfte an der gleichen Randlänge l angreifen, kann man

bei der Aufstellung der Kräftebilanz statt der Kräfte die ihnen proportionalen Oberflächen-

spannungen σik verwenden. σH = σ23 - σ13 ist die Haftspannung (s. Abb. 154). Wenn σH > 0, ist

die Flüssigkeit nicht benetzend wie in Abb. 154. Die Neigung der Oberfläche stellt sich so ein,

daß sich die Komponenten der Kräfte in Wandrichtung kompensieren

σ12cosθ = σH

148

Page 150: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 154: Benetzende und nicht benetzende

Flüssigkeiten.

Für σH < 0 ist die Flüssigkeit benetzend. cosθ ist dann kleiner 0 und der Winkel θ wird

stumpf. Für |σH | > σ12 nennt man die Flüssigkeit vollständig benetzend. Sie kriecht an der

Wand hoch.

δ) Kapillarität

In Röhrchen, die in eine Flüssigkeitsoberfläche getaucht werden und die dünner sind als die

Ausdehnung der Randzone, steigen benetzende Flüssigkeiten auf (Abb. 155), nicht benetzende

werden nach unten gedrückt. Die Flüssigkeitsoberfläche nimmt Kugelgestalt an, da dies eine

Minimalfläche bei festem Volumen ist. Man kann also die Formel für den Innendruck von Ku-

geln verwenden und diesen dem hydrostatischen Druck gleichsetzen.

ρgh = 2σR

Diese Formel erlaubt es, aus der gemessenen Steighöhe auf die Oberflächenspannung zu

schließen, wenn man den Krümmungsradius der Oberfläche ermittelt. Manchmal wird statt

dessen auch der Haftwinkel θ gemessen. Dieser hängt mit R zusammen (s. Abb. 155) über

cosθ = r/R.

Abb. 155: Bei genügend dünnen Kapillaren ist die

Oberfläche kugelförmig, und man kann mit dem

Druck von Kugelflächen rechnen.

149

Page 151: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 156: Die Stromlinie ist eine Kurve, die überall tangen-

tial zur Geschwindigkeit verläuft.

4. Hydrodynamik

a) Das Geschwindigkeitsfeld

α) Grundbegriffe

Die Strömung einer Flüssigkeit beschreibt man durch das Geschwindigkeitsfeld v(x,t). Die

Kurven, die in jedem Punkt tangential zu v verlaufen, nennt man die Stromlinien. Durch jeden

Punkt läuft eine Stromlinie. In diesem Sinne ist die Anzahl der Stromlinien unendlich. Ist v

nicht explizit von der Zeit abhängig, nennt man das Geschwindigkeitsfeld stationär und die

Stromlinie ist mit der Bahn eines Teilchens identisch. Die Zeitableitung der Geschwindigkeit

an einem Ort schreibt man , die für ein Flüssigkeitsteilchen . Die letztere nennt man∂v∂t

dvdt

auch die substantielle Ableitung. In einer stationären Strömung ist also . Eine Flußröhre∂v∂t

= 0

ist eine Röhre, deren Wand parallel zu den Stromlinien liegt.

β) Der Fluß Φ

Das Volumen, das pro Sekunde durch die Fläche A tritt, nennt man den Fluß durch diese Flä-

che. Nach dem in Kapitel C.2.c gesagten errechnet sich der Fluß aus

Φ = ∫ v • dA

Für eine Strömung, bei der die Geschwindigkeit über den Querschnitt konstant ist, vereinfacht

sich dies zu

Φ = v • A = vAcosα = v ⊥ A

Abb. 157: Der Fluß durch die Kontrollflächen 1 und 2 ist im

stationären Zustand gleich.

150

Page 152: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

wobei v⊥ die Geschwindigkeitskomponente senkrecht zur Fläche A ist. Der Fluß, der durch ei-

ne bestimmte Kontrollfläche einer Flußröhre fließt, ist unabhängig von der genauen Form der

Kontrollfläche.

γ) Die Kontinuitätsgleichung

Hat man keine Quellen (b.z.w. Teilchenverluste) in einer stationären Strömung, gilt Massener-

haltung, d.h. die gesamte Masse, die pro Sekunde durch eine Fläche strömt, ρΦ = ρv⊥ A ist an

jeder Stelle der Flußröhre die gleiche.

entlang der Flußröhreρv ⊥ A = const

In einer inkompressiblen Flüssigkeit ist ρ = const und daher entlang derAv ⊥ = const

Fluß- röhre. d.h. bei Querschnittsverengungen muß die Geschwindigkeit entsprechend erhöht

sein. Dieser Effekt ist aus dem täglichen Leben bei Menschenströmen durch einen schmalen

Durchlaß bekannt.

δ) Anzahl der Stromlinien

Zur graphischen Veranschaulichung eines Strömungsfeldes zeichnet man eine beliebige aber

endliche Zahl von Stromlinien. Da in einer inkompressiblen stationären Strömung die Zahl der

Stromlinien in einer Flußröhre konstant ist, und ebenso der Fluß Φ konstant ist, ist Φ propor-

tional zur Anzahl der Stromlinien N: Φ ~ N. Die Ausdrucksweise "Zahl der Stromlinien" be-

kommt dadurch einen quantitativen Sinn. Wenn wir "Zahl der Stromlinien" sagen, meinen wir

den Fluß oder eine zum Fluß proportionale Größe. Da außerdem Φ = v⊥ A, ist v⊥ ~ Φ/A. Die

Geschwindigkeit läßt sich aus der Stromliniendichte ablesen. z.B. muß in einer Windströmung

über ein Hausdach die Geschwindigkeit des Windes im Firstbereich größer sein als in der un-

gestörten Strömung. Bei Geschwindigkeiten, die sehr viel kleiner als die Schallgeschwindig-

keit sind, kann die Kompressibilität der Luft im allgemeinen vernachlässigt werden.

Abb. 158: Über dem Hausdach ist die Windgeschwindig-

keit größer als in der ungestörten Strömung.

151

Page 153: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

b) Die Bewegungsgleichung

α) Die Eulerschen Gleichungen

Abb. 159: Kräfte auf ein Volumenelement.

In einer Stromröhre mit veränderlichem Querschnitt soll sich Flüssigkeit unter dem Einfluß

des Druckes in x - Richtung bewegen. Die Kräfte auf ein Flüssigkeitsvolumen der Größe

dV = dAdx (s. Abb. 159) werden betrachtet, wobei äußere Kräfte Fext (z.B. Gravitation) und

Druckkräfte Fp = pdA unterschieden werden. Kräfte, Masse, und potentielle Energie werden

auf ein Einheitsvolumen bezogen.

f = dFdV

, ρ = dmdV

Dann gilt für die Kraft auf das Volumen in eine Richtung x, da die Gesamtkraft die Differenz

der Kräfte auf die Stirnflächen ist,

dFp = pdA - (p + dp)dA = -dAdp= -dA(dp/dx)dx

dFp = −dpdx

dV

fp = −dpdx

Die Gravitationskräfte pro Volumen schreiben sich

fG = dFG

dV= dmg

dV= ρg

Dividiert man die Newtonsche Bewegungsgleichung durch das Volumen, erhält man

ρ •v = −dp

dx+ ρg

152

Page 154: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Im dreidimensionalen Raum gilt für jede Koordinate eine solche Gleichung

ρ •vx = −∂p

dx+ fext,x

ρ •vy = −∂p

∂y + fext,y

ρ •vz = −∂p

∂z + fext,z

Indem man den Vektor einführt, kann man die Bewegungsgleichung vektoriell

∂p

∂x∂p

∂y∂p

∂z

= gradp

schreiben

(15)ρ •v = − gradp + fext

gradp ist ein Vektor, der die Größe und Richtung der Druckkräfte anzeigt. Gleichung (15)

nennt man die Eulerschen Gleichungen für die Bewegung einer nichtviskosen Flüssigkeit.•v

ist die substantielle Ableitung . Wenn die Bahn eines Massenteilchens x(t) ist und die Strö-dvdt

mung eindimensional und stationär verläuft, wird

dv(x)dt

= dvdx

dxdt

= vdvdx

Obgleich alle Zeitableitungen verschwinden (es wurde eine stationäre Strömung vorausge-

setzt), ergibt sich eine Geschwindigkeitsänderung. Diese entsteht dadurch, daß sich Teilchen

im Verlaufe ihrer Bewegung in Gebieten unterschiedlicher Geschwindigkeit aufhalten. Vekto-

riell ergibt sich dieser "konvektive Term" zu (v•∇) v.

c) Der Satz von Bernoulli

α) Herleitung

Durch Integration der Bewegungsgleichung über den Ort erhält man den Energiesatz, durch

Integration der Eulerschen Gleichungen den Satz von Bernoulli. Für eine eindimensionale

Strömung (z.B. entlang einer Flußröhre) gilt

153

Page 155: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 160: Eine Flußröhre ist von Stromlinien ummantelt

(oder vektoriell )dds

12

ρv2 = ρvdv

ds= ρvdv

dtdtds

= ρ •v grad

12

ρv2 = ρ •

v

Wenn die äußeren Kräfte ein Potential haben, ist

(oder vektoriell Fext = -grad Epot)Fext = − dds

Epot

wobei fext = − dds

epot epot =dEpot

dV

Die Druckkräfte haben die Form (oder vektoriell )fp = −dpds

fp = −gradp

Damit lautet die Eulergleichung

dds

12

ρv2 + d

dsp + d

dsepot = 0

Integriert man über die Koordinate entlang der Flußröhre s, erhält man die Bernoulli Glei-

chung (Daniel Bernoulli, 1700 - 1782)

(16)12

ρv2 + p + epot = const

In dieser Gleichung ist der Sonderfall der Hydrostatik enthalten. Indem v = 0 gesetzt wird, er-

gibt sich der Satz von Stevin einschließlich der gleichmäßigen Ausbreitung der von außen auf-

geprägten Drucke. Das früher schon mal behandelte Ausströmen aus einem Loch am Boden

eines Gefäßes erhält man, indem man an den beiden Stellen 1 und 2 (Abb. 161) den Umge-

bungsdruck p1 = p2 = p einsetzt, und das ganze Gefäß als Stromlinie ansieht. Mit v1 = 0, v2 = v,

ρgh1= 0, ρgh2 = ρgh wird Bernoullis Satz dann und12

ρv2 + p = ρgh + p

v = 2gh

154

Page 156: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 161: Die maximale Ausströmgeschwindigkeit ergibt

sich aus dem Satz von Bernoulli.

Abb. 162: Druckverhältnisse in einer Düse

Was wir schon kennen. Für Strömungen, in denen die Potentialunterschiede keine Rolle spie-

len, setzen wir in der Bernoulli Gleichung epot,1 = epot,2 und erhalten

12

ρv12 + p1 = 1

2ρv2

2 + p2

Mit dieser Gleichung ergibt sich in einer Verengung in einer Düse wie in Abb. 163 der gering-

ste Druck in der Strömung. Diese Tatsache erscheint zunächst paradox, da man meint, hier

müßte sich das strömende Medium zusammendrücken und damit auch einen höheren inneren

Druck verursachen. Man nennt dieses Ergebnis daher manchmal auch das hydrodynamische

Paradoxon. Der Demonstrationsversuch zeigt, daß in der Tat in der stärksten Verengung der

Druck am kleinsten ist. Der Physikalische Grund liegt darin, daß in der Düse aufgrund der

Kontinuitätsgleichung die größte Geschwindigkeit vorliegen muß. Diese Erhöhung der Ge-

schwindigkeit bei Hineinfließen in die Verengung muß durch Druckkräfte erzeugt werden.

Das ist nur möglich, wenn der Druck an der Stelle höherer Geschwindigkeit kleiner wird.

β) Anwendungen

Abb. 163: Die Venturidüse

Die Druckerniedrigung in Verengungen wird in der Venturidüse zum Messen von Geschwin-

digkeiten ausgenutzt. In der Wasserstrahlpumpe (oder anderen Treibmittelpumpen) benutzt

man den Unterdruck zum Pumpen, im Bunsenbrenner zum Ansaugen von Luft. Tragflächen

155

Page 157: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 164: Die Wasserstrahlpumpe

Abb. 165: Die Wirkung des Tragflächenprofils

haben ein Profil, das die Luft zum überwiegenden Teil über die Oberseite lenkt. Dadurch wird

oben der Druck kleiner als unten, was zu einem Auftrieb führt: Fauf = (pu - po)A. Aus dem glei-

chen Grund werden Hausdächer durch den Wind nicht nach unten gedrückt, sondern nach

oben gehoben.

Abb. 166: Oben: Anordnung zur Messung des statischen Druckes.

Mitte: Messung des Gesamtdruckes

Unten: :Messung des Staudruckes mit dem Prandtlschen Staurohr.

Den statischen Druck p in der Bernoulligleichung mißt man mit einem mit der Strömung

schwimmenden Manometer. Da die Teilchen keine gerichtete Geschwindigkeit senkrecht zu

den Stromlinien haben, kann man auch ein feststehendes Manometer benutzen, dessen Ein-

trittsöffnung parallel zu einer Stromlinie ausgerichtet ist. Richtet man die Eintrittsfläche senk-

recht zur Stromlinie aus, so wird unmittelbar vor der Öffnung v = 0. Die Strömung ist hier al-

so stark gestört. Für eine Stromröhre, die das Gebiet mit v = 0 durchsetzt, heißt dies, daß auf-

grund der Bernoulli Gleichung p0 = ½ρv2 + p = 0 + p1 entlang der Stromlinie konstant ist. Der

gemessene Druck ist gleich dem Gesamtdruck p0 der ungestörten Strömung. Das Prandtlsche

Staurohr (Abb. 166 unten) mißt die Differenz p0 - p = ½ρv2 und kann daher zur Geschwindig-

keitsmessung verwendet werden.

156

Page 158: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

d) Innere Reibung von Flüssigkeiten

α) Was ist Viskosität?

Bei einer laminaren Strömung üben benachbarte Schichten, die eine unterschiedliche Ge-

schwindigkeit haben, eine Kraft in Strömungsrichtung aus. Wegen der innigen Berührung die-

ser Schichten ist die Reibungskraft im Unterschied zu der Situation bei

Festkörperobereflächen

Abb.167: Die Viskosität rührt von Reibung zwischen be-

nachbarten Flüssigkeitsschichten unterschiedlicher Ge-

schwindigkeit her.

zur Fläche der Schicht proportional. Nach Newton ist sie außerdem der Änderung der Ge-

schwindigkeit senkrecht zur Strömungsrichtung proportional

Fx = ηAdvx

dy

η ist die Viskosität mit der Einheit [η] = Ns/m2 = Pas = kgm-1s-1 = 10 poise. Neben dieser so-

genannten dynamischen Zähigkeit benutzt man auch die kinematische Zähigkeit ν = η/ρ oder

die Fluidität σ = 1/η.

Für ein Gas läßt sich die Viskosität aus einer mikroskopischen Beschreibung, der kinetischen

Theorie, ermitteln. Die Anzahl der zwischen zwei benachbarten Gasschichten überwechseln-

den Teilchen ist nvthA, wenn vth die mittlere thermische Geschwindigkeit der Teilchen ist. Au-

ßerdem muß für die Größe des Impulses, den ein Teilchen mitbringt, m∆v, der Geschwindig-

keitsunterschied zu der Schicht betrachtet werden, aus der der Impuls kommt, d.h., die die

freie Weglänge λ von der betrachteten Schicht entfernt liegt. Entwickelt man die Strömungs-

geschwindigkeit bezüglich der Koordinate x senkrecht zur Strömung und setzt für dx die freie

Weglänge d.h. die Strecke, die ein Teilchen fliegt, ohne gestoßen zu haben ein, so erhält man

∆v = dvdx

λ

Die Kraft auf eine Schicht der Strömung ist dem Impulsübertrag auf diese Schicht pro Zeit

proportional

157

Page 159: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

F ∼ nv thA ⋅ m∆v = nmv thλAdvdx

Man erkennt, daß sich der Newtonsche Ansatz reproduzieren läßt und daß

η ∼ nmv thλ

Man beachte, daß die Viskosität um so größer wird, je seltener Stöße zwischen Teilchen statt-

finden. Außerdem nimmt bei Gasen η mit der Temperatur zu (T ~ vth2). Bei Flüssigkeiten

nimmt η mit steigender Temperatur ab, wie von Schmierölen bekannt ist. Die Temperaturab-

hängigkeit der Viskosität von Wasser ist in Tabelle I dargestellt.

Empirisch läßt sich das Verhalten recht gut mit η(t) = aeb/T beschreiben. Um dies zu verstehen,

stellt man sich die Flüssigkeitsschten als feste Schichten mit gewellter Oberfläche vor, die an-

einander vorbei gleiten. Die thermische Bewegung entspricht einer Schüttelbewegung der

Schichten. Hierdurch bleibt die Berührung auf die Erhebungen der gewellten Oberflächen be-

schränkt. Vornehmer ausgedrückt, müssen die Teilchen zum Platzwechsel einen Potentialwall

überwinden. Aufgrund der Boltzmannverteilung geht dies bei höheren Tempera-nn0

∼ e−∆E/kT

turen leichter.

β) Die Grenzschicht

Strömt Flüssigkeit laminar über eine Wand, so bleibt die wandnächste Schicht an dieser haf-

ten. In einem Bereich in der Nähe der Wand ändert sich die Geschwindigkeit, außerhalb liegt

die ungestörte Strömung vor. Der Bereich, in dem sich v ändert, heißt die laminare Grenz-

schicht. In ihr treten viskose Kräfte auf. Die Dicke läßt sich durch folgenden Gedanken ab-

schätzen: Wenn man eine feste Fläche parallel zu seiner Oberfläche um eine Distanz l durch

die zähe Flüssigkeit zieht, leistet man die Arbeit

158

Tab. 1: Die Viskosität von Wasser in Ab-

hängigkeit von der Temperatur

Page 160: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 168: Zur Definition der Schichtdicke

WR = FRl = ηAdvdy

l

Geht man von einer linearen Geschwindigkeitsänderung aus und nennt die Halbwertsbreite

des Geschwindigkeitsprofils die Schichtdicke D, so ist und die Reibungsarbeitdvdy

= v0

2D

WR = ηAv0

2Dl

Nimmt man an, daß sich die geleistete Arbeit ganz in der kinetischen Energie der beschleunig-

ten Flüssigkeit wiederfindet, so ist

Ekin = 12

mv02 = 1

2ρADv0

2 = ηAv0

2Dl

Dies ist eine Bestimmungsgleichung für die Schichtdicke.

(17)D = ηlv0ρ

Bei kleiner Viskosität ist die Schichtdicke klein, daher ist dv/dx groß, so daß die Reibungs-

kräfte trotzdem groß sein können.

γ) Die stationäre Rohrströmung

i. Das Geschwindigkeitsprofil

Nach dem Ansatz von Newton sind die Reibungskräfte auf eine zylindrische Flüssigkeits-

schicht vom Radius r (Abb. 169)

Abb. 169: Die Flächen konstanter Geschwindigkeit sind bei

der Rohrströmung Zylinderflächen.

159

Page 161: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Fz = η2πrldvdr

Die Kraft wird durch den Druck auf die Zylinderfläche mit dem Radius r aufgebracht

Fz = Apπr2

Daher gilt

dvdr

=∆p2lη

r

Das positive Vorzeichen rührt daher, daß die Flüssigkeit bei in positiver x - Richtung abneh-

menden Druck, eine in radialer Richtung abnehmende Geschwindigkeit erhält. Durch Integra-

tion ergibt sich

v(r) =∆p4lη

r2 + C

Die Integrationskonstante C bestimmt sich aus der Bedingung v(R) = 0.

C = −∆p4lη

R2

und damit v(r) =∆p4lη(r2 − R2) = −

∆p4ηl

(R2 − r2)

Da r < R ergibt sich bei in positiver x - Richtung abnehmendem Druck eine Geschwindigkeit

in x - Richtung. Die Geschwindigkeit besitzt in Abhängigkeit von der radialen Position ein

Parabelprofil (Abb. 170). Die äußere Kraft ∆pπR2 kompensiert die Reibungskräfte. Sie ist pro-

portional zu v(0).

Abb. 170: Das Geschwindigkeitsprofil ist parabelförmig.

ii. Die Durchflußmenge

160

Page 162: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Durchflußmenge (der Volumenstrom) durch einen schmalen Ring der Fläche

dA = 2πrdr

ist Φ = dVdt

=vdA = ∆p2ηl

π(R2r − r3)dr

Abb. 171: Das Flächenelement, über das hier integriert

wird, ist ein Ring der Breite dr.

Durch Integration erhält man das Hagen - Poiseuillesche Gesetz.

dVdt

=∆p π8ηl

R2 R2

2− R4

4

(18)dVdt

= ∆p πR4

8ηl

Das Hagen - Poiseuille Gesetz ist das Ohmsche Gesetz für Strömungen. ist der Strö-8ηlπ 4

mungswiderstand. Das Gesetz kann zur Bestimmung von η benutzt werden. Der Widerstand

wächst bei kleiner werdendem Radius mit R4.. Dies hat katastrophale Auswirkungen bei der

Arterienverkalkung im Alter.

δ) Das Stokessche Gesetz

Abb. 172: Stromlinienbild einer umströmten Kugel.

Bei der laminaren Umströmung einer Kugel rührt der Widerstand ebenfalls von der Reibung

zwischen benachbarten Flüssigkeitsschichten her und nicht von einer direkten Impulsübertra-

gung auf die Stirnflächen der Kugel. Ohne Reibung wären die Druckkräfte aufgrund des Sat-

zes von Bernoulli bei symmetrischem Stromlinienbild symmetrisch. Die Teilchen gewinnen

durch ein Druckgefälle von A nach B (Abb. 172) kinetische Energie, die es ihnen erlaubt,

161

Page 163: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

gegen das Druckgefälle von B nach C anzulaufen. Die resultierende Kraft ist Null. Mit Rei-

bung ergibt sich nach Stokes

F = 6πηrv

ε) Die Reynoldszahl

Physikalische Probleme, die theoretisch nur unzureichend zu beschreiben sind, behandelt man

häufig, indem man Unteresuchungen an Modellen macht und die Ergebnisse auf das ursprüng-

liche Problem überträgt. Dabei wird vorausgesetzt, daß sich das Modell und das ursprüngliche

System ähnlich verhalten. Der Zusammenhang zwischen analogen Größen im Modell und im

Original wird durch Skalierungsgesetze beschrieben.

Abb. 173: Geometrisch ähnliche

Figuren.

Für geometrische Ähnlichkeit fordert man, daß das Verhältnis analoger Längen gleich bleibt.

In dem Boot von Abb. 173 z.B.

l1

l2= h1

h2

Bei Ähnlichkeit bezüglich eines physikalischen Problems muß das Verhältnis anderer relevan-

ter physikalischer Größen konstant bleiben. Ein solches Verhältnis ist eine dimensionslose

Zahl. Bei laminaren Strömungsproblemen muß man fordern, daß außer der geometrischen

Ähnlichkeit auch Ähnlichkeit bezüglich der Dicke der Grenzschicht besteht. Nach Gleichung

(17):

l1

l2= D1

D2=

η1l1v1ρ1

η2l2v2ρ2

Daraus folgt, daß

v1ρ1l1

η 1=

v2ρ2l2

η 2

162

Page 164: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die dimensionslose Zahl Re =vρlη

muß im ursprünglichen Problem und im Modell gleich groß sein, wenn die laminare viskose

Strömung korrekt modelliert werden soll. Die Reynoldszahl kann als Verhältnis der Trägheit-

seinflüsse ½ρv2 und der Reibungseinflüsse ηv/l aufgefaßt werden. Eine föllig reibungsfreie la-

minare Strömung ist instabil, da in einer zufälligen lokalen Verengung der Strömung nach

Bernoullli der Druck kleiner als in der Umgebung wird, so daß sich die Strömung weiter

Abb. 174: Eine kleine Störung in einer reibungsfreien Strö-

mung verstärkt sich auf Grund des Bernoulli Effektes.

einschnürt. Dem wirkt die Viskosität entgegen, die Geschwindigkeitsunterschiede ausgleicht.

Wenn die viskosen Kräfte klein sind, entsteht Turbulenz, d.h. ein Gemisch von Wirbeln ver-

schiedener Größe, wodurch der Reibungswiderstand erhöht wird. Der Umschlag von lamina-

rer in turbulente Strömung erfolgt für eine gegebene Anordnung bei einer bestimmten

Reynoldszahl. Für Abschätzungen ist es manchmal gut, sich zu merken, daß der Umschlag bei

Re = 1000 erfolgt. Der genaue Wert der Reynoldszahl hängt natürlich davon ab, auf welche

charakteristische Länge man sie bezieht. Nimmt man die typische Größe von Wirbeln, erfolgt

der Umschlag bei Re ≈ 1.

Neben der Reynoldszahl gibt es in der Hydrodynamik eine ganze Reihe von dimensionslosen

Zahlen: Machzahl, Prandtlzahl, Pitotzahl, Picletzahl, für Probleme der Stoßwellenbildung, des

Wärmeübergangs an Oberflächen u.s.w. Oft führt die Forderung nach Einhaltung mehrerer

Ähnlichkeitsbedingungen zu Widersprüchen, so daß ein Modell nur gewisse Aspekte eines

physikalischen Problems simulieren kann.

163

Page 165: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL F

Mechanik starrer Körper

1. Das Modell des starren Körpers

Der starre Körper ist ein Vielteilchensystem mit konstanten Abständen zwischen den Teil-

chen. In Realität gibt es keine volkommen starre Körper. Nach der Relativitätstheorie sind sie

sogar prinzipiell unmöglich, da man sonst Signale mit einer größeren Geschwindigkeit als der

Lichtgeschwindigkeit übertragen könnte. Für die Mechanik von Festkörpern ist der starre Kör-

per ein gutes Modell, solange man sich nicht für elastische Verformungen, z.B. Wellen

interessiert.

Die Bewegung ist wie bei allen Vielteilchensystemen als Überlagerung einer Translation des

Schwerpunktes und einer Rotation um den Schwerpunkt zu beschreiben. Die Bewegungsglei-

chung zur Translation ist identisch mit der eines Massenpunktes, der sich am Ort des Schwer-

punktes aufhält

(1)Fext = mges•vs

vs ist die Schwerpunktsgeschwindigkeit mit

rs = 1mges ∫ rdm mges = ∫ dm

Die Rotation wird beschrieben durch

, (2)M = dLdt

wobei M das gesamte äußere Drehmoment und L der Drehimpuls ist.

2. Statik

In der Statik bewegt sich der Körper nicht. Aus den Bewegungsgleichungen (1) und (2) folgt

dann mit dvs/dt = 0 und dL/dt = 0

(3)Σ M i,ext = 0

164

Harald Schüler
Page 166: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 175: Zur Definition des Drehmomentes

und (4)Σ F i,ext = 0

Gleichung (3) ist das Hebelgesetz, wobei . Für die Beträge heißt dies, M = r × F

M = rFsinα = lF.

l = rsinα heißt der Kraftarm. Er ist nach Abb. 175 das Lot vom Drehpunkt auf die Kraftrich-

tung. Der Drehpunkt kann bei statischen Problemen beliebig gewählt werden. Man wählt

zweckmäßigerweise einen Angriffspunkt einer der Kräfte als Drehpunkt. Dadurch verschwin-

det das Drehmoment dieser Kraft.

Abb. 176: Die Drehrichtung der Garnrolle hängt von der

Richtung des Drehmomentes bezüglich des Auflagepunktes

ab.

Als Beispiel betrachten wir die Garnrolle in Abb. 176. Bei Fadenstellung (2) bewegt sie sich

nach rechts, bei Fadenstellung (1) nach links. Dies läßt sich sofort einsehen, wenn man den

Berührungspunkt A als Drehpunkt betrachtet. Nimmt man statt dessen den Mittelpunkt der

Rolle, muß man das Drehmoment durch die Reibungskraft an der Auflagestelle mit berück-

sichtigen. Zur vollständigen Lösung eines statischen Problems sind Gleichung (3) und (4)

erforderlich.

Beispiele:

In Abb. 177 ist nach den Auflagekräften F1 und F2 gefragt.

Lösung:

Der Drehpunkt sei die linke Auflage. Die Gleichungen für Gleichgewicht lauten dann

165

Page 167: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 177: Ein einfaches Problem der Statik: Wie

groß sind die Auflagekräfte?

: F1 + F2 = FGΣ F i = 0

: FGx = F1lΣ M i = 0

Man erhält zwei Gleichungen für die Unbekannten F1 und F2

F1 = FGxl

F2 = FG 1 − x

l

Beispiel: Die angelehnte Leiter (Abb. 178).

Abb. 178: Wann fängt die angelehnte Leiter an zu

rutschen?

Man kann wieder nach den Auflagekräften fragen, außerdem nach dem Winkel α, bei dem die

Leiter anfängt zu rutschen. Die Grundgleichungen lauten:

: FG = F1 + F4Σ F = 0

F3 = F2

Σ M = 0 FGl2

cos α = Fsl cos α + F2l sin α

Bei dem Grenzwinkel, bei dem die Leiter zu rutschen anfängt, sind die Reaktioskräfte gerade

gleich den Reibungskräften, die wegem Ft = µFN gegeben sind durch

166

Page 168: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

F3 = F1µ1 F4 = F2µ2

Man erhält also fünf Gleichungen für die vier unbekannten Kräfte und den Grenzwinkel α.

Abb. 179: Eine Kugel in einer Mulde ist im

stabilen, auf einer Kuppe im labilen und auf

einer Ebene im indifferenten Gleichgewicht.

Abb. 180: Die Kiste ist im stabilen Gleich-

gewicht, obgleich sich der Schwerpunkt

oberhalb der unterstützenden Fläche

Abb. 181: Zwei Fälle von labilem Gleich-

gewicht

Ob ein System im Gleichgewicht bleibt, muß durch eine Stabilitätsbetrachtung geklärt wer-

den. Dazu entfernt man das System etwas aus der Gleichgewichtslage und sieht zu, ob es in

die Gleichgewichtslage zurückkehrt. Wenn ja, ist das System stabil, wenn die Abweichung

vom Gleichgewicht wächst, ist das System labil, sonst indifferent. Die Abbildungen 179- 181

zeigen einige Situationen zur Illustrierung der verschiedenen Gleichgewichtsbegriffe. In Abb.

181 b handelt es sich um ein dynamisches System, etwa ein in eine Drehbank eingespanntes

Kabel. Liegt dieses in der Achse des Drehfutters, befindet es sich im Gleichgewicht. Die

kleinste Ausbeulung führt zu Zentrifugalkräften, die bestrebt sind, die Ausbeulung zu

vergrößern.

3.Grundbegriffe zur Beschreibung einer Rotation

a) Das Trägheitsmoment

Bei der Rotation eines starren Körpers führen alle Teilchen eine Kreisbewegung mit der glei-

chen Winkelgeschwindigkeit ω aus. ω zeigt in Richtung der momentanen Drehachse, für die

wir im folgenden die z - Achse wählen. ω kann sich im Laufe der Bewegung relativ zum Kör-

per oder im Raum ändern. Versuche mit dem Gyroskop und einem unsymmetrischen Kreisel

demonstrieren beide Effekte. Im folgenden wird vorrübergehend eine körper- und raumfeste

Achse angenommen.

167

Page 169: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Zur Berechnung der dynamischen Größen wird der Körper in Massenelemente ∆mi unterteilt.

Damit können die in Kapitel C.4 eingeführten Größen für die Drehbewegung eines Massen-

punktes benutzt werden. Wenn Mi das Drehmoment auf das ite Massenelement ist, schreibt

sich die Bewegungsgleichung

M1 + M2 + ... = ∆m1r12 •ω + ∆m2r2

2 •ω +..

Da alle Massenelemente mit der gleichen Winkelgeschwindigkeit rotieren, kann man diese

ausklammern und erhält

(5)Mges = J•ω

Hierin ist (6)J =∆m→0lim Σ ri

2∆mi = ∫ r2dm

das Trägheitsmoment bezüglich der betrachteten Achse. ri ist der Abstand des Massenelemen-

tes ∆mi von der Achse. Die Rotationsenergie ergibt sich zu

Erot = Σ 12

v i2∆mi = 1

2 Σ ri

2∆mi ω2

(7)Erot = 12

Jω2

b) Der Drehimpulsvektor

Abb.182: Hier zeigt der Drehimpulsvektor nicht in Rich-

tung der Drehachse

Für einen Massenpunkt gilt . L zeigt also im allgemeinen nicht in Richtung derL = ms × v

Drehachse (s. Abb. 182). Die Komponente des Drehimpulses in Richtung der Drehachse ist

Lz = L sin α = msvsin α = mr2ω

168

Page 170: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Für einen kontinuierlichen Körper gilt daher

Lz = ω∫ r2dm = J(z)ω

Abb. 183: Bei axialsymmetrischen Körpern zeigt der

Drehimpuls entlang der Achse.

Ist der Körper symmetrisch, d.h. gehört zu jedem Massenelement ein zweites, das an dem zur

Achse gespiegelten Ort des Massenelementes liegt (Abb. 183), so sind L und ω parallel und es

gilt L = J(z)ω. Alle Achsen, für die dies gilt, heißen Hauptachsen. In der theoretischen Mecha-

nik zeigt man, daß es für jeden Körper (also auch unsymmetrische Körper) drei Hauptachsen

gibt, die senkrecht aufeinander stehen. Die Trägheitsmomente der Hauptachsen heißen Haupt-

trägheitsmomente. Die Trägheitsmomente für alle anderen Richtungen werden durch ein Ellip-

soid beschrieben, dessen Hauptachsen die Hauptträgheitsachsen sind (Abb. 184).

Abb. 184: Das Trägheitsmoment für die Achse a ergibt

sich aus dem Trägheitsellipsoid.

Beispiele:

Abb. 185: Der Zylinder hat eine Symmetrieachse.

Das Trägheitsellipsoid ist ein Rotationsellipsoid. Der

Würfel hat drei Symmetrieachsen. Das Trägheitsel-

lipsoid ist eine Kugel

Bei einer Kugel bilden drei beliebige senkrecht zueinander stehende Achsen Hauptträgheits-

achsen. Das Trägheitsellipsoid ist eine Kugel.

169

Page 171: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Bei einem Zylinder ist die Figurenachse eine Hauptträgheitsachse. Allgemein ist eine Symme-

trieachse eines Körpers eine Hauptträgheitsachse, wie aus der Definition der Hauptträgheits-

achse zu ersehen ist. Die andern beiden Achsen stehen senkrecht zu dieser Achse und senk-

recht zueinander, aber sonst beliebig.

Abb. 186: Modell der Unwucht

Bei der Rotation eines Körpers um eine Achse, die nicht Hauptachse ist, werden aufgrund der

Zentrifugalkräfte zusätzliche Kräfte auf die Lager der Achse ausgeübt. (Ohne diese müßte L

nach dem Drehimpulssatz raumfest bleiben). Der Körper ist nicht ausgewuchtet. Der Drehim-

puls ergibt sich für

ω = ωxex + ωyey + ωzez

L = J(x)ωxex + J(y)ωyey + J(z)ωzez

Die Bewegungsgleichung für die Rotation (Gleichung (5)) schreibt sich vektoriell

(8)M =•L

Man beachte: Es gibt in der Natur einen kleinsten Betrag für den Drehimpuls

Lmin = 12

h2π

! = h/2π = 10-34kgm2/s ist das Plancksche Wirkungsquantum.

c) Berechnung des Trägheitsmomentes

α) Das Integral zur Berechnung des Trägheitsmomentes

Für einen homogenen Körper lohnt es sich, die konstante Dichte ρ einzuführen.

∆m = ρ∆V

170

Page 172: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 187: Bei homogenen Körpern berechnet man das

Trägheitsmoment über ein Volumenintegral.

Das Trägheitsmoment wird dann eine geometrische Größe:

J = ρ ∫ r2dm

Die Berechnung des Integrals gestaltet sich im allgemeinen als schwierig. Ein wichtiger erster

Schritt besteht daher darin, ein geeignetes Koordinatensystem auszuwählen. Für kartesische

Koordinaten, in denen die z - Achse die Drehachse ist, hat das Integral die explizite Form

J = ρ ∫ ∫ ∫ (x2 + y2)dxdydz

Zur Lösung des Integrals wird wie bei der Berechnung des Schwerpunktes nacheinander eine

der Ortsvariablen variiert, die übrigen konstant gelassen. Dabei berücksichtigt man, daß die

Integrationsgrenzen, die durch die Berandung des Körpers gegeben sind, von den konstant ge-

lassenen Variablen abhängen können. Bei zusammengesetzten Körpern kann man die Träg-

heitsmomente der Einzelteile addieren. Man beachte, daß die Größe des Trägheitsmomentes

von der Lage der Achse abhängt. Die gesamte Information über alle Trägheitsmomente eines

Körpers steckt in den Hauptträgheitsmomenten und dem Abstand der Drehachse vom

Schwerpunkt.

β) Beispiele

i. Dünnwandiges Rohr, die Drehachse ist die Figurenachse

Abb. 188: Das Trägheitsmoment eines dünnwan-

digen Rohres ergibt sich ohne Rechnung.

Teile das Rohr in beliebige Massenelemente ∆m. Alle haben den gleichen Abstand R zur

Drehachse.

171

Page 173: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

J =∆ →lim Σ R2∫ dm = R2∫ dm = R2mges

ii. Kreisscheibe, Drehachse ist die Figurenachse

Abb. 189 und 190: Das Volumenelement bei

der Berechnung des Trägheitsmomentes einer

Kreisscheibe bez. der Figurenachse.

Man wähle Zylinderkoordinaten, d.h. man unterteile die Scheibe durch Schnitte r = const,

ϕ = const und z = const, im Abstand ∆r, ∆ϕ und ∆z. Das Volumenelement hat die Größe

∆V = ∆r∆z(r∆ϕ)

Das zu lösende Integral wird

J = ρ ∫ ∫ ∫ r3drdϕdz

Im ersten Schritt wird über z integriert, wobei r und ϕ konstant bleiben.

Abb.191: Das Volumen nach der Integration über z.

J = ρ ∫ ∫ ∫0

Ddz

r3drdϕ = ρD ∫ ∫ r3drdϕ

D ist die Dicke der Scheibe. Im zweiten Schritt wird über ϕ integriert, wobei r konstant gelas-

sen wird.

Abb. 192: Das Volumen nach der Integration über

ϕ. Bis hier her kommt man ohne Rechnung aus.

172

Page 174: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

J = ρD ∫ ∫0

2πdϕ

r3dr = 2πρD ∫0

Rr3dr

Dieses Zwischenergebnis hätte man auch direkt hinschreiben können, wenn man eine ringför-

mige Unterteilung der ursprünglichen Scheibe vorgenommen hätte. Das Trägheitsmoment ei-

nes Ringes ist dann dJ = ρ2πrdrDr2. Im dritten Schritt wird über r integriert.

J = πρDR4

2

An dieser Stelle ist es von Vorteil, die Gesamtmasse des Körpers einzuführen: mges = ρπR2D

J = 12

mgesR2

iii. Dünne Kreisscheibe, Achse liegt in der Ebene der Scheibe.

Abb. 193: Jetzt liegt die Drehachse in der Kreisscheibe.

Angpaßte Koordinaten wären Polarkoordinaten. Zu Übungszwecken wird mit kartesischen

Koordinaten gerechnet. Die y - Achse sei die Drehachse. Das Volumenelement ist

dV = dxdydz. Der Abstand zwischen der Drehachse und dem Volumenelement ist x, die Dicke

der Scheibe wieder D.

Die Integration über z ist trivial. Die Integration über y erstreckt sich von yu bis yo, welche

Funktionen von x sind, die die Form der Berandung beschreiben

J(y) = ρ ∫ ∫ ∫ x2dxdydz = ρD ∫ ∫yu

yo

dy x2dx = ρD ∫ (yo − yu)x2dx

Die Funktionen der Berandung folgen aus der Kreisgleichung

173

Page 175: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

yo = R2 − x2 yu = − R2 − x2

Das letzte Integral hat dann die Form

J(y) = 2ρD ∫−R

+Rx2 R2 − x2dx = 2ρDR3∫−R

+R x2

R21 − x2

R2dx

Zur weiteren Vereinfachung wird substituiert: xR

= sin ϕ

wobei die Grenzen geändert werden: x = -R → ϕ = − π/2

x = +R → ϕ = + π/2

und dx = Rcosϕdϕ

Bei dieser Substition wird eigentlich nichts anderes gemacht, als die Koordinate x durch die

besser angepaßte Koordinate ϕ zu ersetzen. Hätte man gleich am Anfang die Koordinaten r

und ϕ eingeführt, hätte man sich diesen Rechenschritt gespart. Das Integral hat nun die Form

I = R ∫−π

+π/2sin2ϕ cos2ϕdϕ

Die Quadrate wird man los, indem man zum doppelten Winkel übergeht

2sinϕcosϕ = sin2ϕ

sin22ϕ = ½(1-cos4ϕ)

I = 18

R ∫−π/2

+π/2(1 − cos 4ϕ)dϕ = π

8R

J(y) = π4

ρDR4 = 14

mgesR2

Das gleiche Ergebnis kann ohne viel Rechnerei aus einer Symmetriebetrachtung gewonnen

werden. Für flächige Körper gilt

J(z) = ∫ (x2 + y2)dm = J(x) + J(y)

174

Page 176: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ist der Körper wie im Fall der Kreisscheibe symmetrisch bezüglich Vertauschung von x und y,

gilt J(x) =J(y), daher J(z) = 2J(y). Da J(z) = ½mgesR2, folgt sofort .J(y) = 1

4mgesR2

γ) Der Satz von Steiner

Das Trägheitsmoment bezüglich einer Achse z*, die nicht durch den Schwerpunkt geht, kann

auf das Trägheitsmoment bezüglich einer Achse z, die durch den Schwerpunkt geht und zu z*

parallel ist, zurückgeführt werden (s. Abb. 194).

Abb. 194: Transformation zur Ableitung des Sat-

zes von Steiner.

J ∗ = ∫ r ∗ 2dm = ∫ (r − a)2dm = ∫ (r2 − 2a • r + a2)dm = ∫ r2dm + ∫ a2dm − 2a • ∫ rdm

Da r vom Schwerpunkt aus gerechnet wird, ist . Daraus folgt der Satz vonrs = ∫ rdm = 0

Steiner

(9)J ∗ = Js + a2m

δ) Trägheitsmomente einiger Körper. Abb. 195 - 198:

J = 12

mR2

J = m

R2

4+ L2

12

J = m

l2 + b2

12

J = 25

mR2

175

Page 177: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

4. Beispiele zur Bewegung starrer Körper

Im folgenden werden Bewegungen betrachtet, bei denen die Drehung eines Körpers eine Rolle

spielt. Im wesentlichen handelt es sich um Anwendungen der Gleichung (8). Einige der Bei-

spiele wurden schon früher einmal behandelt, wobei dann der Effekt der Drehung vernachläs-

sigt wurde. Z.B. wurden Versuche an der schiefen Ebene immer mit rollenden Körpern durch-

geführt, aber es wurde argumentiert, als ob die Körper reibungsfrei rutschten. Wir werden

jetzt sehen, wie die Überlegungen modifiziert werden müssen und in wieweit die früheren Be-

trachtungen berechtigt waren.

a) Achse ist raum - und körperfest, das äußere Drehmoment ist konstant

Abb. 199: Die Atwoodsche Fallmaschine. Die Trägheit der

Rolle wird mit berücksichtigt.

Als Beispiel wird die Atwoodsche Fallmaschine mit Berücksichtigung des Trägheitsmomentes

der Rolle behandelt (Abb. 199). Man muß bedenken, daß die Kräfte, die der Faden auf die

Rolle ausübt, nicht einfach die Schwerkräfte der Massen m1g und m2g sind, wie man sich klar

machen kann, wenn man in Gedanken die Fäden oberhalb der Masse durchschneidet. Diese

Kräfte werden also als Unbekannte F1 und F2 angesetzt.

Drehung der Rolle (10)(F1 − F2)R = J•ω

Translation von m1 und m2

m1g − F1 = m1•v1 = m1R

•ωm2g − F2 = −m2R

•ω

Diese Gleichungen werden nach F1 und F2 aufgelöst und in Gleichung (10) eingesetzt

m1g − m1R

•ω −m2g − m2R•ω R = J

•ω

176

Page 178: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(m1 − m2)g =

JR

+ (m1 + m2)R

•ω

•ω = α0 =(m1 − m2)gR

J + (m1 + m2)R2

Durch Integration erhält man wie bei der geradlinigen Bewegung unter konstanter Kraft

ω = α0t + ω0

ϕ = ½α0t2 + ω0t + ϕ0

Diskussion: Für J << (m1 + m2)R2 wird . Die antrei-(m1 + m2)R

•ω=(m1 + m2)•v = (m1 − m2)g

bende Kraft ist (m1 - m2)g, die träge Masse m1 + m2. Für J >> (m1 + m2)R2 wird

Die Trägheit des Systems ist nur durch die Scheibe bestimmt. Das äußere(m1 − m2)gR = J•ω .

Drehmoment ist (m1 - m2)gR. (m1 + m2)R2 ist das Trägheitsmoment der an den Fäden hängen-

den Massen. Die Kraft auf das Lager kann aus der Kräftebilanz berechnet werden:

F1 + F2 + msg = FL

Hierin ist ms die Masse der Scheibe und FL die Kraft auf das Lager.

b) Achse körperfest, Hauptträgheitsachse, wird bei der Bewegung parallel verschoben

Als Beispiel wird die Walze auf einer schiefen Ebene betrachtet (Abb. 200). Hier darf die tan-

gentiale Reaktionskraft F1 nicht vergessen werden. Das Vorhandensein einer solchen Kraft er-

kennt man, wenn man sich den Grenzfall verschwindender Reibung vorstellt. Die Bewegungs-

gleichung setzt sich wieder aus einem Anteil für Translation und einem für Rotation

zusammen

Abb. 200: Beim Herabrollen spielt das Trägheitsmoment

eine Rolle.

Translation: m•v = Ft − F1

Rotation F1R = J•ω ==J

•vR

177

Page 179: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Variablen v und ω hängen über die Abrollbedingung voneinander ab. Im Schwerpunktsy-

stem der Rolle ist die Geschwindigkeit der Unterlage v = ωR. Daher ist im Laborsystem v die

Geschwindigkeit der Rolle. Elimination von F1 ergibt

m•v = mgsinα − J

R2

•v

1 + J

mR2

•v = gsinα

Da J = ½mR2 ist J/(mR2) = 1/2. Die Bewegung ist von der Masse und vom Radius unabhängig.

Sie läuft so ab, als ob g durch ersetzt wäre. Bei gleicher Masse aber ungleichmä-g

1 + J2

= 23

g

ßiger Massenverteilung wird eine Walze, die ein größeres Trägheitsmoment besitzt, zu jedem

Zeitpunkt langsamer laufen. Diese Tatsache kann man aus dem Energiesatz direkt ablesen.

Die potentielle Energie wird im Anfangspunkt Null gesetzt. Zählt man die vertikale Koordina-

te y nach unten positiv, heißt der Energiesatz

−ymg + 12

mv2 + 12

Jω2 = 0

12

m + J

R2 v2 = mgy

Man erkennt, daß anstelle der Masse bei der reinen Translation die Größe auftritt, Die-m + J2

se Größe kann man als effektive träge Masse auffassen.

c) Achse körperfest, Hauptträgheitsachse, kein äußeres Drehmoment

Man erreicht eine solche Situation durch eine Cardanische Aufhängung (Abb. 201).

Da und , und nach Vorraussetzung M = 0, bleibt L konstant. L und damit ωL = J(z)ω M =•L

behalten die Richtung bei. Diese Aufhängung des Kreisels wird zur Richtungskontrolle oder

-anzeige z.B. im künstlichen Horizont benutzt.

Abb. 201: Cardanische Aufhängung eines Kreisels

178

Page 180: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

d) Körperfeste Achse,die eine Hauptträgheitsachse ist; Drehmoment senkrecht zu L

Abb. 202: Die Reaktion eines Kreisels auf eine äußere Kraft

Auf den Kreisel in Abb. 202 soll die Kraft F wirken. M und damit wegen die ÄnderungM =•L

des Drehimpulses ∆L stehen senkrecht auf F. Der Kreisel weicht seitlich aus, da sich die

Drehachse auf den neuen Wert L + ∆L einstellt. Wird das Drehmoment durch das eigene Ge-

wicht des Kreisels erzeugt (Abb. 203), ergibt sich ein dL, das immer senkrecht auf dem mo-

mentanen L steht. Die Kreiselachse umläuft einen Kegelmantel. Man sagt, er vollführt eine

Präzessionsbewegung. Die Präzessionsfrequenz ωp ergibt sich aus

dϑ = dLL sin α

dϑdt

= ωp = dLdt

1L sin α

= ML sin α

Abb. 203: Die Präzession des Kreisels

Man kann diesen Zusammenhang auch vektoriell schreiben

M = ωωp × L

Umgekehrt übt ein Kreisel, der zu einer Präzessionsbewegung gezwungen wird, z.B. die Kur-

belwelle im Motor bei Kurvenfahrt, ein Drehmoment auf die Lager aus

MK = −M = L × ωωp

179

Page 181: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 204: Ein oberhalb des Schwerpunktes unterstützter

Kreisel präzediert in umgekehrter Richtung

Dies bewirkt in kleinen Motorflugzeugen eine zusätzliche Auf - oder Abwärtsbewegung bei

Kurvenfahrt. Unterstützt man einen Kreisel oberhalb des Schwerpunktes, oder kehrt man die

Drehrichtung um, so kehrt sich die Richtung der Präzession um. Wegen der Abweichung der

Erde von der Kugelgestalt übt die Anziehung der Sonne auf diese ein Drehmoment aus. Dies

führt zu einer Präzession der Erdachse mit einer Umlaufperiode von 26000 Jahren.

Eine andere Erklärung für die Präzession

Abb. 205: Die Präzession kann man auch mit der Corio-

liskraft erklären.

Um die Präzession des Kreisels von einer anderen Seite zu beleuchten, betrachten wir die

Kräfte, die ein Kreisel auf seine Lager ausübt, wenn er eine Präzession beschreibt. Statt des

vollen Kreisels betrachten wir einen Ring. Da sich jeder axialsymmetrische Kreisel aus Rin-

gen zusammensetzen läßt, können wir unsere Ergebnisse auf einen beliebigen axialsymmetri-

schen Kreisel erweitern. Zur Vereinfachung des Problems wird angenommen, die Rotati-

onsachse L steht senkrecht auf der Präzessionsachse ωp. Die Situation ist die gleiche wie bei

einem Zug, der längs eines Meridians um die Erde fährt. Durch die Corioliskraft erfährt er ei-

ne Ablenkung senkrecht zur Fahrtrichtung, die auf der Nordhalbkugel nach rechts, auf der

Südhalbkugel nach links zeigt. Dies bewirkt also ein Drehmoment das senkrecht zu ωp und L

steht, wie wir es auch aus den Kreiselgesetzen gefolgert haben.

180

Page 182: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

e) Anwendungen der Kreiselgesetze

α) Wendeanzeiger

Abb. 206: Der Wendeanzeiger.

Die Aufhängung ist in Abb. 206 angedeutet. Da die Drehachse versucht, sich in die neue

Richtung L + ∆L zu orientieren, werden Kurven, d.h. Drehungen um die vertikale Achse

angezeigt.

β) Der Kreiselkompaß

Abb. 207: Der Kreisel im Kreiselkompaß erhält ein Drehmo-

ment nach Norden.

Hier ist der Kreisel so gelagert, daß die Achse immer horizontal, also parallel zur Erdoberflä-

che liegt. Durch die Erdrotation entsteht ein Drehmoment auf die Lager, das den Kreisel in die

Nord - Südrichtung auszurichten versucht. Zur Vermeidung von Schwingungen muß die Be-

wegung um die vertikale Achse gedämpft werden.

γ) Spielkreisel

Der klassische Spielkreisel (Peitschen Top) ist in Abb. 208 dargestellt. Wir nehmen an, er

stellt sich durch eine Störung schräg. Wegen des endlichen Krümmungsradius an der Spitze

rollt.

rollt Abb. 208: Der klassische Spielzeugkreisel richtet sich auf

diese am Boden ab. Da der Schwerpunkt ungefähr im Raum stehen bleibt und oberhalb des

Krümmungsmittelpunktes der Kugelfläche der Spitze liegt, zeigt in eine Richtung, dieL × ωωp

181

Page 183: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

das Aufrichten des Kreisels bewirkt (Abb. 208). Der Umkehrkreisel (Abb.209) rollt umge-

kehrt auf dem Boden ab, da sei Schwerpunkt unterhalb vom Krümmungsmittelpunkt liegt.

Abb. 209: Der Umkehrkreisel

δ) Dynamische Stabilisierung des Fahrrads

Das Fahrrad erfährt durch die Kreiselgesetze eine gewisse Stabilisierung. Wenn es umzukip-

pen droht (Abb. 210), entsteht ein Drehmoment M, das eine Lenkung in Kipprichtung be-

wirkt. Dieser Lenkeinschlag wirkt dem Kippen entgegen.

Abb. 210: Die Kreiselkräfte auf die Räder bewirken

beim Fahrrad eine gewisse Stabilisierung

182

Page 184: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL G

Schwingungen

1. Allgemeines

Schwingungen sind Vorgänge, die sich wiederholen. Sehr viele physikalische Systeme können

Schwingungen ausführen. Neben den bekannten mechanischen Systemen wie Pendel, Schal-

lerzeuger und Wassersäulen schwingen Moleküle, elektronische Schaltungen, Sterne (z.B. δ

Cepheiden) möglicherweise das ganze Weltall. Oft ist die Schwingung eines Signals mit der

Rotation von Quelle oder Empfänger verbunden wie bei der Helligkeit des Tageslichts oder

bei Pulsaren, Sternen, die von diskreten Stellen ihrer Oberfläche Radiosignale aussenden.

Schwingungen werden für die Zeitmarkierung z.B. in Uhren und Oszillographen, in Radiosen-

dern, Musikinstrumenten und vielen anderen Systemen angewendet. Sie bilden die Grundele-

mente von Wellen. Die Schwingungslehre bildet daher die Grundlage der Lichttheorie.

Eine streng periodische Schwingung wiederholt sich nach der Periodendauer T:

f(t) = f(t + T)

2. Die harmonische Schwingung

a) Darstellung

Die einfachste periodische Schwingung ist die harmonische, in der sich eine physikalische

Größe sinusförmig mit der Zeit ändert.

(1)x(t) = x0sin (ωt + ϕ0)

x kann irgendeine physikalische Größe sein wie die Ortskoordinate, der Druck, die Tempera-

tur, Feldstärke und vieles mehr. In Gleichung (1) ist x der Momentanwert dieser Größe, |x0|

das Maximum nennt man die Amplitude, ω = 2π/T = 2πf die Kreisfrequenz und (ωt + ϕ0) die

Phase. Die Phase wird wie ein Winkel im Bogenmaß gemessen und variiert während einer Pe-

riode von 0 bis 2π. ϕ0 ist die Anfangsphase, d.h. die Phase zur Zeit t = 0.

Beliebige periodische Schwingungen kann man aus der Überlagerung von harmonischen

Schwingungen zusammensetzen. Man kann die harmonische Schwingung darstellen als Pro-

jektion einer gleichförmigen Kreisbewegung eines Punktes (Abb. 211).

183

Harald Schüler
Page 185: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 211: Die harmonische Schwingung kann als

Projektion einer Kreisbewegung aufgefaßt werden.

x = x0cos (ϕ + ϕ 0) = x0cos (ωt + ϕ0) = x0[cos ωt cos ϕ 0 − sin ωt sin ϕ 0]

Abb. 212: Statt der Zeit, die in einer Pe-

riode von 0 bis T läuft, kann man auch

die Phase, die von 0 bis 2π läuft, als un-

abhängige Variable nehmen.

Statt der beiden unabhängigen Parameter x0 und ϕ0 kann man

und (2)A = x0cos ϕ0 B = −x0sin ϕ 0

einführen. Dadurch ergibt sich die zu Gleichung (1) äquivalente Form

(3)x = A cos ωt + B sin ωt

Dies heißt, daß jede harmonische Schwingung als Überlagerung einer unverschobenen Sinus -

und einer unverschobenen Kosinusschwingung gleicher Frequenz dargestellt werden kann.

Insbesondere ist nach Gleichung (2) und (3) cos(ωt−π/2) = sinωt, eine Beziehung die sich di-

rekt aus der Definition am rechtwinkligen Dreieck ablesen läßt. Eine Kosinusschwingung ist

eine phasenverschobene Sinusschwingung. Die Darstellung durch komplexe Zahlen lernen wir

im Abschnitt 4. dieses Kapitels kennen.

b) Die Kinematik der harmonischen Schwingung

Wir setzen eine harmonische Schwingung der Form

x = x0cos (ωt + ϕ0)

voraus und ermitteln durch Differentiation den zeitlichen Verlauf von Geschwindigkeit und

Beschleunigung

184

Page 186: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

v = •x = −x0ωsin (ωt − ϕ0)

a = ••x = −x0ω2cos (ωt + ϕ0)

Die Geschwindigkeitsamplitude ist v0 = x0ω, die Beschleunigungsamplitude a0 = x0ω2 . Die

Phasenverschiebung zwischen v und x ist π/2. Durch Aufzeichnen der Funktionen x(t) und v(t)

z.B. für ϕ0 = 0 stellt man fest, daß das Maximum von v vor dem von x erreicht wird, wenn

man die sich am nächsten liegenden Maxima vergleicht. Man sagt, v eilt vor x. Die Phasenver-

schiebung zwischen a und x beträgt π. Man kann also für die Momentanwerte schreiben

a(t) = - ω2x(t), und damit

(4)••x = − ω2x

Bei einer harmonischen Schwingung eines physikalischen Systems gilt für die schwingende

Größe eine Differentialgleichung der Form von Gleichung (4), die sogenannte Schwingungs-

gleichung. Umgekehrt kann man sagen, daß ein System eine Schwingung ausführen kann,

wenn sich für eine physikalische Größe x , die das System bestimmt, eine Gleichung der Form

(4) aufstellen läßt.

c) Die Schwingung eines Massenpunktes

α) Allgemeine Betrachtung

Für den Schwerpunkt eines Körpers, der sich auf einer beliebigen Kurve bewegen kann, gilt

die Bewegungsgleichung

m••s = Ft

wenn Ft die zur Kurve tangentiale Kraft ist. Damit sich hieraus eine Schwingungsgleichung

der Form von Gleichung (4) ergibt, muß die Kraft eine Abhängigkeit

Ft = -Ds (5)

von der Koordinate auf der Bahn haben. Die Schwingungsgleichung lautet dann

185

Page 187: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

••s = −D

ms

Der Körper kann also eine harmonische Schwingung ausführen mit der Kreisfrequenz

(6)ω = Dm

In vielen praktischen Fällen liegt nicht das einfache Kraftgesetz von Gleichung (5) vor. Häu-

fig kann man dann aber noch F(s) durch eine Taylorentwicklung linearisieren, so daß wenig-

stens für kleine Auslenkungen s F(s) = - Ds gilt. Die Schwingung ist dann nue für kleine Aus-

lenkungen harmonisch.

β) Energieverhältnisse

Da nach den Gleichungen (5) und (6) F = - mω2s gilt, erhält man für die potentielle Energie

Wpot = −∫0

xF(s)ds = 1

2mω2x2

und Wkin = 12

mv2

Setzt man x = x0sin(ωt + ϕ0) und v = x0 ωcos(ωt + ϕ0), erhält man

Wges = Wpot + Wkin = 12

mω2x02sin2(ωt + ϕ0) + 1

2mω2x0

2cos2(ωt + ϕ0) = 12

mω2x02

Die Gesamtenergie ist also unabhängig von der Zeit, wie der Energiesatz der Mechanik für

dissipationsfreie Systeme fordert. Die Energie des Systems wechselt zwischen kinetischer und

potentieller Energie. Bei Schwingungen hat man generell zwei Energieformen, die das System

annehmen kann, z.B. elektrische und magnetische Feldenergie. Um eine harmonische Schwin-

gung eines Körpers zu erhalten, muß die potentielle Energie einen parabelförmigen Verlauf

Wpot = ½mω2x2. besitzen.

Abb. 213: Vorraussetzung für eine harmonische

Schwingung ist ein parabelförmiges Potential.

186

Page 188: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Bei nicht parabelförmigen Potentialtöpfen erhält man keine harmonische Schwingung. Solan-

ge Wpot + Wkin = const gilt, ist diese aber noch periodisch, wie man sich an der Bewegung ei-

ner Kugel in dem entsprechenden Potentialtopf klar macht. Für kleine Amplituden lassen sich

die meisten Potentialmulden durch eine Parabel annähern, so daß dann eine harmonische

Schwingung resultiert.

γ) Das Federpendel

i. Die Schwingungsgleichung

Abb.214: Das Federpendel

Eine Masse m hänge an einer elastischen Feder, für die FF = - Dx gilt. x wird von der Stellung,

bei der die Feder entspannt ist, gemessen. Auf m wirkt außerdem die Schwerkraft FG = mg. In

der Ruhelage x0 gilt F = FF + FG = 0. Daraus folgt Dx0 = mg und daher bei beliebiger

Auslenkung

F(x) = -D(x0 + ξ) +mg = -Dξ

wobei ξ die Auslenkung aus der Gleichgewichtslage ist. Das Kraftgesetz für die Auslenkung

aus der Gleichgewichtslage mit Schwerkraft ist also das gleiche wie das für die Auslenkung

der entspannten Feder ohne Schwerkraft. Die Bewegungsgleichung lautet damit

m••ξ = −Dξ

und die Schwingungsgleichung

(6)••ξ = −D

Die Masse schwingt also harmonisch um die Gleichgewichtslage.

187

Page 189: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ii. Bestimmung der Frequenz

Wir machen den Ansatz ξ = sinωt und bilden die zweite Ableitung, um mit dem Ansatz in die

Schwingungsgleichung zu gehen

•ξ = ωcos ωt

••ξ = −ω2sin ωt

Einsetzen in Gleichung (6) ergibt ω2 = Dm

Die allgemeine Lösung lautet

oder ξ = A sin ωt + B cos ωt ξ = ξ 0cos (ωt + ϕ0)

iii. Bestimmung der Konstanten

Wir betrachten als Beispiel die erste Form der Lösung und bestimmen die Konstanten A und

B aus den Anfangsbedingungen. Zur Zeit t = 0 sei die Auslenkung ξ = ξ0 und v = v0. Einset-

zen ergibt

ξ0 = Asin(0) + Bcos(0)

Daraus folgt sofort B = ξ0.

v0 = Aωcos(0) - Bωsin(0)

Daraus folgt A = v0/ω. Die Lösung hat also die Form

ξ = v0ω sin ωt + x0cos ωt

Für den Sonderfall, v0 = 0, d.h die Situation, in der die Masse anfangs ausgelenkt und dann

losgelassen wurde, erhält man eine reine Kosinusschwingung, wobei die Anfangsauslenkung

die Amplitude bestimmt.

d) Die Schwingung eines ausgedehnten Körpers (Das physikalische Pendel)

188

Page 190: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Für die Drehschwingung eines ausgedehnten Körpers mit dem Drehwinkel θ um eine feste

Achse gilt die Bewegungsgleichung

M = J•ω =J

••θ

Wenn M = -kθ ist, ergibt sich die Schwingungsgleichung

••θ = −k

Beispiel: Das physikalische Pendel

Abb. 215: Zur Aufstellung der Schwingungsgleichung eines aus-

gedehnten Körpers geht man von der Bewegungsgleichung für ei-

ne Drehung aus.

Nach Abb. 215 ist l der Abstand zwischen Drehpunkt und Schwerpunkt. Dann gilt für das

Drehmoment

M = mglsinθ

Die Bewegungsgleichung hat die Form

−mgl sin θ = J••θ

Und die Schwingungsgleichung

••θ = −

mglJ

sin θ

Da J ~ m, ist die Bewegung von der Masse des Körpers unabhängig. Die Schwingungsglei-

chung ist nicht die der harmonischen Schwingung. Für kleine Auslenkungen gilt die lineare

Näherung sinθ = θ. Und die Schwingung ist harmonisch.

189

Page 191: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

••θ = −mgl

Das Pendel schwingt harmonisch mit der Kreisfrequenz

ω = mglJ

Das Pendel schwingt nur, wenn l ≠ 0. Der Schwerpunkt liegt also nicht im Drehpunkt, aber für

die Bewegung ist das Trägheitsmoment in Bezug auf den Drehpunkt maßgeblich. Dieses kann

mit dem Satz von Steiner auf das Trägheitsmoment in Bezug auf den Schwerpunkt Js zurück-

geführt werden.

J = Js + l2m

Für die Kreisfrequenz erhält man dann

(8)ω2 = mgl

Js + l2m= g

l⋅ 1

Js2 + 1

Wenn d.h. das Trägheitsmoment bezüglich einer Drehung um den Schwerpunkt sehrJs

2<< 1

viel kleiner als das Translationsträgheitsmoment ml2 ist, wird der zweite Faktor gleich eins

und es ergibt sich die Näherung des mathematischen Pendels

ω = gl

Eine Taylorentwicklung der exakten Formel Gleichung (8) führt zu

ω ≈ gl

1 − 1

2J

ml2

gibt die Korrektur dafür an, daß der Körper bei der Pendelbewegung des Schwerpunk-12

Js2

tes gleichzeitig eine Drehung um den Schwerpunkt vollführt (Abb. 216).

190

Page 192: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 216: Die Masse an einem Faden führt eine Translationsbewegung,

d.h eine Pendelbewegung des Schwerpunktes und eine Rotation um den

Schwerpunkt durch.

3. Überlagerung von harmonischen Schwingungen gleicher Frequenz

a) Anwendung der Additionstheoreme

Sollen zwei Schwingungen gleicher Frequenz

x1 = A1cos(ωt + ϕ1)

x2 = A2cos(ωt + ϕ2)

addiert werden, was physikalisch durch die Addition der Drucke von zwei Schallwellen auf

dem Trommelfell oder der Feldstärke zweier elektromagnetischer Wellen auf einem Lichtde-

tektor realisiert wird, müssen zu jeder Zeit die Momentanwerte der Schwingungen addiert

werden.

xres = x1(t) + x2(t) = A1cos (ωt + ϕ1) + A2cos (ωt + ϕ2)= A1cos ϕ 1cos ωt − A1sin ϕ 1sin ωt + A2cos ϕ 2cos ωt − A2sin ϕ 2sin ω

Abb. 217: Man addiert zwei Schwingungen, indem

man ihre Momentanwerte addiert.

xres hat also die Form (9)xres = B1cos ωt − B2sin ωt

mit B1 = A1cos ϕ 1 + A2cos ϕ 2

B2 = A1sin ϕ 1 + A2sin ϕ 2

Die Terme der Gleichung (9) können wieder zusammengefaßt werden zu der Form

191

Page 193: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

xres = Arescos (ωt + ϕres)

mit B1 = Arescos ϕ res

B2 = Aressin ϕ res

Durch Addieren und Quadrieren der letzten Gleichungen ergibt sich

(10a)Ares2 = B1

2 + B22 = (A1cos ϕ 1 + A2cos ϕ 2)

2 + (A1sin ϕ 1 + A2sin ϕ 2)2

Durch Division dieser beiden Gleichungen

(10b)tan ϕ res = B1

B2=

A1sin ϕ 1 + A2sin ϕ 2

A1cos ϕ 1 + A2cos ϕ 2

Die Überlagerung zweier harmonischer Schwingungen gleicher Frequenz ergibt also wieder

eine harmonische Schwingung dieser Frequenz. Amplitude und Phase kann man im Prinzip

durch die Gleichungen (10a) und (10b) ermitteln. Zweckmäßiger ist im allgemeinen die Ver-

wendung eines Zeigerdiagramms.

b) Zeigerdiagramm

Abb. 218: Die Formeln für die Addition

zweier harmonischer Schwingungen lassen

sich am Zeigerdiagramm ablesen.

Die Umrechnungsformeln lassen sich an einem Zeigerdiagramm der Gestalt von Abb. 218 ab-

lesen. Man erkennt dies an der Darstellung einer Schwingung als Projektion eines sich drehen-

den Zeigers. Sollen zwei Schwingungen addiert werden, müssen ihre Momentanwerte, d.h. die

Momentanwerte ihrer Projektionen addiert werden. Man kann statt dessen zunächst die beiden

Zeiger nach den Regeln der Vektoraddition addieren und von dem resultierenden Zeiger die

192

Page 194: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Projektion bilden. Dies wird in Abb. 218 für den Zeitpunkt t = 0 vorgenommen. Für spätere

Zeitpunkte ändert sich die Figur nicht, da sich die Zeiger mit gleicher DrehzahlA∼

1 und A∼

2

drehen. Man ordnet also einer Schwingung einen Zeiger zu, indem man als Länge des Zeigers

die Amplitude der Schwingung, als Winkel mit der x - Achse die Anfangsphase wählt. Man

addiert diese Zeiger wie Vektoren.

c) Beispiele

i. Zwei Schwingungen gleicher Amplitude haben eine Phasenverschiebung von π. Wie groß

ist die Amplitude der aus ihrer Überlagerung resultierenden Schwingung?

Abb. 219: Die beiden Zeiger sind um 180° zueinander gedreht.

Sie repräsentieren damit zwei Wellen mit 180°

Aus dem Zeigerdiagramm Abb. 219 ist abzulesen, daß

x∼ res = x∼ 1 + x∼ 2 = 0

Die Überlagerung zweier Wellen kann also zum Verschwinden jeglicher Wellenbewegung

führen. Diesen Fall nennt man destruktive Interferenz.

ii. Zwei Schwingungen x1 = 3cosωt und x2 = 4sinωt sollen addiert werden. Welche Amplitude

und welche Phasenverschiebung gegen x1(t) hat die resultierende Schwingung?

Abb. 220: Das Zeigerdiagramm für die Überlagerung zweier

Wellen mit 90° Phasenverschiebung.

Das Zeigerdiagramm ist in Abb. 220 wiedergegeben. Da die ursprünglichen Schwingungen ei-

ne Phasenverschiebung von 90° haben, handelt es sich um ein rechtwinkliges Dreieck. Die

Amplitude der resultierenden Schwingung ergibt sich aus dem Satz von Pythagoras, die ge-

suchte Phasenverschiebung aus der Definition des Tangens.

193

Page 195: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ares = 32 + 42 = 5

tan ϕ res = 43

, ϕ res = 53, 10

Man erkennt, daß die Lösung dieser Art von Aufgaben auf die Berechnung von Dreiecken

hinausläuft. Wenn das Dreieck nicht rechtwinklig ist, bietet sich der Kosinussatz an.

Ares2 = A1

2 + A22 + 2A1A2cos (ϕ2 − ϕ1)

iii. Drei Schwingungen gleicher Amplitude und gleicher gegenseitiger Phasendifferenz sollen

überlagert sich insgesamt auslöschen

.

Abb. 221: Drei gleiche Schwingungen mit jeweils 120° Phasen-

verschiebung addieren sich zu Null.

Man variiert den gegenseitigen Winkel im Zeigerdiagramm so lange, bis die Summe der drei

Vektoren verschwindet. Die Figur schließt sich dann zu einem Polygon (Abb. 221), in diesem

Fall zu einem gleichseitigen Dreieck mit drei gleichen Winkeln von 60°. Die Phasenverschie-

bung wird nach dem oben gesagten durch die Außenwinkel gegeben, in diesem Fall

ϕ 0 = 2π3

Diese Situation liegt bei Wechselstrom vor. Wenn in den drei Phasen die gleichen Ströme flie-

ßen, ergeben sie an einem Knotenpunkt, an dem sie zusammenfließen, den Gesamtstrom 0.

4. Schwingung als komplexe Zahl

a) Komplexe Zahl

Abb. 222: Zeiger als komplexe Zahl

194

Page 196: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Der Zeiger, dessen Projektion eine Schwingung ergibt, kann statt in kartesischen Koordinaten

in der komplexen Zahlenebene dargestellt werden. Er repräsentiert dann eine komplexe Zahl.

Eine komplexe Zahl hat die Form

x∼ = a + ib

wobei i die imaginäre Einheit, d.h. die Lösung der Gleichung x2 = -1 ist. Es gilt also i2 = -1.

Das Argument ϕ der komplexen Zahl ist der Winkel mit der reellen Achse (s. Abb. 222).

ist der Realteil von a = Re(x∼ ) = x∼ cos ϕ x∼

ist der Imaginärteil von b = Im(x∼ ) = x∼ sin ϕ x∼

ist das Argument von ϕ = artan ba = arg (x∼ ) x∼

ist der Betrag von x∼ = a2 + b2 x∼

ist die konjugiert komplexe Zahl zu x∼ ∗ = a − ib x∼

Der Betrag läßt sich auch schreiben ,x∼ = x∼ ⋅ x∼ ∗

da x∼ ⋅ x∼ = (a + ib)(a − ib) = a2 − (ib)2

b) Algebraische Operationen mit komplexen Zahlen

Bei algebraischen Operationen behandelt man i wie eine normale Konstante. Dadurch, daß

man i2 durch -1 ersetzen darf, ist es bei Addition, Multiplikation und Division zweier komple-

xer Zahlen immer möglich, das Ergebnis in die Form a + ib zu bringen.

Addition:

x∼ 1 + x∼ 2 = a1 + ib1 + a2 + ib2 = (a1 + a2) + i(b1 + b2)

Multiplikation:

x∼ 1 ⋅ x∼ = (a1 + ib1)(a2 + ib2) = a1a2 + i2b1b2 + ib1a2 + ib2a1

= a1a2 − b1b2 + i(b1a2 + a2b1)

195

Page 197: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Division ist Multiplikation mit dem Kehrwert. Es genügt daher zu zeigen, daß der Kehrwert

einer komplexen Zahl in die Form a + ib überführt werden kann.

1a + ib

= 1(a + ib)

a − ib(a − ib) = a − ib

a2 + b2= a

a2 + b2− i b

a2 + b2

c) Der Satz von Moivre

Funktionen von komplexen Zahlen erhält man, wenn man in die Taylorentwicklung einer reel-

len Funktion als unabhängige Variable eine komplexe Zahl einsetzt. Da jeder Term als Pro-

dukt komplexer Zahlen wieder eine komplexe Zahl ist, ist auch der resultierende Funktions-

wert eine komplexe Zahl. Der Satz von Moivre (manchmal auch Satz von Euler genannt) ver-

knüpft die komplexe Funktion sin und cos mit der Exponentialfunktion. Um diese Verknüp-

fung zu verstehen, betrachten wir die Reihenentwicklungen dieser drei Funktionen nach einer

komplexen Variablen.

ex = 1 + x1!

+ x2

2!+ x3

3!+ ...

eix = 1 + i x1!

− x2

2!− ix

3

3!+ x4

4!+ ...

Entsprechend stellen wir die Reihen für sinx und cosx auf. Durch Vergleich dieser drei Reihen

ergibt sich der Satz von Moivre.

eix = cos x + i sin x

Jede komplexe Zahl a + ib =|x|(cosϕ + isinϕ) kann also durch die oft bequemere Funktion

|x|eiϕ dargestellt werden.

Beispiel: Wie berechnet man ?i

Abb. 223: Wie man aus einer komplexen Zahl über den

Satz von Moivre die Wurzel zieht.

196

Page 198: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

In der komplexen Zahlenebene (Abb. 223) erkennt man, daß i das Argument π/2 und den Be-

trag 1 hat. Das Argument wird mit dem Faktor i in den Exponenten der e - Funktion ge-

schrieben, der Betrag vor die e - Funktion.

i = ei π2

Hier kann man die Wurzel leicht ziehen und dann mit dem Satz von Moivre

zurückverwandeln

eiπ/2 = eiπ/4 = cos π4

+ i sin π4

= 12

2 + i12

2

Beim Wurzelziehen aus einer komplexen Zahl wird also ihr Argument halbiert und aus ihrem

Betrag die Wurzel gezogen.

d) Anwendung der komplexen Zahlen auf Schwingungsprobleme

Hat man eine Schwingung

x = Acos(ωt + ϕ0)

so kann man ihr über den Satz von Moivre eine komplexe Zahl zuordnen, indem man

y = Asin(ωt + ϕ0)

als Imaginärteil hinzufügt. Liegt die ursprüngliche Schwingung in der Form x = Asin(ωt + ϕ0)

vor, so verwandelt man sie mit der Beziehung sinα = cos(α - π/2) in die Kosinusform. Die zu-

geordnete komplexe Zahl hat also die Form

x∼ = A [cos (ωt + ϕ0) + i sin (ϕt + ϕ0)]= Ae(ωt+ϕ0) = Aeiϕ0 eiωt

ist die komplexe Amplitude. Sie enthält die Information über die Amplitude derA∼ = Aeiϕ0

Schwingung

A = A∼

197

Page 199: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(Dies folgt sofort aus ) und die AnfangsphaseA = A cos ϕ 0 + i sin ϕ 0 = A cos2ϕ0 + sin2ϕ 0

ϕ 0 = arg A∼

ist also in der komplexen Zahlenebene ein Zeiger, dessen Länge durch die Schwin-A∼

gungsamplitude und dessen Richtung gegenüber der reellen Achse durch die Anfangsphase

gegeben ist. Es gibt drei Möglichkeiten von einer komplexen Darstellung auf eine reelle

zurückzukommen.

Man addiert zu einer komplexen Schwingung die dazugehörige konjugiert komplexe

x∼ + x∼ ∗ = (a + ib) + (a − ib) = 2Re(x∼ )

Man betrachtet den Realteil von als einzig interessierende Größex∼

Man nimmt als Amplitude und arg als Anfangsphase.x∼ (x∼ )

Vorsicht! Terme, in denen das Produkt zweier Schwingungen auftaucht, etwa wie bei Energie-

betrachtungen, dürfen nicht ohne weiteres komplex geschrieben werden. Am besten schreibt

man solche Terme reell, etwa

.14

(x∼ 1 + x∼ 1∗ )(x∼ 2 + x∼ 2

∗ )

Man überlagert zwei Schwingungen, indem man ihre komplexen Amplituden addiert. Bei

gleicher Frequenz erhält man für die Summe der Schwingungen

und x∼ 1 = A∼

1eiωt x∼ 2 = A∼

2eiωt

x∼ res = A∼

1eiωt + A∼

2eiωt = A∼

1 + A∼

2 eiωt

und damit für die Amplituden

A∼

res = A∼

1 + A∼

2

Die Zeigeraddition von Schwingungen läßt sich also auch formal über die Darstellung von

Schwingungen mit komplexen Zahlen einsehen.

198

Page 200: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

5. Die gedämpfte Schwingung

a) Die freie gedämpfte Schwingung

Abb. 224: Ein System, bei dem die Dämpfung proportional zur Ge-

schwindigkeit ist.

An einer Masse greife zusätzlich zu einer rückstellenden Kraft F1 = - Dx eine Reibungskraft

an die ähnlich wie bei der Stokesschen Reibungskraft proportional zur Geschwindigkeit sein

möge: . Die Bewegungsgleichung lautet dannF2 = −bv = −b••x

m••x = −Dx − b

•x

Und die Schwingungsgleichung daher

(11)••x + b

m•x + D

mx = 0

Man löst sie mit dem Ansatz . Dann istx∼ = A∼

eλ∼ t

, •x∼ = λ∼ eλ∼ t = λ∼ x∼

••x∼ = λ∼ 2A

∼eλ∼ t = λ∼ 2x∼

Einsetzen in Gleichung (11) ergibt die charakteristische Gleichung

λ∼ 2x∼ + bmλ∼ x∼ + D

mx∼ = 0

λ∼ 2 + bmλ∼ + D

m = 0

mit der Lösung

λ∼ 1,2 = − b2m

±

b2m

2

− Dm

(12)λ∼ 1,2 = −δ ± δ2 − ω02

199

Page 201: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

mit Dämpfungδ = b2m

und Frequenz bei verschwindender Dämpfungω02 = D

m

Die allgemeine Lösung lautet dann

x = c∼ 1eλ∼ 1t + c∼ 2eλ∼ 2t

x kann als reelle Lösung aufgefaßt werden, sind komplexe Konstanten, die aus denc∼ 1 und c∼ 2

Anfangsbedingungen bestimmt werden müssen. Die Lösungen unterscheiden sich grundsätz-

lich bei positivem und negativem Radikand in Gleichung (12).

Wenn δ 2 > ω02, d.h. im Falle großer Dämpfung, sind die λ i reell. Es ergeben sich

Lösungen der Form e-Kt, wobei K reell ist. Es erfolgt keine Schwingung. Die

Auslenkung sinkt nach ihrem Maximum monoton auf 0.

Wenn δ 2 < ω02, d.h. im Falle kleiner Dämpfung, ist der Radikand negativ und es kann

ein i herausgezogen werden

δ2 − ω02 = (−1) ω0

2 − δ2 = iω

Das System schwingt also mit der Frequenz ω, die gegeben ist durch

ω2 = ω02 − δ2

Die allgemeine Lösung hat die Form

(13)x = A∼

e(−δ+iω)t + Be(−δ−iωt) = e−δt(Aeiωt + Be−iωt)

und sind durch die Anfangsbedingungen festgelegte Konstanten, die im allgemeinenA∼

B∼

komplex sind . Setzt man diese in Gleichung (13) bei reellen An-A∼ = a1 + ib1 B

∼ = a2 + ib2

fangsbedingungen ein, so zeigt sich, daß . (Dies ist klar, da die linke Seite vonB∼ = A

∼ ∗

200

Page 202: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Gleichung (13) reell sein soll und e-iωt das konjugiert komplexe zu eiωt ist). Dadurch ergibt

sich eine reelle Gesamtlösung der Form

x = 2e −δt[a1(eiωt + e−ωt) − ib1(eiωt − e−iωt)]= 2e−δt(a1cos ωt − b1sin ωt) = Ae−δtcos (ωt − ϕ)

Abb. 225: Die Amplitude der gedämpften Schwingung

nimmt exponentiell ab.

x0 = Ae-δt kann als eine zeitabhängige Amplitude aufgefaßt werden. Das System schwingt also

mit abnehmender Amplitude (Abb. 225) und einer Frequenz ω, die etwas kleiner als die der

ungedämpften Schwingung ist. Bei sehr kleiner Dämpfung, δ << ω0 ist diese Abweichung

wegen des quadratischen Zusammenhangs

ω2 = ω02 − δ2 = ω0

2 1 − δ2

ω2

schon bei nicht all zu kleinen δ/ω zu vernachlässigen. Das Amplitudenverhältnis im Abstand

der Periode ist

x0(t + T)x0(t)

= e−δ(T+t)

e−δt= e−δT = const

nennt man das logarithmische DekrementδT = lnx0(t)

x0(t + T) = Λ

ist die Güte des Schwingkreises.ωδ = 2π

Tδ = 2πΛ

Die zeitliche Abnahme der Amplitude ist proportional zur Amplitude selbst

dx0

dt= −δx0(t)

Dieses Verhalten ist typisch für Absorption, Zerfall oder Ähnliches.

b) Die erzwungene Schwingung

201

Page 203: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

α) Die Schwingungsgleichung

Ein schwingungsfähiges System soll durch eine äußere periodische Kraft etwa wie in Abb.

226 angetrieben werden

Abb. 226: Die erzwungene Schwingung wird von außen peri-

odisch angeregt.

F = F0eiωt

Nach einer Einschwingzeit stellt sich eine sinusförmige stationäre Schwingung mit der Fre-

quenz ω ein. Diese Frequenz ist diejenige, mit der die äußere Kraft schwingt. Sie hat mit der

Frequenz der freien Schwingung des Systems ω0 nichts zu tun. Man interessiert sich in diesem

Fall für die Frequenzabhängigkeit der Schwingungsamplitude und die Phasenverschie-A∼ (ω)

bung zwischen äußerer Kraft und Schwingung des Systems

.ϕ = arg (x∼ ) =atan Im

A∼

/Re A∼

Bewegungsgleichung m••x + b

•x + Dx = F0eiωt

Schwingungsgleichung••x + b

m•x + D

mx = F0m eiωt

Mit den Abkürzungen δ = b/2m, ω02 = D/m und f = F0/m hat die Schwingungsgleichung die

Form

(14)••x + 2δ •

x + ω02x = feiωt

β) Lösung für den eingeschwungenen Zustand

Um die Lösung für den eingeschwungenen Zustand zu finden, genügt es, eine spezielle Lö-

sung anzugeben. Dafür macht man einen Ansatz, der aus der rechten Seite der Gleichung (und

eventuell ihren Ableitungen) zusammengesetzt ist.

202

Page 204: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

x = Aeiωt •x = iωAeiω ••

x= − ω2Aeiωt

x und A sind hier komplexe Größen. Einsetzen in die Schwingungsgleichung ergibt

A −ω2eiωt + 2δiωeiωt + ω0

2eiωt = feiωt

Hieraus folgt die komplexe Amplitude zu

(15)A = f

ω2 − ω2 + 2δiω

Rational machen des Nenners ergibt

(16)A =f

ω0

2 − ω2 − 2iδω

ω0

2 − ω2

2

+ (2δω)2

Durch Multiplikation von Gleichung (15) mit dem konjugiert Komplexen erhält man die

Amplitude

(17)A2 =f2

ω0

2 − ω2

2

+ (2δω)2

aus Gleichung (16) den gesuchten Phasenwinkel

tan ϕ = ImAReA

= −2δωω2 − ω2

= 2δωω2 − ω2

γ) Diskussion

Regt man mit der Frequenz an, mit der das System frei schwingt (ω = ω0), so ist der erste

Term im Nenner Null. Die Amplitude ist dann also in der Nähe des Maximums. Wenn ω sich

im Bereich des Maximums praktisch nicht ändert, liegt das Maximum sogar genau bei ω = ω0.

Diese Situation nennt man die Resonanz. In der Resonanz ist . Die Amplitude istA =f

2δω

203

Page 205: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

dann um so größer, je kleiner die Dämpfung ist. Dies kann in Brücken, die einer periodischen

Kraft ausgesetzt werden oder rotierenden Maschinenteilen zu Schädigungen führen. Die Pha-

senverschiebung ist Null für kleine Frequenzen, -π/2 bei Resonanz (die Schwingung hinkt um

π/2 hinter der Anregung) und π bei ω >> ω0 (Abb. 227 ). Für kleine Dämpfung δ << ω0 wird

die

Abb. 227: Abhängigkeit der

Amplitude und der Phasenver-

schiebung der erzwungenen

Schwingung von der Frequenz.

Breite der Resonanzkurve A(ω) klein, so daß alle interessierenden Amplituden in einem Fre-

quenzbereich sehr dicht um die Resonanzfrequenz liegen: ω0 - ω = ∆ω << ω0. Dann ist

ω0 + ω ∼ 2ω0

ω02 − ω2 = (ω0 − ω)(ω0 + ω) ∼ 2∆ωω

Die Frequenzabhängigkeit der Amplitude (Gleichung (17) ) vereinfacht sich dann zu

A2 =f2

4∆ω2ω02 + 4δ2ω0

2=

f2

4ω02δ2

1

1 +

∆ωδ

2

Die Funktion ist eine Glockenkurve (Lorenztprofil, s. Abb. 228). f(∆ω) = 11 + (∆ω/δ)2

Abb.228: Für kleine Dämpfungen geht die Resonanz-

kurve in ein Lorentzprofil über.

204

Page 206: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Die Halbwertsbreite, d.h. die Breite bei halber Zentralamplitude ist δ. Je mehr die Schwingung

gedämpft wird, desto breiter ist die Resonanzkurve. Spektrallinien, die aus gedämpften

Schwingungen stammen, besitzen Lorentzprofile. Um an Spektrallinien Präzisionsmessungen

der Wellenlänge durchführen zu können, etwa zur Festlegung des Urmeters, müssen Linien

kleiner Dämpfung ausgewählt werden. Das Himmelsblau stammt aus Streuung des Sonnen-

lichtes an Sauerstoffmolekülen, die ihre Resonanz im ultravioletten Spektralbereich haben,

d.h. bei hohen Frequenzen relativ zum sichtbaren Spektralbereich. Für (∆ω/δ) >>1 geht das

Abb. 229: Die Streuintensität am Sauerstoff nimmt im sichtberen

Spektralbereich mit der 4. Potenz der Frequenz ab. Daher erscheint der

Himmel blau. Dies ist eine Folge der erzwungenen Schwingung der O2

- Moleküle im Licht der Sonne..

Lorentzprofil mit 1/(∆ω)2 . Die Resonanzkurve steigt also zu hohen Frequenzen hin an. Daher

wird blaues Licht besser gestreut als rotes.

δ) Der Einschwingvorgang

Die allgemeine Lösung der Schwingungsgleichung (14) ist die Summe einer speziellen Lö-

sung und der allgemeinen Lösung des homogenen Anteils der Schwingungsgleichung

••x +2δ •

x +ω02x = 0

Die spezielle Lösung haben wir bisher betrachtet. Sie stellt eine stationäre Schwingung dar

und beschreibt daher den eingeschwungenen Zustand. Die allgemeine Lösung des homogenen

Anteils gibt den Einschwingvorgang wieder, d.h. die Anpassung zwischen den Anfangsbedin-

gungen und der eingeschwungenen Lösung. Sie ist, wie man an der Differentialgleichung er-

sehen kann, eine gedämpfte Schwingung, die in der charakteristischen Zeit 1/2δ abklingt

(vergleiche Gleichung (11)). Das Einschwingen nimmt also umso mehr Zeit in Anspruch, je

weniger das System gedämpft ist. Im ungedämpften Fall würde die Einschwingzeit unendlich

lang sein und die Amplitude in der Resonanz unaufhörlich wachsen.

6. Überlagerung von Schwingungen ungleicher Frequenz oder unglei-

cher Richtung

a) Schwebungen

205

Page 207: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Zwei Schwingungen sollen fast gleiche Frequenz haben

ω1 ≈ ω2 = ω

ω1 − ω2 = ∆ω << ω

Die Addition der Schwingungen als komplexe Zahlen ist nach wie vor möglich, da hierbei

nicht auf den Sonderfall ω1 = ω2 eingeschränkt werden mußte. Im Zeigerbild ergibt sich als

Unterschied zu dem Fall gleicher Frequenzen daß die Zeiger, die die beiden betrachteten

Abb. 230: Jetzt laufen die Zeiger mit unterschiedlicher Fre-

quenz um.

Schwingungen darstellen, mit leicht unterschiedlicher Drehzahl rotieren. Nach n Umdrehun-

gen überholt der schnellere Zeiger den langsameren. Die resultierende Amplitude schwankt

zwischen A1 + A2 und |A1 - A2|. Dieses Phänomen nennt man Schwebung (englisch beat).

Abb. 231: Bei einer Schwebung ändert sich die

Amplitude mit der Differenzfrequenz der beiden

Wenn bei einer Umdrehung der zusätzlich vom schnelleren Zeiger zurückgelegte Winkel ∆ϕ

ist, benötigt man von einer Begegnung der Zeiger zur nächsten

Umdrehungen. n = 2π∆ϕ

Da ω1 = 2π/T, ω2 =(2π + ∆ϕ)/T, gilt ∆ϕ/T = ∆ω und nachdem man T durch 2π/ω ersetzt,

∆ϕ/2π = ∆ω /ω und damit

n = ω∆ϕ

Für die Schwebungsperiode erhält man hiermit

206

Page 208: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Ts = nT = ω∆ωT = 2π

∆ω

Da ωs = 2π/Ts, ergibt sich ωs = ∆ω

Die Frequenzdifferenz der Schwingungen ist genau die Schwebungsfrequenz. Dies ermöglicht

sehr genaue Messungen des Frequenzunterschiedes zweier Schwingungen. Der Nonius nutzt

diesen Vorteil bei Raumfrequenzen aus.

b) Überlagerung von Grundschwingungen und ihren Oberschwingungen

Die Schwingung mit einem ganzzahligen Vielfachen einer Grundfrequenz ω nennt man eine

Oberschwingung der ursprünglichen Schwingung. Also x = xnsin(nωt) (mit n = 1, 2, ..) sind

Oberschwingungen von x = x0sinωt. Durch Überlagerung einer Grundschwingung und ihrer

Abb. 232: Oben: Die ersten drei Glieder der Fourier

Entwicklung eins periodischen Rechtecks.

Unten: Die Summe der Einzelschwingungen.

Oberschwingungen entsteht eine nicht sinusförmige Schwingung mit der gleichen Periode wie

die Grundschwingung. Als Beispiel sind in Abb.232 die Glieder der Reihe

F(t) = 4π

sin ωt + 1

3sin 3ωt + 1

5sin 5ωt + ...

und die sich ergebende Summe dargestellt. Im Grenzwert n → ∞ ergibt sich eine Rechtecks-

funktion. Die Umkehr dieser Aussage ist der Satz von Fourier

Jede stückweise glatte Funktion mit der Periode , läßt sich durch eine Reihe derT = 2πω , F(t)

Form

F(t) = a0+∞

=Σ ansin(nωt)+

=

Σ bncos(nωt)

darstellen. Die Koeffiziente an und bn errechnen sich aus

207

Page 209: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

a0 = 1T

0

T

∫ F(t)dt, an = 2T

0

T

∫ F(t)sin nωtdt, bn = 2T

0

T

∫ F(t)cos nωtdt

Der Beweis erfolgt am besten über den Ansatz

F(t) ==−∞

Σ aneinωt

Man multipliziert rechts und links mit e-ikωt und integriert über eine Periode. Da für n ≠ k sich

in T periodische Funktionen ergeben, wird das Integral über T Null und auf der rechten Seite

bleibt nur der Term mit n = k übrig. Er ergibt

an = 1T ∫ F(t)e−inωtdt

Durch Zusammenfassen der Terme mit positivem und negativem n ergibt sich die reelle

Darstellung.

Durch Frequenzanalyse kann man Aussagen über die an einer Schwingung beteiligten Prozes-

se gewinnen. Spektroskopie ist ein Beispiel von Frequenzanalyse in der Optik. In der Hoch-

frequenztechnik werden die Eigenschaften eines Übertragers oder Verstärkers im Frequenz-

raum angegeben. Ein realer Übertrager überträgt nicht alle Frequenzen gleichmäßig. Das Aus-

gangssignal hat daher eine andere Zusammensetzung als das Eingangssignal. Es erscheint ver-

zerrt. Die Form des Ausganssignals kann ermittelt werden, indem man das Eingangssignal ei-

ner Fourieranalyse unterzieht, die einzelnen Amplituden mit dem Frequenzgang des Übertra-

gers multipliziert und wieder überlagert. Ist der Zusammenhang zwischen Eingangssignal Ue

und Ausgangssignal Ua wie in Abb.233 nicht linear, so wird aus einem sinusförmigen Ein-

gangssignal ein nicht sinusförmiges Ausgangssignal. Die Fourieranalyse muß daher Ober-

schwingungen zeigen. Diese können erwünscht sein, z.B. wenn man aus einer gegebenen

Schwingung eine mit höherer Frequenz erzeugen will (Frequenzverdopplung ist in der Laser-

technik ein übliches Verfahren), sie können in anderen Situationen wie Audioverstärker uner-

wünscht sein. Der Anteil der entstandenen Oberwellen bestimmt den Klirrfaktor.

208

Page 210: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 233: Eine nichtlineare Charakteristik zwischen Aus-

gang und Eingang führt zu Verzerrungen und damit zur Er-

zeugung von Oberfrequenzen.

k = n=2Σ An

2

A1

c) Überlagerung von Schwingungen verschiedener Schwingungsrichtungen

Von den vielen Phänomenen, die durch die Überlagerung von Schwingungen entstehen, be-

trachten wir die Addition zweier Schwingungen entlang zweier senkrecht zueinander stehen-

der Richtungen ex und ey im Raum (Abb. 234).

Abb. 234: Die Überlagerung von zwei Schwingungen, deren

Polarisationsrichtungen senkrecht aufeinander stehen..

x = x0cos ω1t

y = y0cos (ω2t + ∆ϕ)

Die Schwingungen sind dann vektoriell zu addieren. Der Summenvektor beschreibt eine Kur-

ve in der x - y Ebene deren Parameterdarstellung durch die Zeitabhängigkeit seiner Koordina-

ten x(t), y(t) , gegeben ist, die hier die Auslenkungen der Einzelschwingungen sind. Die Kur-

ve, die die Spitze des Summenvektors beschreibt, erhält man durch Elimination der Zeit.

Für den Fall, daß mω2 = nω1, d.h., daß die Frequenzen der Schwingungen sich wie ganze

Zahlen verhalten, entstehen die sogenannten Lissajous Figuren. Wir betrachten nur den Fall

gleicher Frequenzen.

209

Page 211: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

x = x0cos ωty = y0cos (ωt + ∆ϕ)

i. Die Phasenverschiebung ist Null

Dann erhält man durch Division der beiden Gleichungen

xx0

= yy0

y(x) ist eine Gerade. Die resultierende Schwingung ist linear polarisiert.

ii. ∆ϕ = −π/2

x = x0cosωt

y = y0sinωt

Durch Quadrieren und Summieren erhält man

xx0

2

+

yy0

2

= 1

y(x) ist eine Ellipse, im Sonderfall x0 = y0 ein Kreis. Die Schwingung ist elliptisch oder zirku-

lar polarisiert.

iii. ∆ϕ = πxx0

= − yy0

Die Schwingung ist wieder linear polarisiert. Die Richtung der Geraden, auf der die Schwin-

gung verläuft, hat in der x - y Ebene negative Neigung.

210

Page 212: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

KAPITEL H

Spezielle Relativitätstheorie

1. Einleitung

a) Womit befaßt sich die Relativitätstheorie

Die spezielle Relativitätstheorie befaßt sich formal mit der Transformation von physikalischen

Gesetzen von einem Inertialsystem S in ein anderes S´, das sich gegenüber S gleichförmig ge-

radlinig mit der Geschwindigkeit v bewegt. Ohne Verlust der Allgemeinheit legen wir die x -

Achse in die Bewegungsrichtung und wählen als Zeitnullpunkt die Zeit, bei der die Ursprünge

der beiden Koordinatensysteme zusammenfallen. Dann gilt in der klassischen Physik

Abb. 235: In der speziellen Relativitätstheorie geht es um

die Transformation aller möglicher physikalischer Größen

von einem Inertialsystem zu einem anderen, daß sich in x -

Richtung gegenüber dem ersten bewegt.

x´ = x - vt

t´ = t

y´ = y

z´ = z

Diese Transformationsgleichungen nennt man die Galilei Transformation. Da die Newtonsche

Bewegungsgleichung nur eine Aussage über die Beschleunigung macht, und die Galilei Trans-

formation Beschleunigungen nicht ändert, gelten die Newtonschen Axiome in S und S´ und

man kann mit mechanischen Experimenten nicht unterscheiden, ob ein System in Ruhe ist

oder nicht. In der Relativitätstheorie fordert man darüber hinaus, daß man prinzipiell nicht ent-

scheiden kann, ob man sich in einem ruhenden oder einem bewegten System befindet, also

insbesondere nicht durch Experimente mit Licht. Führt man diesen Gedanken konsequent

durch, so stellt man fest, daß die Galilei Transformation ausgebessert werden muß. Man än-

dert sie so ab, daß sie für v << c erhalten bleibt. Bei großen Geschwindigkeiten ergeben sich

substantielle Änderungen. Insbesondere wird sich zeigen, daß gleich gebaute Uhren nicht

211

Harald Schüler
Page 213: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

gleich schnell gehen, d.h. t ≠ t´, und daß ebenso das Ergebnis von Längen - oder Massenmes-

sungen von der Relativgeschwindigkeit von S und S´ abhängt.

Die Relativitätstheorie führt zu einem Raum - Zeit Begriff, der dem "gesunden Menschenver-

stand" zu widersprechen scheint. Ebenso werden gegenüber der klassischen Physik die Begrif-

fe Masse und Energie revolutioniert. Die Relativitätstheorie hat deswegen über die Physik hin-

aus Bedeutung erlangt, da sie zu einer Erweiterung des Denkens über Raum, Zeit und Energie

führt.

b) Der Äther

Im Altertum bis ins 18. Jahrhundert benutzte man den Ätherbegriff, um den leeren Raum an-

zufüllen, wie z.B. bei Aristoteles, und um sich die Kraftübertragung zwischen entfernten Kör-

pern mechanisch vorstellen zu können. Bei Aristoteles überträgt der Äther die Kraft zwischen

den Himmelssphären. Bei Descartes besteht der Äther aus verschiedenen Teilchen, für die ver-

schiedenen Kraftarten. Newton macht keine detaillierte Theorie des Äthers, benötigt den

Äther auch nicht für die Lichtausbreitung, da er die Korpuskulartheorie des Lichtes vertritt,

glaubt aber an die Existenz des Äthers, auf den man den absoluten Raum beziehen kann. Er

meint, wenn der Äther nur 700 000 mal dünner und elastischer als Luft ist, würde die Störung

der Planetenbewegung durch ihn in 10 000 Jahren nicht bemerkbar sein.

Seit der Entdeckung der Wellennatur des Lichtes durch Thomas Young (1801) benötigte man

den Äther für den Ausbreitungsmechanismus dieser Wellen. Faraday vermutete in den Span-

nungszuständen des Äthers die Ursache für elektromagnetische Kräfte. James Clark Maxwell

entwickelte mit einem mechanischen Modell vom Äther das theoretische Gebäude des Elek-

tromagnetismus, das interessanterweise noch heute gültig ist und die erste mit der Relativitäts-

theorie kompatible Theorie darstellt. Als Heinrich Hertz die von Maxwell vorhergesagten

elektromagnetische Wellen experimentell herstellte, schien klar, daß der Äther das Übertra-

gungsmedium für elektromagnetische Kräfte und damit für das Licht ist. Am Ende des 19.

Jahrhunderts war der Äther ein zentraler Begriff in der Physik und die Bestimmung der Eigen-

schaften des Äthers ein wichtiges Anliegen.

c) Versuche zur Bewegung der Erde durch den Äther

α) Aberration des Lichtes

James Bradley entdeckte 1725, daß sich die Position von Sternen jahreszeitlich ändert. Die

scheinbare Position beschreibt eine Ellipsenbahn, die ein Bild der Projektion der Erdbahn in

der Beobachtungsrichtung ist. Dieser Effekt läßt sich mit der vektoriellen

212

Page 214: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb.236: Durch die Aberration des Lichtes beschrei-

ben Fixsterne am Himmel Ellipsen, die eine Projektion

der Erdbahn um die Sonne darstellen.

Geschwindigkeitsaddition der Geschwindigkeit der Erde auf ihrer Bahn und der Lichtge-

schwindigkeit erklären, wenn der Äther nicht mit der Erde mitbewegt wird (Abb. 236).

β) Versuche von Fizeau

Fizeau maß die Lichtgeschwindigkeit in strömenden Medien und fand einen Mitführkoeffizi-

enten. Es ergab sich in einem strömenden Medium für die Geschwindigkeit cmit in

Bewegungsrichtung

cmit = cn + v

1 − 12

(n ist der Brechungsindex des Mediums, v seine Geschwindigkeit und c die Lichtgeschwindig-

keit). Da der Brechungsindex der Luft sehr nahe an 1 liegt, ergibt sich praktisch keine Mitfüh-

rung des Äthers durch die Lufthülle der Erde. Soweit stimmen die Ergebnisse. Allerdings

schlugen alle Versuche, die Relativbewegung der Erde zum Äther zu messen, fehl.

γ) Die Versuche von Trouton und Nobel

Trouton und Nobel versuchten die Kräfte des Äthers auf einen geladenen Kondensator

festzustellen.

δ) Versuche von Michelson und Morley

Abb. 237: Das Michelson Interferometer

Am bekanntesten ist der Versuch von Michelson und Morley 1881 Berlin, 1886 USA. Michel-

son baute ein Interferometer auf, wie es im Prinzip in Abb. 237 dargestellt ist. Ein Lichtstrahl

213

Page 215: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

wird durch einen teildurchlässigen Spiegel so aufgeteilt, daß beide Teilstrahlen senkrecht zu-

einander stehende Wege durchlaufen. Nach Überlagerung beider Strahlen kann man die Pha-

senverschiebung feststellen. Wenn einmal der Strahl (1) parallel zur Geschwindigkeit der Erd-

rotation dann durch Drehen der ganzen Anordnung senkrecht dazu ausgerichtet wird, ergibt

sich eine unterschiedliche Beeinflussung durch den Ätherwind und damit eine unterschiedli-

che Phasendifferenz.

Bei Bewegung parallel zu v sollte auf dem Hinweg c´ = c + v, auf dem Rückweg c´ = c - v

gelten. Hierin ist c die Geschwindigkeit des Lichtes im ruhenden Äther, c´ im bewegten Sy-

stem. Die für Hin - und Rücklauf benötigte Zeit beträgt dann

t1 = Dc − v + D

c + v= 2Dc

2 − 2= 2D

c1

− 2 2

Bei einer Bewegung der Apparatur senkrecht zur Ausbreitungsrichtung des Lichtes sollte nach

Abb. 238 auf Hin - und Rückweg gelten:

und c2 = c2 − v2 t2 = 2D

c2 − v2= 2D

c1

1 − v2/c2

Abb.238: Dieses Dreieck würde man in der klassischen

Physik bei der Geschwindigkeitsaddition zeichnen.

Die Zeitdifferenz t1 - t2 sollte bei Drehung der Apparatur um 90° das Vorzeichen ändern. Das

Michelson - Morley Experiment zeigte keine Änderung des Interferenzmusters bei Drehung

der Apparatur. Daraus ließ sich ableiten, daß die Relativbewegung gegenüber dem Äther klei-

ner als 1 km/s sein mußte, obgleich die Erddrehung alleine zu einer Geschwindigkeit v = 30

km/s führt. Das Michelson Experiment wurde seit dem in unterschiedlichen Varianten wieder-

holt, z.B. mit γ - Quanten, d.h. elektromagnetischer Strahlung von 1022 Hertz, mit bewegten

Quellen, Sternen als Lichtquellen, mit größerer Genauigkeit. Heute könnte man eine Ge-

schwindigkeit von 3 cm/s nachweisen. Keins der Experimente zeigt eine Relativbewegung der

Apparatur zum Äther.

Es gab verschiedene Erklärungsversuche, z.B. daß sich alle Körper in der Geschwindigkeits-

richtung relativ zum Äther zusammenziehen. Diesen Effekt nennt man die Lorentzkontraktion.

214

Page 216: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Man erhält dann allerdings Probleme bei Rotationsbewegungen. Die eleganteste Lösung ist

die von Albert Einstein, dargelegt in seinem 1905 erschienenen Artikel "Zur Elektrodynamik

bewegter Körper". Einstein folgerte aus dem negativen Ausgang des Michelson - Morley Ex-

perimentes, daß es keine Relativbewegung zum Äther gibt, da es keinen Äther gibt.

2. Aufbau der Relativitätstheorie

a) Die Grundpostulate

α) Relativitätsprinzip

Die Naturgesetze nehmen in allen Inertialsystemen die gleiche Form an

β) Prinzip der Konstanz der Lichtgeschwindigkeit

Die Lichtgeschwindigkeit im Vakuum hat in jedem Inertialsystem den Wert c = 3·108m/s.

Hieraus ergeben sich sofort einschneidende Folgerungen.

b) Direkte Folgerungen der Grundpostulate

α) Die Gleichzeitigkeit ist relativ

Zwei Ereignisse, die in einem Inertialsystem gleichzeitig erfolgen, sind in einem andern nicht

unbedingt gleichzeitig.

Wir wollen uns nicht mehr darauf verlassen, daß es Uhren gibt, die in verschiedenen Inertial-

systemen gleich laufen. Wir müssen also eine Meßanordnung angeben, die es gestattet, gleich-

zeitige Ereignisse zu erkennen. Für die Entwicklung der Relativitätstheorie sind solche Meß-

anordnungen charakteristisch. Auch zur Messung von Längen und Zeiten werden bestimmte

Meßverfahren ersonnen. Gedanklich besonders einfach sind solche, die sich auf die Ausbrei-

tung von Licht stützen, da postuliert wird, daß sich dieses in allen Inertialsystemen mit glei-

cher Geschwindigkeit ausbreitet. Wir nennen zwei Ereignisse gleichzeitig, wenn sie von ei-

nem Lichtblitz ausgelöst werden, der von einem Punkt ausgeht, der genau in der Mitte zwi-

schen beiden Ereignissen liegt, bzw. wenn von ihnen ausgehende Lichtsignale gleichzeitig in

einem Punkt in der Mitte ankommen. Für die Gleichzeitigkeit zweier Ereignisse die am glei-

chen räumlichen Punkt stattfinden, bleibt die alte Definition.

Orte und Zeiten werden in einem Inertialsystem mit den üblichen Methoden d.h. mit Maßstä-

ben und Uhren gemessen. Nachdem man diese abgelesen hat, werden die Werte unter Berück-

sichtigung der Laufzeit der Nachricht an eine Kommandozentrale übergeben.

Beispiel: Die Begegnung zweier Galaxien.

Im oberen Teil der Abb. 239 ist die Situation aus der Sicht von Galaxie B, im unteren Teil aus

Sicht von Galaxie A dargestellt. Wenn die Mitten übereinander liegen, wird in der Mitte ein

215

Page 217: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 239: Was von einem System aus als gleichzeitig er-

scheint, kann von einem dazu bewegten System durchaus

als nacheinander beurteilt werden.

Lichtblitz gezündet. Aus der Sicht der Galaxie B kommt der Blitz zuerst am hinteren Ende

von A an, dann gleichzeitig an beiden Enden der Galaxie B und zuletzt am vorderen Ende von

A. Aus Sicht der Galaxie A kommt der Blitz zuerst am Ende von B an, dann an beiden Enden

von A und am Schluß an der Spitze von B. Was in einer Galaxis als gleichzeitig interpretiert

wird, erfolgt also in der anderen nacheinander.

β) Gleichgebaute Uhren gehen in verschiedenen Inertialsystemen nicht gleich schnell.

Zum Beweis konstruieren wir eine Lichtuhr, in der ein Lichtstrahl zwischen zwei Spiegeln mit

dem Abstand l hin und her reflektiert wird und die Perioden gezählt werden. In einem ruhen-

den Bezugssystem S seien zwei synchronisierte Uhren A und B. In einem bewegten System S´

ist eine gleich gebaute Uhr C, die die gleiche Zeit anzeigt, wie A, wenn A und C am gleichen

Ort sind (Abb. 240).

Abb.240: Unten ist ein ruhendes System S mit zwei synchronisierten Uhren, die nacheinander ab-

gelesen werden. Oben ist ein bewegtes System S´, mit einer gleich gebauten Uhr. Diese wird bei

der Begegnung mit A auf 0 gestellt und bei der Begegnung mit B abgelesen. Sie zeigt eine andere

216

Page 218: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Wenn das Licht in der Uhr C einmal hin und her gelaufen ist, zeigt C die Zeit t´ = 2l/c an.

Von S aus gesehen dauert das Hin- und Herlaufen länger, da der Weg längs der Hypothenuse

zurückgelegt wird. Die angezeigte Zeit ist t = 2H/c. H läßt sich aus dem rechtwinkligen Drei-

eck ausrechnen.

t =2 (vt/2)2 + l2

c

Quadrieren und Ausnutzen der Bedinging t´ = 2l/c, also l = ct´/2 ergibt

tc2

2

tv2

2

= l2 =

ct /

2

2

t = t 1

1 − (v/c)2

Beispiel:

Es sei . Es folgt und t = 2t´.v = 32

c 1 − (v/c)2 = 1/2

Die Uhren im bewegten System scheinen also langsamer zu laufen. Von Uhr C aus gesehen

wird mit zwei Uhren in S verglichen, über deren Gleichzeitigkeit keine Aussage gemacht wer-

den kann. Vergleicht man zwei Uhren in S´ auf gleiche Weise mit A, ergibt sich die Aussage

t´ = 2t. Diese Aussagen ist auch für anders gebaute Uhren korrekt. Gäbe es Uhren, die bei dem

Vergleich zu einem anderen Ergebnis führen würden, könnte man unter den verschiedenen

Inertialsystemen eins auswählen, nämlich das, mit dem kleinsten Gangunterschied zwischen

den Uhren. Dieses wäre ein Verstoß gegen das Relativitätsprinzip, das ja die Auszeichnung ei-

nes der Inertialsysteme verbietet. Man kann also auch biologische Uhren verwenden. Bei dem

obigen Beispiel würde das heißen, daß z.B. der Mensch C wäre mit der dargestellten Methode

gemessen nur halb so alt wie Mensch B.

γ) Längen werden unterschiedlich gemessen

Wie beim Zeitvergleich ist der Längenvergleich senkrecht zu v unkritisch. Aber parallel zu v

hängt das Ergebnis einer Längenmessung eines bewegten Körpers von der Definition der

Gleichzeitigkeit ab. Will man von S aus die Länge eines bewegten Objektes messen, so wird

man gleichzeitig zwei Markierungen anbringen. Von S´ aus gesehen erfolgen die

217

Page 219: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Markierungen nicht gleichzeitig, so daß man die Längenmessung gegenüber der eigenen als

falsch beurteilt.

c) Lorentztransformation

α) Herleitung der Transformationsformeln

Zur formalen Herleitung der Transformationsgleichungen, die x, t in x´, t´ transformieren, ma-

chen wir folgende Voraussetzungen:

Eine in S geradförmige, gleichförmige Bewegung eines Massenpunktes ist auch von S´

aus gesehen gleichförmig, geradlinig. Diese Forderung folgt aus dem Relativitätsprinzip.

Wenn nämlich von S´ aus die Bewegung nicht gleichförmig, geradlinig wäre, wäre S

vor S´ ausgezeichnet

Die Lichtgeschwindigkeit ist in S und S´ gleich groß.

Für v → 0 ergibt sich die Galilei Transformation.

Aus der ersten Forderung folgt, daß die Transformationsgleichungen linear sein müssen. Setzt

man außerdem den Zeitnullpunkt so fest, daß bei t = 0 und x = 0 auch x´ = 0 und t´ = 0, so

bleibt die Form

x´ = Ax + Bt

t´ = Cx + Dt (1)

Der Ursprung von S´soll sich in S mit der Geschwindigkeit v bewegen. Wegen der dritten

Forderung muß sich dann der Ursprung von S in S´ mit -v bewegen.

Aus x´ = 0 folgt dann Adx + Bdt = 0 und aus dx/dt = v folgt dann v = −BA

Aus x = 0 folgt x´ = Bt und t´ = Dt und aus dx´/dt´ = -v folgt dann v = −BD

Aus dieser Beziehung liest man ab

D = A

B = -vA

Berücksichtigt man dies in Gleichung (1), erhält man

x´ = Ax - vAt

218

Page 220: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

t´ = Cx + At (2)

Wegen der Konstanz der Lichtgeschwindigkeit muß gelten

x´2 = (ct´)2 (3)

x2 = (ct)2 (4)

Gleichung (2) wird in Gleichung (3) eingesetzt:

(Ax - vAt)2 = (Cx + At)2c2

Die Klammern werden ausmultipliziert

A2x2 - 2A2xvt + v2A2t2= c2C2x2 + 2c2CAxt + c2A2t2

und nach Potenzen von x bzw. t geordnet

x2(A2 - c2C2) - 2xtA(Av + c2C) + t2A2(v2 - c2) = 0

Vergleicht man die Koeffizienten mit denen von Gleichung (4) in der Form x2 - (ct)2 = 0, so

erhält man

A2 - c2C2 = 1

vA + c2C = 0

(v2 - c2)A2 = -c2

Aus der letzten Gleichung folgt sofort

A = 1

1 − v2/c2

Hiermit läßt sich aus der zweiten Gleichung C berechnen

219

Page 221: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

C = − vc2

A = −v/c2

1 − v2/c2

In Gleichung (2) eingesetzt führt zur Lorentz Transformation

(5)

x / = x − vt

1 − v2/c2t / =

t − (v/c2)x

1 − v/c2

Zur Symmetrisierung setzt man ct = τ und ct´ = τ´. τ ist also die Zeit in Einheiten der Laufzeit

des Lichtes über die Distanz von 1m gemessen. Die Lorentz Transformation hat dann die

Form

x / =x − v

c (tc)

1 − v2/c2t /c =

(tc) − vcx

1 − v2/c2

Mit den Abkürzungen β = v/c und ergibt sich die übersichtliche Form derγ = 1

1 − β2

Lorentztransformation

x / = γ(x − βτ), τ / = γ(τ − βx)

β) Diskussion der Lorentz Transformation

i. Übergang zur Galilei Transformation

Abb. 241: Die Funktion γ(β) hat einen relativ scharfen

Knick bei β = 1.

Entwickelt man die Transformationsformeln in einer Taylorentwicklung nach β bis zum linea-

ren Glied, d.h. so, daß β so klein sein soll, daß alle Terme mit β2 = (v/c)2 vernachlässigt

220

Page 222: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

werden können, während solche mit v/c mitgenommen werden, so geht γ gegen 1. Für βτ wird

wieder vt geschrieben. Die Transformation für x lautet dann

x´ = x -vt

vt ist von der Größenordnung x und muß deshalb berücksichtigt werden. Die Transformation

der Zeit lautet also

t´ = t - (v/c2)x = t - (v2/c2)(x/v).

Wegen der gleichen Größenordnung von x und vt fällt hier der zweite Term weg. Die Lorentz

Transformation geht also für kleine Relativgeschwindigkeiten v in die Galilei Transformation

über. Wie Abb. 241 zeigt, bleibt γ in einem weiten Bereich der Geschwindigkeiten nahe 1, so

daß die Abweichung von der Galileitransformation erst in der Nähe der Lichtgeschwindigkeit

zum Tragen kommt.

ii. Die Umkehrtransformation

Durch Auflösen der Lorentz Transformation nach x und τ erhält man mit 1 - β2 = 1/γ2

x /

γ = x − βττ /

γ = τ − βx

Durch Multiplikation der ersten Gleichung mit β erhält man

βx /

γ + τ /

γ = τ(1 − β2) = τγ2

→ τ = γ(τ / + βx/)

Durch Multiplikation der Zweiten Gleichung mit β und Addition mit der ersten Gleichung

x /

γ +βγτ / = x(1 − β2) → x = γ(x / + βτ/)

Wie zu erwarten, ergeben sich die Transformationsgleichungen für x und τ aus den Gleichun-

gen für x´ und τ´, indem man v durch -v ersetzt.

iii. Die Zeitdilatation

Eine Uhr, die in x´ = 0 ruht, zeigt die Zeit τ´. Wie groß ist dann τ?

221

Page 223: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Aus der Lorentztransformation mit x´ = 0 folgt τ´ = γ(τ - βx) und x = βτ. Durch Eliminieren

von x erhält man

τ´ = γ(τ − β2τ) = γ(1 − β2)τ = τ/γ

(6)τ / = τγ

Da γ > 1, zeigt die Uhr in S´ weniger an als die in S. Eine Uhr, die in x = 0 ruht, zeigt die Zeit

τ. Wie groß ist τ´? Aus der Lorentz Transformation mit x = 0 folgt

.τ / = γτ

Die Uhren im jeweils anderen System zeigen jeweils eine kleinere Zeit an. Dies ist nicht para-

dox, da der Zeitvergleich einer Uhr in S mit mehreren Uhren in S´gemacht wird, über deren

Gleichzeitigkeit man nichts weiß und umgekehrt. Beim Zwillingsparadoxon vergleicht man

nur zwei Uhren. dafür muß aber die eine von ihnen zwischendurch beschleunigt werden.

iv. Die Längenkontraktion

Ein Maßstab, der so gelegt ist, daß die Enden bei x1´ = 0 und x2´ = L in S´ ruhen, wird von S

aus zur Zeit τ = 0 gemessen. Dann ergibt die Lorentz Transformation

(7)L / = γL

Der Maßstab erscheint von S aus in Bewegungsrichtung kontrahiert.

v. Die Geschwindigkeitstransformation

Ein Körper habe in S die Geschwindigkeit u = . Welche Geschwindigkeit mißt man in S´?•x

Durch Differentiation der Lorentz Formeln nach der Zeit erhält man

dx´ = γ(dx - βdτ) = γ(ux - β)dτ

dτ´ = γ(dτ − βdx) = γ(1 - βux)dτ

und damit ux/ = dx/

dτ /=

ux − β1 − βux

222

Page 224: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Da dy´ = dy und dz´ = dz, ergeben die anderen Komponenten

uy/ = dy/

dτ /= uy

1γ(1 − βux)

uz/ = dz /

dτ /= uz

1γ(1 − βux)

Um die Zeit in die Sekundenskala zurück zu transformieren, beachtet man, daß dτ = cdt.

u = dxdτ

= dxcdt

= vc

vx/ = vx − v

1 − v⋅vx

2

(8)vy/ = vy

1 − β2

1 − v⋅vx2

vz/ = vz

1 − β2

1 − v⋅vx

2

Nach vx aufgelöst ergibt die erste Gleichung . Setzt man beispielsweise v/x = c, sovx = c + v

1 + v⋅vx/

2

folgt . Klassisch würde man in diesem Beispiel vx= v + c erwarten. Relativi-vx = c + v1 + v = c

stisch ist die resultierende Geschwindigkeit kleiner. Durch die Regeln der Geschwindig-

keitstransformation bleibt die resultierende Geschwindigkeit unter c. Hier muß eine Warnung

angebracht werden! Rechnerisch können Geschwindigkeiten größer als c vorkommen, z.B.

wenn in einem System zwei Lichtstrahlen gegeneinander laufen, geht die Änderung des Ab-

standes der Strahlenfronten mit 2c. Ebenso kann der Schnittpunkt zweier leicht geneigter Ge-

raden, die fast senkrecht zur Geschwindigkeit verlaufen eine beliebig hohe Geschwindigkeit

haben (s. Abb. 242). Diese ist allerdings physikalisch nicht relevant. Insbesondere kann man

mit ihr keine Signale übertragen. Die maximale Geschwindigkeit eines Teilchens ist die des

Lichtes im Vakuum c0. In Medien, in denen die Lichtgeschwindigkeit kleiner als die des Va-

kuums ist, können sich Körper mit einer größeren Geschwindigkeit v bewegen als die des

Lichtes in diesem Medium c < v < c0.

223

Page 225: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 242: Es gibt auch in der Relativitätstheorie Geschwindig-

keiten, die größer als die Lichtgeschwindigkeit sind.

vi. Transformation des Impulses

Um die Transformation des Impulses senkrecht zur Relativbewegung der Systeme S und S´ zu

ermitteln, wird gefordert, daß bei einem Stoß von jedem System aus die Impulserhaltung gel-

ten soll. Es wird ein zentraler Stoß von zwei gleichen Teilchen im Schwerpunktsystem be-

trachtet (s. Abb. 243).

Abb. 243: Die Impulserhaltung soll von jedem System aus

gelten.

Die Massen m und die Geschwindigkeiten u beider Teilchen sind vor und nach dem Stoß

gleich groß. Von einem System S aus betrachtet, das sich mit v = ux parallel zur x - Achse be-

wegt, und einem S´, daß sich mit v = -ux bewegt, müssen die Figuren wegen der Gleichheit

der beiden Teilchen völlig symmetrisch aussehen. Daher ist die senkrechte Komponente des

Impulses p2⊥ die Größe, die man erhält, wenn man p1 von dem System S nach S´ transformiert

p2⊥ ´ = p1⊥

Abb. 244: Der gleiche Stoß wie in Abb. 243 von ver-

schiedenen Inertialsystemen aus gesehen.

Da gefordert wurde, daß bei einem Stoß weiterhin p1⊥ = p2⊥ gelten soll, erhält man aus

p2⊥ ´ = p1⊥ und p1⊥ = p2⊥

224

Page 226: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

p1⊥ = p1⊥ ´.

Daher ändert sich bei Lorentztransformation die senkrecht zu v stehende Komponente des Im-

pulses nicht!

p⊥ = p⊥ ´

vii. Transformation der Masse

Die Masse definiert man über

p = mv

Da wir zunächst nur die Transformation von p⊥ kennen, betrachten wir ein Teilchen, das sich

in S senkrecht zur Geschwindigkeitsrichtung der beiden Systeme zueinander bewegt. Um ein-

fache Verhältnisse zu erhalten, soll vy sehr klein sein, so daß von S aus gesehen noch keine re-

lativistischen Effekte berücksichtigt werden müssen. Für ein Teilchen, das sich entlang der y -

Achse bewegt, ist

p⊥ = m0uy

Von S´ aus gesehen

p⊥ ´ = mvuy´

Wegen der Transformation von uy mit ux = 0 erhält man

uy´ = uy/γ

und wegen p⊥ = p⊥ ´

mv uy/γ = m0uy

225

Page 227: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

(9)mv = γm0mv = m0

1 − (vc )2

m0 ist die Ruhemasse, mv die dynamische Masse. mv wächst bei steigender Geschwindigkeit

gegen unendlich, wenn die Geschwindigkeit sich der Lichtgeschwindigkeit nähert. Man kann

also keinen Körper mit konstanter Kraft auf eine höhere Geschwindigkeit als die Lichtge-

schwindigkeit beschleunigen. c ist der asymptotische Grenzwert. Bei der Konstruktion von

Teilchenbeschleunigern muß dieses Anwachsen der Masse berücksichtigt werden.

Mit der Transformationsformel für m und u lassen sich die Transformationsformeln für alle

übrigen Komponenten von p ableiten. Ebenso die Transformationsformeln für die Kraft:

(10)F = •p

viii. Die kinetische Energie

Die kinetische Energie errechnet man wie in der klassischen Mechanik aus der Arbeit, die

man verrichtet, um ein Teilchen von 0 auf v zu beschleunigen.

Ekin = ∫ Fds = ∫ ddt

(mu)ds = ∫ d(mu)dsdt

=mu

∫ ud(mu)

Durch partielle Integration

∫ udV = [uV] − ∫ Vdu

mit V = mu und dV = d(mu)

0

v

∫ ud(mu) = [mu2] 0

v−v

0∫ mudu = m0v2

1 − (v/c)2−

0

v

∫ m0udu

1 − (u/c)2

Das Integral wird gelöst mit der Substitution ξ = 1 - (u/c)2, wobei dann .dξ = − 22udu

0

v

∫ udu

1 − (u/c)2= −c2

20

v

∫dξ

ξ= −c2

1 − u2/c2 0

v

226

Page 228: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Dadurch wird die kinetische Energie

Ekin = m0v2

1 − v2/c2+ m0c2 1 − v2/c2 − m0c2

Der zweite Term wird mit der Wurzel erweitert

Ekin = m0v2 + m0c2 − m0v2

1 − v2/c2− m0c2 = (m − m0)c2

(11)Ekin = (m − m0)c2

Der Gewinn an kinetischer Energie entspricht dem Gewinn an Masse. Für kleine Geschwin-

digkeiten kann der Wurzelausdruck im Nenner entwickelt werden

Ekin = m0c2

1

1 − β2− 1

≈ m0c2

1 − 12

β2 − 1 = 1

2m0v2

Man erhält also den klassischen Ausdruck für die kinetische Energie zurück. Der relativisti-

sche Ausdruck für die kinetische Energie (Gleichung 11) legt nahe, daß die Ruhemasse auch

in andere Energieformen umgewandelt werden kann. Man bezeichnet

(12)E = Ekin + m0c2 = m0c2

1 − v2/c2= mc2

die Gesamtenergie des Körpers. Oft ist es bequemer die Gesamtenergie in Abhängigkeit von

m0 und p auszudrücken statt von m0 und v. Aus

p = mv

E = mc2

folgt v = (p/E) c2. Eingesetzt in Gleichung (12) in der Form E2(1 - v2/c2) = (m0c2)2 ergibt

(13)E2 − p2c2 = (m0c2)2

d) Minkowski Diagramme

227

Page 229: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

α) Was sind Minkowski Diagramme ?

Ein Minkowski Diagramm stellt den x/t Raum des Systems S in rechtwinkligen Koordinaten

dar. Das Weg - Zeit Gesetz des Ursprungs von S´, x´ = 0, wird als Achse t´eingezeichnet. Da

x´ = γ(x − βτ)

τ´ = γ(τ − βx)

erhält man für x´ = 0 die Gerade τ = (1/β)x. Die Gerade τ´ = 0 wird als Achse x´ eingezeich-

net. aus τ´ = 0 folgt τ = βx. Die x´ und τ´ Achsen sind symmetrisch zur Winkelhalbierenden

von τ und x. τ´ und x´ spannen ein schiefwinkliges Koordinatensystem auf, in dem man die

Lage eines Ereignisses (x´, τ´) ablesen kann, indem man durch den Punkt (x´, τ´) Parallele zu

den Achsen τ´ und x´ zeichnet und die Achsenabschnitte abliest (Abb. 246).

Abb. 245: Zwei gegeneinander bewegte Koordinatensysteme

im Minkowski Raum dargestellt.

Abb. 246: Wie man in einem schiefwinkligen Koordinatensy-

stem die Koordinaten abliest.

Gleichzeitig kann man die zu x´, τ´ gehörenden Werte x, τ im Koordinatensystem x/t wie üb-

lich ablesen. Um dies quantitativ möglich zu machen, müssen die Einheitsabschnitte auf den

Achsen angegeben werden. x = 1, τ = 0 und x = 0, τ = 1 können direkt eingetragen werden

(Abb. 247). Der Einheitsabschnitt auf der x´ - Achse ist gegeben durch

x´= 1, τ´ = 0

γ(x − βτ) = 1

γ(τ − βx) = 0

228

Page 230: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Aus der letzten Gleichung folgt τ = βx. Dies in die vorletzte eingesetzt γ(x − β2x) = 1, und mit

der Definition von γ: x = γ > 1. Entsprechend erhält man für den Einheitsabschnitt auf der τ´ -

Achse

τ´= 1, x´= 0

γ(x − βτ) = 0

γ(τ − βx) = 1 = γ(1 − β2)τ

und damit τ = γ > 1.

β) Zeitdilatation und Längenkontraktion im Minkowski Diagramm

Abb. 248: Zeitdilatation am Minkowski Diagramm

abgelesen.

Wenn τ´ = 1 und x´ = 0 folgt nach Abb. 248 τ > 1. Abb. 249 zeigt, wie sich die Längenkon-

traktion im Minkowski Diagramm darstellt. Ein Einheitsstab, der in S´ ruht, wird in S ausge-

messen. Man hat also zwei in S gleichzeitige Ereignisse, sagen wir bei τ = 0. In S´ hatte man

durch gleichzeitige Messung der Enden, etwa zur Zeit τ´ = 0 die Länge L´ gemessen. An der

Konstruktion von Abb. 249 erkennt man, daß die in S gemessene Länge kürzer ausfällt.

Abb. 249: Längenkontraktion abgelesen am Minkowski

Diagramm.

γ) Gegenwart, Vergangenheit und Zukunft

229

Page 231: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Abb. 250: Die zeitliche Reihenfolge der Ereignisse A

und C (gekennzeichnet durch die dicken Punkte) kehrt

sich beim Übergang vom System S nach S´ um.

Abb. 251: Wieso die Kausalität verletzt würde, wenn man Si-

gnale mit Überlichtgeschwindigkeit senden könnte

Es gibt Ereignisse A und C (s. Abb. 250), für die in S gilt τC > τA und in S´ gilt τC´ < τA´. Die-

se Tatsache erweckt zunächst den Eindruck, in der Relativitätstheorie sei die Kausalität ver-

letzt. Um das zu verdeutlichen, werden zwei Ereignisse A und B (Arbeit und Bericht) betrach-

tet (Abb. 251), die in S nacheinander liegen. Wenn es gelänge, von B aus eine Nachricht nach

C , das in S´ ruht, zu schicken und von dort nach A, wobei das Signal von B nach C in S be-

trachtet und das Signal von C nach A von S´aus betrachtet mit positiver Zeitrichtung liefe,

könnte man in A Informationen über die Zukunft erhalten (oder die Vergangenheit beeinflus-

sen). Da solche Möglichkeit unser Weltbild erheblich stören würde, schließt man derartige Si-

gnale aus. Im Minkowski Diagramm haben sie Steigungen < 1 und damit Geschwindigkeiten

v > c. Um die Kausalität zu wahren, dürfen in der Relativitätstheorie keine Signale mit v > c

möglich sein. Es gibt daher auch keine starren Körper.

Abb. 252: In der Relativitätstheorie muß neu definiert wer-

den, was Vergangenheit, Gegenwart und Zukunft heißt.

Abb. 252 zeigt einen Minkowski Raum mit zwei Ortskoordinaten. In ihm liegen alle Ereignis-

se, die von A beeinflußbar sind, in einem Kegel mit der Steigung 1 um die positive τ - Achse.

Der Raum, der innerhalb dieses Kegels liegt, umfaßt alle Ereignisse, die in der Zukunft von A

230

Page 232: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

Liegen. Die Ereignisse in einem Kegel um die negative τ - Achse können A beeinflussen. Sie

bilden die Vergangenheit von A. Alle Ereignisse, die zwischen den Kegeln liegen, können A

nicht beeinflussen und von A nicht beeinflußt werden. Sie bilden die Gegenwart. Gegenwärti-

ge Ereignisse können durch geeignete Lorentz Transformationen so transformiert werden, daß

die Reihenfolge der Zeitpunkte sich umkehrt. Abstände zwischen gegenwärtigen Ereignissen

sind raumartig, die übrigen zeitartig.

δ) Der relativistische Doppler Effekt

Im System S sei ein Sender, der im Abstand TS Signale aussendet. Wenn der Sender sich mit

der Geschwindigkeit v vom Empfänger entfernt, treffen die Signale um ∆TS = vTS/c später ein,

da ihre Laufzeit sich durch die zusätzliche Entfernung vTS erhöht. Der Empfänger mißt die Si-

gnale also im Zeitabstand

TE = TS + vcTs =

1 + vc

Ts

Wegen der Zeitdilatation geht die Senderuhr langsamer

TS =TS

/

1 − v2/c2

Setzt man dies in die Gleichung für TE ein, erhält man

(14)TE = TS/ 1 + v

c

1 − v2/c2 TE = TS/ 1 + v/c

1 − v/c

Hiermit läßt sich die Frequenzverschiebung von Licht berechnen, das von einer Quelle aus-

geht, die sich relativ zum Beobachter mit der Geschwindigkeit v bewegt.

ε) Ein Zwillingsparadoxon

Es werde ein Zeitvergleich zwischen einer in einem Inertialsystem ruhenden Uhr A und einer

zweiten B durchgeführt, die sich mit konstanter Geschwindigkeit v fortbewegt, umkehrt und

mit gleicher Geschwindigkeit zurückkommt. Die Zeit für das Umkehren der Geschwindig-

keitsrichtung soll so kurz sein, daß sich in Ihr die Anzeige der Uhren nicht ändert. Wegen der

Zeitdilatation müssen wir folgern, daß bei der Rückkehr die Uhr B eine kleinere Zeit als die

Uhr A anzeigt. Stellt man sich vor, daß A und B eineiige Zwillinge seien, so muß man folgern,

231

Page 233: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

daß nach der Rückkehr B Jünger als A ist. Um Die Ursache für diese paradox erscheinende

Behauptung zu verfolgen, diskutieren wir ein konkretes Beispiel.

Wir betrachten Zwillinge A und B, von denen B sich mit der Geschwindigkeit v/c = 3/5 2,5

Jahre lang(von der Erde aus gemessen) von A entfernt und innerhalb von 2,5 Jahren zurück-

kommt, so daß er insgesamt von A aus gesehen tA = 5 Jahre unterwegs ist. Die Uhr von B

zeigt dann

Abb. 253: Die von B ausgesandten Signale.

Abb. 254: Die von A ausgesandten Signale.

Jahre an.tB = tA 1 − v2/c2 = tA 1 − 9/25 = 4

Um ihr Alter zu vergleichen senden sie in gleichen Abständen, etwa alle Jahre Signale aus.

Das nach einem Jahr von der Erde ausgesandte Signal erreicht B wegen des Dopplereffektes

nach der Zeit

JahreTB = 1 + v/c1 − v/c

TE = 1 + 3/51 − 3/5

= 2

d.h. genau auf der Hälfte der Reise. In dieser Zeit hat B zwei Signale ausgesandt, die A in den

ersten vier Jahren erreichen. Auf dem Rückflug sendet A vier Signale. In der Formel für den

Dopplereffekt ersetzt man v durch -v. Der Zeitabstand der in B empfangenen Signale ist dann

232

Page 234: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

JahrTB = TA1 − v/c1 + v/c

= TA12

= 12

d.h. die vier Signale werden in den 2 Jahren des Rückfluges empfangen, während B noch zwei

Signale aussendet, die von A im letzten Jahr empfangen werden. Die Verhältnisse sind in den

Abb. 253 und 254 in Minkowski Diagrammen dargestellt. A sendet also fünf Signale, von de-

nen B eins auf dem Hinflug und vier auf dem Rückflug empfängt. B sendet vier Signale aus,

von denen zwei A in den ersten 4 Jahren und zwei im letzten Jahr empfängt. Der Weltraumrei-

sende B ist also nach der Rückkehr um ein Jahr jünger als sein stationärer Zwillingsbruder A.

Durch die mitgeteilten Signale kennt jeder das Alter des anderen.

e) Experimente mit Uhren

1971 machten Hafele und Keating ein Experiment, bei dem sie mit vier kommerziellen Atom-

uhren in Linienflugzeugen einmal in westlicher und einmal in östlicher Richtung die Welt

umflogen und die Anzeige der bewegten und stationär auf der Erde verbliebenen Uhren mit-

einander verglichen. Zur Berechnung des erwarteten relativistischen Effektes betrachtet man

das System von einem Inertialsystem aus. Die Bewegung der Uhr auf der Erde durch deren

Rotation und ein Gravitationseffekt aus der allgemeinen Relativitätstheorie, der von der glei-

chen Größenordnung wie der Geschwindigkeitseffekt ist, müssen mit berücksichtigt werden.

1975 - 76 führte eine Gruppe aus Maryland eine Präzisionsmessung durch. Atomuhren wur-

den über Zeiten von 15 - 20 Stunden in 10 km Höhe geflogen. Der Gang der Uhren wurde

durch Laserblitze übertragen. Die Flugbahn wurde mit Radar überwacht. Aufgrund des Gravi-

tationseffektes gehen in dieser Zeit die Flugzeuguhren um 53ns schneller, aufgrund des Ge-

schwindigkeitseffektes um 6ns langsamer. Es ergab sich eine Übereinstimmung mit dem theo-

retischen Effekt mit einer Meßunsicherheit von etwa 1,6%.

Der Gravitationseffekt ist ein Effekt der allgemeinen Relativitätstheorie. Seine Größe kann

man ableiten, wenn man weiß, daß die Energie eines Photons

E = hν

233

Abb. 255: Die Zeitdilatation kann man mit Atomuhren im

Flugzeug direkt messen.

Page 235: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

ist, mit h = 6,6·10-34Js. Seine Masse ist gegeben durch mc2 = E, also m = hν/c2. Der Unter-

schied in potentieller Energie im Gravitationsfeld ist

∆Epot = mgH = hν2

gH

Man nimmt an, daß die Energieabnahme des Photons gleich der Differenz der durchlaufenen

potentiellen Energie ist.

∆E = h∆ν = hνc2gH

∆νν = ∆t

t= Hg

2

Da man das Licht als eine spezielle Uhr ansehen kann, deren Zeitanzeige durch die Anzahl der

Perioden des Lichts gegeben ist, kann man Licht zum Vergleichen zweier Uhren in unter-

schiedlicher Höhe verwenden. Um den Gang der Uhr A im Tal der Station B auf dem Berg

mitzuteilen, wird Licht von A nach B gesandt. Dabei verliert es Energie und damit Frequenz.

Die Uhr im Tal scheint also langsamer zu gehen.

f) Experimente mit Elementarteilchen

Die Zahl zerfallender Elementarteilchen nimmt exponentiell ab wie beim radioaktiven Zerfall.

Nach einer Halbwertszeit tH ist nur noch die Hälfte der anfänglichen Teilchenzahl vorhanden.

Myonen sind elektronenartige Teilchen mit einer Masse mµ =206 me, die mit einer Halbwerts-

zeit tH = 1,52 µs in ein Elektron und zwei Neutrinos zerfallen.

µ− → e− + νe + νµ

1941 entdeckten Rossi und Hall, daß Myonen, die durch kosmische Strahlung am oberen

Rand der Atmosphäre erzeugt werden und auf die Erdoberfläche fallen, eine längere Halb-

wertszeit haben als ruhende Myonen. Sie würden ohne Zeitdilatation die Erdoberfläche nicht

erreichen. Von den Myonen aus gesehen wird die Dicke der Erdatmosphäre kontrahiert.

Quantitativ wurden Experimente mit Myonen an Beschleunigern durchgeführt (z.B. Meyrin,

Cern). Man bringt Myonen auf eine Geschwindigkeit 0,99942·c. Nach der Reletivitätstheorie

ist dann die Lebensdauer

234

Page 236: G r u n d l a g e n d e r P h y s i k I Mechanik · I N H A L T KAPITEL A: Einleitung Seite 1. Was ist Physik? 6 2. Messen, Einheiten 8 a) Größen und Zahlenwerte 8 b) Zugeschnittene

τ = τ 0

1 − v2/c2= 44, 6µs

Das Experiment gab Übereinstimmung innerhalb einer Fehlergrenze von 0,2%.

g) Andere Evidenzen

Heute ist der Beitrag relativistischer Effekte nicht nur im wissenschaftlichen Interesse, son-

dern er muß bei einer ganzen Reihe von technischen Geräten berücksichtigt werden, damit

diese ordnugsmäßig funktionieren. Bei der Funknavigation ist die erforderliche Genauigkeit

nur auf grund der Unabhängigkeit der Lichtgeschwindigkeit vom Referenzsystem möglich.

Teilchenbeschleuniger müssen die Massenzunahme der Teilchen berücksichtigen, um im rich-

tigen Moment beschleunigende Felder anzuwenden.

235