35
∆G . Forsterit - Fayalit 0.1 0 1 0.2 0.3 0.4 0.9 0.6 0.5 0.8 0.7 X B ??? ??? Δ a G Fo T , P Δ a G Fa T , P MgSi 0.5 O 2 FeSi 0.5 O 2 x A Δ a G A + x B Δ a G B Ideale Lösungen

G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

Embed Size (px)

Citation preview

Page 1: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆G

z.B. Forsterit - Fayalit

0.1

0

10.2 0.3 0.4 0.90.60.5 0.80.7

XB

???

???

Δ aGFoT ,P

Δ aGFaT ,P

MgSi0.5O2 FeSi0.5O2

xA ⋅ΔaGA + xB ⋅ΔaGB

Ideale Lösungen

Page 2: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

VA

NB

VB

N=NB+NA

V

∆Smix = ?∆Hmix = ?

∆Gmix = ∆Hmix-T· ∆Smix

Page 3: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

Der erste Hauptsatz der Thermodynamik(die folgende Formulierung setzt den zweiten Hauptsatz voraus)

dU = Q + A

dU = T·dS - P·dV

Definitionen

H = U + PVG = U + PV - TSG = H -TS

Page 4: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

Wie wir uns ein ideales Gas vorstellen

v

Partikel (Masse = M, Grösse = 0), die sich mit der Geschwindigkeit v in alle Richtungen bewegen.

Temperatur: ist von der Geschwindigkeit abhängigDruck: Entsteht wegen Impulserhaltung bei elastischem Stoss auf die Wände

Daraus folgt ... n·R·T = P·V

R = Gaskonstante = k·N = 8.3144 (J/mol K)N = Avogadro-Konstante = 6.022·1023 (1/mol)k = Boltzmann-Konstante = 1.38 ·10-23 (J/K)

Page 5: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

VA

NB

VB

N=NB+NA

V

∆Smix = ?∆Hmix = ?

∆Gmix = ∆Hmix-T· ∆Smix

Page 6: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

AA

AA

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

1. isotherme Expansion

2. reversibles Mischen

NA

VA = V·(NA/N)

NB

VB = V·(NB/N)

NA

V

NB

V

NB+NA

V

NA+NB=N

Page 7: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

Irreversibel Reversibel

T=constdU=0Q≠0A≠0

(∆T=0)dU=0Q=0A=0

dU=TdS-PdV=0dS=(P/T)dV

ΔS = dS =1

2

∫P

TV0

V

∫ dV =ΔA

T

(ideales GasP

T=R

V)

ΔS =R

VdV

V0

V

ΔS = R ⋅ lnV

V0

⎝ ⎜

⎠ ⎟

ΔS = N ⋅k ⋅ lnV

V0

⎝ ⎜

⎠ ⎟

V0

V

V0

V

isotherme Expansion

∆G = ∆U + ∆(PV) - ∆(TS)

ideales Gas: PV=RT, ∆U=0, ∆T=0

∆G = -T·∆S

(Versuch von Gay-Lussac)

Page 8: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

AA

AA

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

1. isotherme Expansion: ∆S=N·k·ln(V/V0)

2. reversibles Mischen

NA

VA = V·(NA/N)

NB

VB = V·(NB/N)

NA

V

NB

V

NB+NA

V

NA+NB=N

Page 9: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

A

AA

A

A

AA

AA

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

V

NB

V

NB+NA

V

∆S = ?

2. reversibles Mischen

Page 10: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

0

AA

A

A

A

A

A AA

A

A A

NA

VNB

V

Reversibles Mischen

P = pA P = pB

Page 11: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

1

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 12: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

2

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

P=pA P=pA

Page 13: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

3

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 14: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

4

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 15: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

5

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 16: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

6

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 17: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

7

AA

A

A

A

A

A AA

A

A A

Reversibles Mischen

Page 18: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

8

AA

A

A

A

A

A AA

A

A A

NA + NB

V

Reversibles Mischen

P = pA+pB

Page 19: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

B

BB

B

B BB

BB

B B

BB

9

AA

A

A

A

A

A AA

A

A A

NA + NB

V

(∆T=0)Q=0A=0dU=0

Reversibles Mischen

∆S = 0

Page 20: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

A

AA

A

A

AA

AA

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

V

NB

V

NB+NA

V

∆S = 0

Page 21: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

AA

AA

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

2. reversibles Mischen ∆S=0

NA

VA = V·(NA/N)

NB

VB = V·(NB/N)

NA

V

NB

V

NB+NA

V

NA+NB=N

1. isotherme Expansion: ∆S=N·k·ln(V/V0)

Page 22: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

VA

NB

VB

N=NB+NA

V

∆Gmix = ∆Hmix-T· ∆Smix

ΔSmix = N ⋅k ⋅ lnV

V0

⎝ ⎜

⎠ ⎟

ΔHmix = 0

Page 23: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen
Page 24: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

isotherme Expansion

∆S = k· (NA·ln(N) - NA·ln(NA) + NB·ln(N) - NB·ln(NB))

ΔS = NA ⋅k ⋅lnV

V ⋅NAN

+ NB ⋅k ⋅lnV

V ⋅NBN

∆S = k· (N·ln(N) - NA·ln(NA) - NB·ln(NB))

∆S = k· ( N·ln(N) - N·xA ·ln(N·xA) - N·xB ·ln(N·xB) )

xA = NA/N NA = N·xA xA + xB = 1xB = NB/N NB = N·xB

∆S = k· ( N·ln(N) -N·xA ·ln(N) -N·xA ·ln(xA) -N·xB ·ln(N) - N·xB ·ln(xB) )

∆S = k·N ·( ln(N)·(1-xA-xB) -xA ·ln(xA) -xB ·ln(xB) )

∆S = -R ·( xA ·ln(xA) + xB ·ln(xB) )

∆S = -R ·∑( xi ·ln(xi) )

A

A

Page 25: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

BA

B

B

B

B

B

B

B

B

B

B

A

A A

A

A A

A

A

A

A

A

A

A

A

A

A

A

B

B

BB

B

B

BB

B

B

B

AAA

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

NA

VA

NB

VB

NB+NA

V

∆S = -R ·( xA ·ln(xA) + xB ·ln(xB) )

Page 26: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen
Page 27: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

isotherme Expansion

∆S = k· (NA·ln(N) - NA·ln(NA) + NB·ln(N) - NB·ln(NB))

ΔS = NA ⋅k ⋅lnV

V ⋅NAN

+ NB ⋅k ⋅lnV

V ⋅NBN

∆S = k· (N·ln(N) - NA·ln(NA) - NB·ln(NB))

xA = NA/N NA = N·xA xA + xB = 1

∆S = k· ( N·ln(N) - N·xA ·ln(N·xA) - N·xB ·ln(N·xB) )

xB = NB/N NB = N·xB

∆S = k· ( N·ln(N) -N·xA ·ln(N) -N·xA ·ln(xA) -N·xB ·ln(N) - N·xB ·ln(xB) )

∆S = k·N ·( ln(N)·(1-xA-xB) -xA ·ln(xA) -xB ·ln(xB) )

∆S = -R ·( xA ·ln(xA) + xB ·ln(xB) )

∆S = -R ·∑( xi ·ln(xi) )

A

A

Statistische Mechanik

Page 28: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆S = k· (N·ln(N) - NA·ln(NA) - NB·ln(NB)) Statistische Mechanik

Stirling'sche Formel:

ln n!( ) ≈ n ⋅ln n( ) +1

2⋅ln n( ) − n + ln 2Π

n=1023 ≈ 50 ≈ 25 1023 ≈ 0.9

ln n!( ) ≈ n ⋅ln n( ) − n

n ⋅ln n( ) ≈ ln n!( ) + n

∆S = k· (N·ln(N) - NA·ln(NA) - NB·ln(NB))

ΔS = k ⋅ ln N!( ) + N − ln(NA!) −NA − ln(NB!) −NB( )

ΔS = k ⋅ ln N!( ) − ln(NA!) − ln(NB!)( )

ΔS = k ⋅lnN!

NA!⋅NB!= k ⋅ln

N

NA

⎝ ⎜

⎠ ⎟

Page 29: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

ΔS = k ⋅lnN!

NA!⋅NB!

A

B

NA+NB=N

N!

NA!⋅NB!= Anzahl Möglichkeiten NA Atome A und NB Atome B auf N Gitterplätze zu verteilen.= Anzahl Zustände des Systems welche alle die gleiche Energie haben.= (wird etwa "thermodynamische Wahrscheinlichkeit" genannt)= w (in der statistischen Mechanik)

S' = k·ln(w)

Getrennte A und B: w = 1 S' = 0(Mischung - getrennt): ∆S = k·ln(w)

Page 30: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

isotherme Expansion

∆S = k· (NA·ln(N) - NA·ln(NA) + NB·ln(N) - NB·ln(NB))

ΔS = NA ⋅k ⋅lnV

V ⋅NAN

+ NB ⋅k ⋅lnV

V ⋅NBN

∆S = k· (N·ln(N) - NA·ln(NA) - NB·ln(NB))

xA = NA/N NA = N·xA xA + xB = 1

∆S = k· ( N·ln(N) - N·xA ·ln(N·xA) - N·xB ·ln(N·xB) )

xB = NB/N NB = N·xB

∆S = k· ( N·ln(N) -N·xA ·ln(N) -N·xA ·ln(xA) -N·xB ·ln(N) - N·xB ·ln(xB) )

∆S = k·N ·( ln(N)·(1-xA-xB) -xA ·ln(xA) -xB ·ln(xB) )

∆S = -R·( xA ·ln(xA) + xB ·ln(xB) )

∆S = -R·∑( xi ·ln(xi) )

A

A

∆S = k·ln(w)

Page 31: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆G

z.B. Forsterit - Fayalit

0.1

0

10.2 0.3 0.4 0.90.60.5 0.80.7

XB

??????

Δ aGFoT ,P

Δ aGFaT ,P

∆S = -R·( xA ·ln(xA) + xB ·ln(xB) )∆Gmix = -T·∆S∆Gmix = R·T·( xA ·ln(xA) + xB ·ln(xB) )

MgSi0.5O2 FeSi0.5O2

xA ⋅ΔaGA + xB ⋅ΔaGBA B

Page 32: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆G

z.B. Forsterit - Fayalit

MgSi0.5O2 FeSi0.5O2

0.1

0

10.2 0.3 0.4 0.90.60.5 0.80.7

XB

Δ aGFoT ,P

Δ aGFaT ,P

∆Gmix = R·T·( xA ·ln(xA) + xB ·ln(xB) )

xB xA

xA ⋅ΔaGA + xB ⋅ΔaGBA B

Page 33: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆G

z.B. Forsterit - Fayalit

MgSi0.5O2 FeSi0.5O2

0.1

0

10.2 0.3 0.4 0.90.60.5 0.80.7

XB

Δ aGFoT ,P

Δ aGFaT ,P

∆Gmix = R·T·( xA ·ln(xA) + xB ·ln(xB) )

xB xA

xA ⋅ΔaGA + xB ⋅ΔaGBA B

∆Gtot=xA·∆aGA+ xB· ∆aGB + R·T·( xA ·ln(xA) + xB ·ln(xB) )

Page 34: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen

∆G

z.B. Forsterit - Fayalit

MgSi0.5O2 FeSi0.5O2

0.1

0

10.2 0.3 0.4 0.90.60.5 0.80.7

XB

Δ aGFoT ,P

Δ aGFaT ,P

∆Gmix = R·T·( xA ·ln(xA) + xB ·ln(xB) )

xB xA

xA ⋅ΔaGA + xB ⋅ΔaGB

R·T·ln(xB)

R·T·ln(xA)

B

A

= 0B

0A=

∆Gtot=xA·A+ xB·B

A B

Page 35: G z.B. Forsterit - Fayalit 0.1 0 10.20.30.40.90.60.50.80.7 XBXB ??? MgSi 0.5 O 2 FeSi 0.5 O 2 Ideale Lösungen