42
High Precision Cavity Simulations Wolfgang Ackermann, Thomas Weiland Institut Theorie Elektromagnetischer Felder, TU Darmstadt August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1 11 th International Computational Accelerator Physics Conference ICAP 2012 August 19 - 24, 2012 Warnemünde, Germany

High Precision Cavity Simulations

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High Precision Cavity Simulations

High Precision Cavity Simulations

Wolfgang Ackermann, Thomas WeilandInstitut Theorie Elektromagnetischer Felder, TU Darmstadt

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

11th International Computational Accelerator Physics ConferenceICAP 2012August 19 - 24, 2012Warnemünde, Germany

Page 2: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

Outline

▪ Motivation▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples- Field patterns for selected modes

- Resonance frequency and quality factors

▪ Summary / Outlook

Page 3: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

Outline

▪ Motivation▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples- Field patterns for selected modes

- Resonance frequency and quality factors

▪ Summary / Outlook

Page 4: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

Motivation

▪Particle accelerators- FLASH at DESY, Hamburg

http://www.desy.de

TESLA 1.3 GHz

TESLA 3.9 GHz

RF Gun

LaserBunch

CompressorBunch

Compressor

Diagnostics Accelerating Structures Collimator Undulators

250 m

Page 5: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

Motivation

▪ XFEL: Main parameters of the accelerator

http

://xf

el.d

esy.

de/te

chni

cal_

info

rmat

ion/

tdr/t

dr

Page 6: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

Motivation

▪ Linac: Cavities

http

://xf

el.d

esy.

de/te

chni

cal_

info

rmat

ion/

tdr/t

dr

Page 7: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

Motivation

▪ Linac: Cavities

http

://xf

el.d

esy.

de/te

chni

cal_

info

rmat

ion/

tdr/t

dr

Page 8: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8

Motivation

▪ Linac: Cavities- Photograph

- Numerical modelhttp://newsline.linearcollider.org

CST Studio Suite 2012

upstream downstream

Page 9: High Precision Cavity Simulations

Motivation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

▪Superconducting resonator

9-cell cavity

Beamtube

Downstreamhigher order mode coupler

Input coupler

Upstreamhigher order mode coupler

High precisioncavity simulations

Page 10: High Precision Cavity Simulations

Motivation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

▪Superconducting resonator9-cell cavity

Downstreamhigher order mode coupler

Input coupler

Upstreamhigher order mode coupler

Page 11: High Precision Cavity Simulations

Motivation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

▪Superconducting resonator9-cell cavity

Downstreamhigher order mode coupler

Input coupler

Upstreamhigher order mode coupler

Variation:Penetration depth

Variation:Coupler orientation

Page 12: High Precision Cavity Simulations

Motivation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

▪ Input coupler and coupler to extract unwanted modes

Beam tube

Downstreamhigher order mode coupler

Coaxial input coupler

Coaxial line

Antennas

Page 13: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

Outline

▪ Motivation▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples- Field patterns for selected modes

- Resonance frequency and quality factors

▪ Summary / Outlook

Page 14: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Computational Model

▪Problem formulation- Local Ritz approach

continuous eigenvalue problem

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

Page 15: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

Computational Model

▪Eigenvalue formulation- Fundamental equation

- Matrix properties

- Fundamental properties

Notation:A - stiffness matrixB - mass matrixC - damping matrix

for proper chosen scalar and vector basis functions

orstatic dynamic

Page 16: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

Computational Model

▪Fundamental properties- Number of eigenvalues

- Orthogonality relation

Notation:A - stiffness matrixB - mass matrixC - damping matrixMatrix B nonsingular:

• matrix polynomial is regular• 2n finite eigenvalues

If the vectors and are no longer B-orthogonal:

Page 17: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

Computational Model

▪Numerical formulation- Function definition

Pär

Inge

lströ

m,

A N

ew S

et o

f H(c

url)-

Con

form

ing

Hie

rarc

hica

lB

asis

Fun

ctio

ns fo

r Tet

rahe

dral

Mes

hes,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,V

OL.

54,

NO

. 1, J

AN

UA

RY

200

6

FEM06: lowest order approximation(edge elements, Nedelec)

scal

arve

ctor

Page 18: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

Computational Model

▪Numerical formulation- Function definition

Pär

Inge

lströ

m,

A N

ew S

et o

f H(c

url)-

Con

form

ing

Hie

rarc

hica

lB

asis

Fun

ctio

ns fo

r Tet

rahe

dral

Mes

hes,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,V

OL.

54,

NO

. 1, J

AN

UA

RY

200

6

scal

arve

ctor

FEM12: higher order approximation

Page 19: High Precision Cavity Simulations

23. August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

Computational Model

▪Numerical formulation- Function definition

Pär

Inge

lströ

m,

A N

ew S

et o

f H(c

url)-

Con

form

ing

Hie

rarc

hica

lB

asis

Fun

ctio

ns fo

r Tet

rahe

dral

Mes

hes,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,V

OL.

54,

NO

. 1, J

AN

UA

RY

200

6

scal

arve

ctor

FEM20: higher order approximation

Page 20: High Precision Cavity Simulations

▪Spherical resonator

Computational Model

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

Fem20_G1: 2.1

TM 011: f0 = 65.456 MHz

Fem06_G1: 2.00

Number of elements in thousand

5 20 50 10010

10-1

10-2

10-3

10-4

10-5

Rel

ativ

e Fr

eque

ncy

Err

or

10-62

Page 21: High Precision Cavity Simulations

Computational Model

▪Geometry approximation- Tetrahedral mesh types

Linear element Curvilinear element

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

Page 22: High Precision Cavity Simulations

Computational Model

▪Geometry approximation

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

Planar elements Curvilinear elements

1701 tetrahedrons 1701 tetrahedrons

Page 23: High Precision Cavity Simulations

Computational Model

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

TM 011: f0 = 65.456 MHz

Fem20_G2: 4.0

Fem06_G2: 1.8

▪Spherical resonator

Number of elements in thousand

5 20 50 100102

10-1

10-2

10-3

10-4

10-5

Rel

ativ

e Fr

eque

ncy

Err

or

10-6

Page 24: High Precision Cavity Simulations

▪Spherical resonator

Computational Model

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

TM 011: f0 = 65.456 MHz

Fem06_G1: 2.0

Fem20_G2: 4.0

Number of elements in thousand

5 20 50 10010

10-1

10-2

10-3

10-4

10-5

Rel

ativ

e Fr

eque

ncy

Err

or

10-62

Page 25: High Precision Cavity Simulations

Computational Model

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

▪Geometrical model

9-cell cavity

Beamtube

DownstreamHOMcoupler

Input coupler

UpstreamHOMcoupler

High precisioncavity simulations

for closed structures

Page 26: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

Outline

▪ Motivation▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples- Field patterns for selected modes

- Resonance frequency and quality factors

▪ Summary / Outlook

Page 27: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27

Computational Model

▪Port boundary condition

Port face, fundamental coupler

Page 28: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 28

Computational Model

▪Port boundary condition

Port face, HOM coupler

Page 29: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 29

Computational Model

▪Problem formulation- Local Ritz approach

vectorial function

global index

number of DOFs

scalar coefficient

Port face

Mixed 2-D vector and scalar basis

Page 30: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 30

Computational Model

▪Problem formulation- Local Ritz approach

continuous eigenvalue problem, loss-free

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

Page 31: High Precision Cavity Simulations

0 5 10 15 200

100

200

300

400

0 2 4 6 8 100

50

100

150

200

Computational Model

▪Wave propagation in the applied coaxial lines- Main coupler

- HOM coupler

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 31

12.5 mm

60.0 mm

3.4 mm

16.0 mm

TEM

TE11 TE21

TEM

TE11 TE21

f0 = 1.3 GHz

f0 = 1.3 GHz

Dispersion relation

propagation

damping

Page 32: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 32

Computational Model

▪Problem formulation- Determine propagation constant for a fixed frequency

algebraic eigenvalue problem

eigenvectorand

eigenvalue

Page 33: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 33

Computational Model

▪Problem formulation- Determine propagation constant for a fixed frequency

algebraic eigenvalue problem

eigenvectorand

eigenvalue

Mode 1 Mode 2 Mode 3 Mode 4 …

Page 34: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 34

▪Problem definition- Geometry

- Task

Numerical Examples

TESLA 9-cell cavity

PECboundary condition

Search for the field distribution, resonance frequency and quality factor

Portboundaryconditions

Port boundary conditions

Page 35: High Precision Cavity Simulations

Numerical Examples

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 35

▪Computational model

9-cell cavity

Beamcube

Inputcoupler

Upstream HOM coupler

Distributecomputational load

on multiple processes

Page 36: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 36

Outline

▪ Motivation▪ Computational model

- Problem formulation in 3-D

- Problem formulation in 2-D (boundary condition)

▪ Numerical examples- Field patterns for selected modes

- Resonance frequency and quality factors

▪ Summary / Outlook

Page 37: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 37

Numerical Examples

▪Simulation results- Accelerating mode (monopole #9)

- Higher-order mode (dipole #37)

Page 38: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 38

Numerical Examples

▪Simulation resultsAccelerating mode(monopole #9)

Higher-order mode(dipole #37)

Beam tube

HOM coupler

Coaxialinput coupler

Coaxial line

Beam tube

HOM coupler

Coaxialinput coupler

Page 39: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 39

Numerical Examples

▪Simulation results

1 3 5 7 9 2917 2521 33 37 41 4513

1.900

1.800

1.700

1.600

1.500

1.400

1.300

Freq

uenc

y / G

Hz

Monopolepassband

Mixed first and second dipole passband

Mode Index

Black: 283,130 tetrahedraColor: 1,308,476 tetrahedra

Page 40: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 40

Numerical Examples

▪Simulation results Black: 283,130 tetrahedraColor: 1,308,476 tetrahedra

1 3 5 7 9 Mode Index810642

107

108

109

1010

6

8 mm

4 mm

0 mm

No port on main input coupler

Ext

erna

l qua

lity

fact

or

Penetration depth:

Page 41: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 41

Numerical Examples

▪Simulation results

12 1614 1810 Mode Index8103

42 6

104

105

106

Ext

erna

l qua

lity

fact

or

Mixed first and second dipole passband

Page 42: High Precision Cavity Simulations

August 23, 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 42

Summary / Outlook

▪Summary:Request for precise modeling of electromagnetic fields withinresonant structures including small geometric details:- Geometric modeling with curved tetrahedral elements- Port boundary conditions with curved triangles- Preliminary implementation

▪Outlook:- User-friendly parallel implementation