51
Innovationen für eine nachhaltige Landwirtschaft Wasser und Bewässerung Wasseraufbereitung durch Solarenergie, schwimmende PV-Module Nahrungsproduktion und Umwelt landwirtschaftlicher Umweltschutz aus europäischer Sicht, neue Ansätze zur umweltneutralen Anwendung von Pflanzenschutzmitteln Nutzung organischer Reststoffe wertvolle Inhaltsstoffe, dezentrale Energieerzeugung Prof. Dr. Roland Kubiak RLP AgroScience GmbH Breitenweg 71 D-67435 Neustadt [email protected] www.ifa-agroscience.de

Innovationen für eine nachhaltige Landwirtschaftchile.ahk.de/uploads/media/07_KUBIAK_01.pdfInnovationen für eine nachhaltige Landwirtschaft Wasser und Bewässerung Wasseraufbereitung

Embed Size (px)

Citation preview

Innovationen für eine nachhaltige Landwirtschaft Wasser und Bewässerung Wasseraufbereitung durch Solarenergie, schwimmende PV-Module

Nahrungsproduktion und Umwelt landwirtschaftlicher Umweltschutz aus europäischer Sicht, neue Ansätze zur umweltneutralen Anwendung von Pflanzenschutzmitteln

Nutzung organischer Reststoffe wertvolle Inhaltsstoffe,

dezentrale Energieerzeugung

Prof. Dr. Roland Kubiak RLP AgroScience GmbH Breitenweg 71 D-67435 Neustadt [email protected] www.ifa-agroscience.de

Sichere Anwendung von Stoffen in der Umwelt

Analyse und Gestaltung von Agrarlandschaften

Innovationen für eine nachhaltige Landbewirtschaftung

Eigentum des Landes Rheinland-Pfalz

Gemeinnützig (non-profit)

fast 30 Jahre Erfahrung in der angewandten Forschung

Mit über 100 Projektpartnern weltweit tätig

GLP Zertifikat seit 1991

ca. 60 Mitarbeiterinnen und Mitarbeiter

Wasser und Bewässerung Wasseraufbereitung durch Solarenergie, schwimmende PV-Module

Bildquelle: Jetfloat International

Landnutzung auf der Erde

Landwirtschaftliche Bewässerungstechniken trugen bisher zur Vernichtung fruchtbaren Ackerlandes bei und führten zur immensen Ausdehnung großer Flächen versalzener und stauwasser-beeinflußter Böden.

Davon 70% für Bewässerung in der Landwirtschaft

Vorhersage zur Klimaentwicklung

Gewinnung von Trinkwasser nach dem „Multi Effect Humidification“ Prinzip

Natürlich ablaufender Prozeß

Gewinnung sauberen Wassers auch mit sehr Einfachen Mitteln möglich

Installation of the first solar water desalination unit at the CTGAS-ER area

Pictures of delivery, installation and start-up of a demonstration facility

Procurement Preparation in Germany Preparation in Brazil Shipment

Installation of solar collectors Operation since Dec 2013

Complete self-sufficiency Heat self-sufficiency No self-sufficiency

Desalination system X X X

Solar thermal collector kit X X

Cooling system X X X

Safe water supply unit X X X

PV panels (electric power supply )

X

Connection kit for CHP (Combined Heat and Power;

waste heat using)

X

Different variations of the MEH System are possible:

Photovoltaic panals

Buffer tanks Solar thermal collectors Input/ Output storage

MEH Container

Calculation Example:

Solar Water Desalination Unit “DESAL Mini 2.0”, Container Module,

Complete energy self-sufficiency, Output of drinking water: 2.000 liter/day

*Calculated rate of Intrest: 12%; financing period: 15 years; custom: 30%

Positions EUR R$Costs Container as finished connection module 45.000 135.000

Filtration system 35.000 105.000

Technology 47.000 141.000

Assembling, Trasportation, Insurance, Custom 95.000 285.000

Performances constructionsite 106.000 318.000

Commissioning 37.000 111.000

Total Investment costs 365.000 1.095.000

Operating Costs 17.000 51.000

Capital costs 52.560 157.680

Total annual costs 69.560 208.680

Preis per Liter drinking water 0,095 0,286

*Calculated rate of Intrest: 12%; financing period: 15 years; custom: 30%; electricity costs: R$ 0,60

Positions EUR R$Costs Container as finished connection module 45.000 135.000

Filtration system 35.000 105.000

Technology 47.000 141.000

Assembling, Trasportation, Insurance, Custom 95.000 285.000

Performances construction site 76.000 228.000

Commissioning 37.000 111.000

Total Investment costs 335.000 1.005.000

Operating costs 17.000 51.000

Consumption costs 7.500 22.500

Capital costs 49.186 147.558

Total annual costs 73.686 221.058

Preis per Liter drinking water 0,101 0,303

Calculation Example:

Solar Water Desalination Unit “DESAL Mini 2.0”, Container Module,

heat self-sufficiency, Output of drinking water: 2.000 liter/day

Comparison of payback period:

Solar Water Desalination Unit “DESAL Mini 2.0”

Complete energy self-sufficiency (CSS) vs. heat self-sufficiency (HSS)

Positions CSS HSS

Total Investment costs [R$] 1.095.000 1.005.000

Annual costs [R$] 51.000 73.500

Annual sales [R$] 219.000 219.000

Payback period [years] 6,5 6,9 *Calculated water price per liter : R$ 0,30; electricity costs: R$ 0,60

1. Floating foundation structure

2. Environmental impact assessment

a. Pre assesments and Mapping b. Limnological and physical investigations c. Biotic parameters

3. Environmental impact monitoring

Regular performances

Swimming pontoons Aluminum mounting

PV Modul (not included)

BildquelleDuwe & Partner GmbH

• Lifting-capacity per mounting module:

175 kg

• Load per m² (incl. modules, mounting):

ca. 35 kg/m²

• Maximum load per mounting module:

5 m²

• Required PV surface of 500 kWp:

ca. 3.000 m² - 3.500m²

• Required quantity of mounting modules:

ca. 600 – 700 pieces

BildquelleDuwe & Partner GmbH

Requirements:

• Floating foundation structure based on Polyethylene

• Brine- and acid-resistant

• Food-safe

• UV light resistant

• Planning and Supervision of the installation

• Manufacturing guarantee: 30-years warranty

• Time of delivery:

12 – 14 weeks after ordering

• Number of Containers (40‘ ft.): Maximum 3 containers

Floating foundation structure

BildquelleDuwe & Partner GmbH

Bildquelle: Jetfloat International

Pre assessments and Mapping • Mapping of basic parameters of the reservoirs

water structure

• Fluctuations of flood peak and minimum

• Conversion of the surfaces by covering

o Selection of monitoring surface

o Determination of surface designs

o Virtuel localization by using GIS

Environmental impact assessment

• Limnological and physical investigations o Water level changes

o Temperature fluctuation/ evaporation rate

o PH-value, salinity, alkalinity, hardness of water

o Calcium, nitrite-N, nitrate-N, ammonium-nitrogen (FIA)

o Orthophosphate and total phosphorus, oxygen, iron, chloride

o Chlorophyll, dissolved organically bound carbon (DOC)

• Biotic parameters o Vegetation detection of the reservoirs

o Phytoplankton

o Faunistical surveys of reservoirs

Environmental impact monitoring

o Design, delivery and start-up of the measuring equipment

o Development of a structured remote monitoring plan including

evaluation tool.

o Regular sampling (rain and dry season), analysis and evaluation

o Annual report with an evaluation of the plant operation

o Assessment over several years (2-3)

An

teil

re

fle

kti

erte

r S

tra

hlu

ng

(R

efl

ek

tan

z)

Nahrungsproduktion und Umwelt landwirtschaftlicher Umweltschutz aus

europäischer Sicht neue Ansätze zur umweltneutralen

Anwendung von Pflanzenschutzmitteln

German Plant Protection Act 2012

European act 1107/2009 on pesticide registration

National action plan for the sustainable use of plant protection products

Less new pesticide registration in the EU Especially less insecticides More environmentally friendly plant protection methods

European challenges for Pesticide Registration

… and the consequences

neue Ansätze zur umweltneutralen Anwendung von Pflanzenschutzmitteln

Injector units

Pressure regulator

Liquid reservoir

Air reservoir

Switching valve

Repetitive pneumatic cylinder

Platanennetzwanze (Corythucha ciliata)

Platanennetzwanze (Corythucha ciliata); c) Platanenwanze (Arocatus longiceps)

Platanenwanze (Arocatus longiceps)

Nutzung organischer Reststoffe wertvolle Inhaltsstoffe,

dezentrale Energieerzeugung

Use of organic waste materials

Decentralized energy production

Solid fuels Biogas

Electricity

Products of high value from organic waste extracts

Source: Agroscience

Example from Germany: Natural plant protectors from the residues of wine production

Gray mold

(Botrytis cinerea)

Apple scab (Venturia inaequalis)

Downy mildew (Plasmopara viticola)

Heartwood/fruit rot

(Monilinia fructigena)

Gray mold Apple scab

Synthetic Fungicide 100.0% 72.5%

Extract I 99.0% 24.3%

Extract II 30.4% 67.0%

Control 0% 0%

Extraction cleaning effect testing Example for our results

Source: Agroscience

Source: Agroscience Source: gradinamea.ro Source: Agroscience

Source: Agroscience

0

5

10

15

20

25

30

Cuprozin Extrakt 1 Extrakt 2 Kontrolle

Infe

ktio

nen

/Re

be

P. viticola

Schwarzriesling

10 Applikationen

• Aufnahme in die Liste der Pflanzenstärkungsmittel des BVL

• keine Wartezeiten

Weitere Informationen unter www.vitovin-pflanzenstaerkung.de

• keine Anwendungsauflagen

• Ab Mitte/Ende März erhältlich

Extrakte von Olivenkernen

Olivenproduktionsmenge In Brasilien: ca. 300 t no. 35 der Anbauländer

2. Materials and Methods Using Vitis vinifera cv. Müller-Thurgau Solubilizing in 3 GAE-concentrations (1.0g/l, 0.5g/l, 0.5+TS, 0.1g/l) and reference controls (Cuprozin Flüssig, Delan WG) The concentration of 0.5 g/l was mixed with a biological wetting agent The lower surface of each leaf of 8 vines was sprayed with the extract concentrations or reference controls

24 h later, the treated leaves were artificially infected with P. viticola

Eight vines were sprayed with one extract concentration, respectively

2 weeks later, the leaves were moistened and bagged in opaque plastic bags During this period of darkness and high humidity, the mycelium grew sporangiophores from the stomata of the host plant The rating of infestation by P. viticola was performed by recording the infected leaf area in relation to total leaf area The incidence [%] was divided into 11 stages

Inoculated vines bagged in opaque plastic bags

0

10

20

30

40

50

60

70

Control 1g/l GAE 0.5g/l GAE 0.5g/lGAE+TS

0.1g/l GAE Cuprozinflüssig (1ml/l)

Delan WG(0,5g/l)

Infe

stat

ion

by

P.vi

tico

la %

Infestation by P. viticola [%]

2-POMW-Extract

3-POMW-Extract

1g/L extract

0,5 g/L extract

0,5 g/L extract + detergent

0,1 g/L extract

Synthetic fungicide

Copper

rice husk

waste wood Cocoa shells

Cow dung kernel shells

rice straw

Source: tradekorea.com

Organic waste in urban surroundings

poultry

Nutzung organischer Reststoffe

dezentrale Energieerzeugung

Waste fruits

Waste vegetables Slaughtering business waste Wood cut sewage

Potential energy contents

Use of organic waste materials

Decentralized energy production

Solid fuels Biogas

Electricity

General Test strategy of the Biomass-to-Energy concept

Biomass source: Solid organic waste

Mechanical dehydration

Solid residue Liquid residue

Thermal dehydration

Biogas Industrial

alcohol Bioethanol

Preparation

Fuel (e.g. pellets)

Ash

Residue

Utilization in agriculture

Biomass source: Liquid organic waste

Feasibility Study

Availability of waste material p.a. +

Most efficient possibility for energy production =

Expected enery yield p.a.

Current energy prices +

Expected development For fossil energy prices

Investment costs +

Production costs

Costs per unit energy Costs per unit energy = or <

Investment decision

Planing of the plant Construction supervision Training

Projekte im Ausland

Energetic Use of Biogenic Residues

Projekte im Ausland

Energieproduktion aus Reststoffen der Weinbereitung In der Weingenossenschaft AURORA

•Investment Cost 45.000 USD

•Personal + other Costs 12.000 USD / a

•Energy Costs 1.000 USD / a

•(1.800 h/a and 6 kW and 0.10 USD/kWh)

•Biomass Production (2 t/d and 300 d/a) 600 t / a

•Period of Operation 10 years

•Production Costs 30 USD / t

•Energy Costs

(depends on Input-Material): 0,007 USD / kWh

Reference price: Natural Gas: 0,006 USD / kWh

Production costs of biomass briquettes to sell as wood substitude (summararized overview) in Argentinia

New de-centralized technologies can help to overcome problems with drinking water availability.

A more ecological thinking leads to new biological pesticides and advanced application technologies.

The production of energy from organic wastes is possible and may be less expensive than oil or gas.

Many thanks for listening