Author
trinity-parsons
View
219
Download
0
Embed Size (px)
1 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
D. Panara, R. Dannecker, B.Noll
Institut für Verbrennungstechnik
DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.
Mitglied der Herrmann von Helmholtz-Gemeinschaft Deutscher Forschungszentren HGF
Stuttgart
FLUISTCOM Fluid Structure Interaction for Combustion Systems
( MRTN-CT-2003-504183)
Boundary Layers Response to PulsatingCombustor Flow
Fluistcom Internal MeetingCIMNE Barcellona, June 2005
2 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Overview
Pulsating and Oscillatory Flows Experimental Evidences
Aerodynamic Boundary Layer Response Thermal Boundary Layer Response
Numerical Simulations High Reynolds vs. Low Reynolds Turbulence Models Near wall turbulence modeling, strategy of investigation
3 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Pulsating Flow Pioneering Studies:Flat Plate
J. Cousteix and R. Houdeville VKI Lecture Series 1983
Pulsating Flow •Aerodynamic response •Thermal response •Modeling
4 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Displacement thickness
dyU
yU
e
0
1
)(1
“The displacement surfacelooks like a wavy wallmoving back and forth”
Pulsating Flow •Aerodynamic response •Thermal response •Modeling
5 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Aerodynamic Response in Pulsating Pipe Flows
Oscillating Flow:
VD
c Rem
w
aURe
2
TUa m
2slsl
DR
2
Turbulent 800Re
Laminar 400Re
s
s
l
l
s
l
lUs
0Re
Pulsating Flow:
)sin()( tUVtU m )sin()( tUtU m Source: C.R.Lodahl, et al.: J.Fluid Mech., Vol.373, 1998
Source: A.Scotti, U. Piomelli :
Physics of Fluids,13(5), 2001
•Pulsating Flow Aerodynamic response •Thermal response •Modeling
6 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Turbulent Flows, Characteristic Parameters
0.05
05.0001.0
0.001
2
u
wu
),(),(~
)(),( txutxuxutxu
muc U
Va
Source: M.Gündogdu, M.Carpinlioglu : JSME int. Journal, 42(3), 1999
Oscillating Turbulent Flow: Pulsating Turbulent Flow:
)sin()( tUVtU m )sin()( tUtU m
Quasi Steady Flow
Intermediate FrequencyQuasi-Laminar
T
wc
dtT 0
~1
Source: C.R.Lodahl, et al.: J.Fluid Mech., Vol.373, 1998
•Mean parameters little affected•Discrepancy close to bursting frequency•Effects in the Stoke-layers
•Phase shift of τc up to 45°
•Mean parameters affected•τ/τc up to 4
•Strong unsteady effects•Re-laminarization can occur
•Pulsating Flow Aerodynamic response •Thermal response •Modeling
7 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response
• Oscillation Amplitude Unknown• Air pipe Flow• Wide Range of Re number • Wide Range of frequency
Source: M.A. Habib et al. , 2004
•Pulsating Flow Aerodynamic response Thermal response •Modeling
8 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response Source: A.R. Barker et al. , 2000
• Low Amplitude Oscillations• Found No Heat Transfer Increase• Heated Pipe Flow• Wide Range of Re number • + Plays an Important Role• Phase Shift up to 180o
•Pulsating Flow Aerodynamic response Thermal response •Modeling
9 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response
• High Amplitude Pulsating Flow• Heated pipe Flow• Re-Laminarization Effects• Narrow Range of Re number • Wide Range of frequency
Source: Y. Ishino, 1996
•Pulsating Flow Aerodynamic response Thermal response •Modeling
10 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response
• Resonant Channel• Heated pipe Flow• Resonant Standing Wave • Frequency range 20 to 1000Hz• Low Amplitude Oscillations
Source: E. P. Valueva, 2000
•Pulsating Flow Aerodynamic response Thermal response •Modeling
11 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response
• Pulsating Motor Tail Pipe• Cooled pipe Flow• Frequency Range 100 Hz• High Amplitude Oscillations • Temperature Inlet Fluctuations• Flow Conditions Similar to Combustor Flow• Proved Failure of the Reynolds Analogy
Source: E. Dec et al. , 1991
•Pulsating Flow Aerodynamic response Thermal response •Modeling
12 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Near Wall Thermal Response
• Lacking of experimental data for current dominated flow• Contradictory results in both laminar and turbulent flow conditions about the effect of oscillations on mean flow quantities• Measured a phase shift up to 180º for the wall heat transfer (source Barker, Ishino )• Measured Heat Transfer Increasing
• In low-amplitude resonant pulsating flows (source Valueva)• In low-frequency wave dominated pulsating flows (source Ishino)• In Temperature fluctuating pulsating Flows (100 Hz) (source Dec)
• The Reynolds analogy proved not to hold in some cases
•Pulsating Flow Aerodynamic response Thermal response •Modeling
13 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Turbulence Modeling
• Algebraic eddy viscosity models
• Two equations high-Reynolds model + Wall functions
• Two equations low-Reynolds model
• Full Reynolds stress models
• Two equations low Reynolds model + Unsteady near-wall corrections
Inaccurate: Important role of transport of turbulent quantities
Inaccurate: Steady flow wall function not suited
Inaccurate: Eddy viscosity isotropy assumption
Inaccurate: Insufficient near wall treatment
Source:Fan, Lakshminarayanaand Barnett, AIAA J.Oct. 1993
•Pulsating Flow Aerodynamic response •Thermal response Modeling
14 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Turbulence ModelingLow vs High Reynolds Turbulence Models
•Pulsating Flow Aerodynamic response •Thermal response Modeling
15 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
~
~
~~~~~
2
2
2211
kfC
D
Exxk
fck
fcx
ut
x
k
xx
ku
t
k
t
i
t
iii
ik
t
iii
P
P
22
2
y
kD
y
kww
•Pressure-strain•Molecular viscosity
Non zero value of at the wall
j
iii x
uuu
P
ji
jiij for 3
for 0ijij
j
i
i
j
j
itji k
x
u
x
u
x
uuu
3
2~
3
2~~
•Low-Reynolds model coefficients•Correction for non local isotropy
•Full Reynolds model•Critical closure Pressure-Strain term (fluctuating pressure)
•Two-equation model•Inaccurate formulation for pulsating flows•Accurate formulations for curvature and rotation
Turbulence Modeling
Source:Fan, Lakshminarayanaand Barnett, AIAA J.Oct. 1993
•Pulsating Flow Aerodynamic response •Thermal response Modeling
16 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
source:Abe et al. 1995
TkT 2
1
iiT x
TTu
P
Turbulence Modeling
iTTiTi
iT cTuk
cx
TP P21
jtj x
TTu
hT k TTh kkf /,/
source: Rogers et al. 1989 source: Gibson and Launder 1976
source:Koehler, Patankar1991
•Pulsating Flow Aerodynamic response •Thermal response Modeling
j
T
h
th
jTT
j
Tj
T
x
kf
xx
ku
t
k
P
ux
Pu
x
Pu
t
P
cTu
x
T
xt
T
jj
jj
pj
jj
1
j
Tth
i
TDD
TDD
TpT
T
Tp
j
Tj
T
xf
xkfc
k
kfc
kc
kc
xu
t
221121 PP
TTT
iTiTTj kk
kkTu
PP
P2
jt
t
jtj x
T
x
TTu
Pr
Reynolds AnalogyHypothesis
17 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Conclusions An overview on experimental evidences on pulsating flow has
been presented The necessity of a better understanding of the aero-thermal
near-wall flow behavior has been in deep analyzed An extensive bibliography on test cases and proposed models
for unsteady flows has been acquired The limitations of steady state wall functions have been issued
(cold flow) Hot flow unsteady simulation with different turbulent
modeling are in progress
18 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Questions ?
19 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
Extras
20 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
source:Abe et al. 1995
TkT 2
1
iiT x
TTu
P
TTT
iTiTTj
j
Tth
i
TDD
TDD
TpT
T
Tp
j
Tj
T
j
T
h
th
jTT
j
Tj
T
jj
jj
pj
jj
kk
kkTu
xf
xkfc
k
kfc
kc
kc
xu
t
x
kf
xx
ku
t
k
ux
Pu
x
Pu
t
P
cTu
x
T
xt
T
PPP
PP
P
2
1
221121
Turbulence Modeling
iTTiTi
iT cTuk
cx
TP P21
jtj x
TTu
hT k TTh kkf /,/
source: Rogers et al. 1989 source: Gibson and Launder 1976
source:Koehler, Patankar1991
•Pulsating Flow Aerodynamic response •Thermal response Modeling
21 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
22 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
References: AERODYNAMICS•General overview aerodynamics:
•Low amplitude•Gundogdu and Carpinlioglu,JSME,vol42,n3,1999•Scotti and Piomelli,physics of fluid,vol13,n5,2001
•Low and High amplitude•Lodahl and Sumer and Fredsoe, J.Fluid Mech,vol373,1998
•Test case also (pipe water)•Koehler and Patankar and Ibele,NASA-CR187177
•Test cases•Cousteix and Houdeville (flat plate air)•Tardu and Binder and Blackwelder (pipe water)
•Ideas for unsteady turbulence models:•Fan and Lakshminarayana,AIAA,vol31,1993•Mankbadi and Liu, J.Fluid Mech,vol238,1992•Hanjalic and Stosic•Rodi and Scheuerer,J.Fluids Eng.,vol108,1986
23 Institut für Verbrennungstechnik - Institute of Combustion Technology
Deutsches Zentrum für Luft- und Raumfahrt e.V. German Aerospace Center
References: HEAT TRANSFER•Low amplitude
•Valueva,High Temperature,vol37,n5,1999•Test case also ( oscillating, compressible incompressible)•Ideas for unsteady turbulence model•Ideas for unsteady Energy equation
•Barker,Ffowcs Williams, Int.J.Heat and Mass Transfer 43(),2000•High amplitude
•Dec and Keller, Int.J.Heat and Mass Transfer,vol35,n9,1992•Ishino et al. Heat Transfer Japanese Research 25(5),1996
Test case also (oscillating combustor tail pipe) •Ideas for unsteady turbulence models:
•Rhee, Sung Int.J. Heat Fluid Flow 18(1),1996 •Abe et al Int.J.Heat and Mass Transfer, 38(8)