161
Molekulargenetische und biochemische Untersuchungen zur Funktion und Struktur des Enzym II Mtl aus Escherichia coli K-12 Dissertation Zur Erlangung des Grades eines Doktors der Naturwissenschaften des Fachbereichs Biologie/Chemie der Universität Osnabrück Vorgelegt von Şevket Turgut Osnabrück 2003

Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

  • Upload
    vandiep

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

Molekulargenetische und biochemische Untersuchungen zur Funktion und Struktur

des Enzym IIMtl aus Escherichia coli K-12

Dissertation Zur Erlangung des Grades eines Doktors der Naturwissenschaften

des Fachbereichs Biologie/Chemie der

Universität Osnabrück

Vorgelegt von Şevket Turgut

Osnabrück 2003

Page 2: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,
Page 3: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

Inhaltsverzeichnis I

Inhaltsverzeichnis

Inhaltsverzeichnis .......................................................................................... I Abbildungsverzeichnis .................................................................................. II Tabellenverzeichnis ..................................................................................... III Abkürzungsverzeichnis ................................................................................ IV

I. Einleitung .............................................................................................1 II. Material und Methoden ....................................................................11

II.1. Bakterienstämme, Phagen, Plasmide und Oligonukleotide ....................... 11 II.2. Chemikalien, Isotope und Enzyme ......................................................... 19 II.3. Nährmedien ........................................................................................ 20 II.4. Anzuchtverfahren ................................................................................. 22 II.5. Herstellung von Zellextrakten ................................................................ 24 II.6. Genetische Techniken .......................................................................... 25 II.7. DNA-Techniken ................................................................................... 27 II.8. Chemische und biochemisch-analytische Techniken ................................. 34 II.9. Computerprogramme ........................................................................... 49

III. Ergebnisse .......................................................................................50

III.1. Selektion und Untersuchung entkoppelter Mutanten ....................... 50 III.1.1. Konstruktion von Stämmen zur Selektion entkoppelter Mutanten ......... 50 III.1.2. Entkoppelte Mutanten aus den Selektionen ....................................... 65 III.1.3. Entkoppelte Mutanten aus lokalisierter Mutagenese ........................... 69 III.1.4. Selektion von Suppressormutanten ................................................... 72 III.1.5. Charakterisierung der Mutanten ...................................................... 74

III.2. Topologieuntersuchungen am EIIMtl ................................................. 95 III.2.1. Konstruktion der erforderlichen Plasmide und Mutanten ..................... 96 III.2.2. Markierung der Einzel-Cystein MtlA-Mutanten ................................... 99 III.2.3. Reinigung und immunologischer Nachweis des MtlA-6His ............... 100 III.2.4. Ergebnisse der Biotinmaleimid-Markierungen ................................. 102

IV. Diskussion ......................................................................................107

IV.1. Für Transport und Phosphorylierung relevante AS im EIICMtl .......... 108 IV.1.1. Vergleich der Mutationen E218A, E218V und H256P ...................... 108 IV.1.2. Die AS 218 und 256 im Translokationsmodell ................................ 113

IV.2. Untersuchung der Sekundärstruktur des EIICMtl .............................. 121 IV.2.1. Mögliche Strukturen des EIICMtl ...................................................... 121

V. Zusammenfassung ..........................................................................133 VI. Literaturverzeichnis .......................................................................135 VII. Anhang .............................................................................................1

Page 4: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II Abbildungsverzeichnis

Abbildungsverzeichnis

I. Einleitung .............................................................................................1

Abb.I.1. Transport und Phosphorylierung eines Substrats über ein PTS ............... 4 Abb.I.2. Modell der Sekundärstruktur des IICMtl-Transporters aus E.coli .............. 7 Abb.I.3. Modell der essentiellen Strukturelemente des PTS Transport-Systems

am Beispiel des EIIMtl ........................................................................ 9

II. Material und Methoden ....................................................................11

Abb.II.8.1. Substrataufnahme von D-Mtl ....................................................... 35 Abb.II.8.2. Schematische Darstellung eines Lineweaver-Burk-Diagramms ........ 37 Abb.II.8.3. Exemplarische Bindekurve ........................................................... 42

III. Ergebnisse .......................................................................................50

Abb.III.1.1. Wildtyp- und semisynthetischer Stoffwechselweg für den D-Mtl- Abbau in E.coli ......................................................................... 51

Abb.III.1.2. Schematische Darstellung der Konstruktion von F’lac::dalD ............. 52 Abb.III.1.3. Alternativer semisynthetischer Stoffwechselweg für den D-Mtl-

Abbau in E.coli ......................................................................... 58 Abb.III.1.4. Sequenz des Gens mtlA aus E.coli K-12 ...................................... 67 Abb.III.1.5. mtlA-Plasmid pGJ9 ................................................................... 70 Abb.III.1.6. SDS-Gel der Vesikel nach der Überexpression ............................. 83 Abb.III.1.7. Phosphorylierungsaktivitäten der Vesikel mit 1mM [14C]-D-Mtl ....... 84 Abb.III.1.8. Phos.-Aktivitäten von H256P-Mutanten mit 500µM [14C]-D-Mtl ..... 85 Abb.III.1.9. KM

app-Wert Messungen des WT-Stamms LGS322/pGJ9 für D-Mtl ... 88 Abb.III.1.10. KM

app-Wert Messungen von LGS322/pGJT9-5 für D-Mtl ............... 88 Abb.III.1.11. KM

app-Wert Messungen von LGS322/pDSM1 für D-Mtl ................. 89 Abb.III.1.12. KM

app-Wert Messungen von LGS322/pDSM2 für D-Mtl ................. 89 Abb.III.1.13. Nichtlineare Kinetik der KM

app-Messung von LGS322/pDSM2 ........ 91

Abb.III.2.1. SDS-Gel einer MtlA(His)6-Reinigung ........................................... 100 Abb.III.2.2. SDS-Gel nach dem Proteintransfer auf Membran ........................ 101 Abb.III.2.3. Immunologischer Nachweis des MtlA(His)6 .................................. 101 Abb.III.2.4. Biotinmaleimidmarkierungen und Nachweise des MtlA(His)6 ........ 103

IV. Diskussion ......................................................................................107

Abb.IV.1. Interpretation der nichtlinearen Kinetik von LGS322/pDSM2 .......... 111 Abb.IV.2. Vergleich der EIICMtl AS-Sequenzen aus E. coli und K. pneumoniae . 112 Abb.IV.3. Vergleich der EIICMtl AS-Sequenzen verschiedener Stämme ............. 114 Abb.IV.4. Bindung eines Phosphats bzw. Maleimids an ein Cystein ................ 122 Abb.IV.5. Ergebnisse aus Sequenz- und Strukturuntersuchungen

im Sekundärstrukturmodell des EIICMtl-Transporters aus E.coli ......... 123 Abb.IV.6. Vergleich der postulierten transmembranen Helices von EIICMtl und EIICGlc ....................................................................... 126 Abb.IV.7. TMHMM-Vorhersage der Topologien von EIICMtl und EIICGlc .......... 128 Abb.IV.8. Mögliche 2D-Strukturen des IICMtl-Transporters aus E.coli .............. 130 Abb.IV.9. Mögliche 3D-Strukturen des IICMtl-Transporters aus E.coli .............. 131

Page 5: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

Tabellenverzeichnis III

Tabellenverzeichnis

II. Material und Methoden ....................................................................11

Tab.II.1.1. Bakterienstämme ......................................................................... 11 Tab.II.1.2. Phagen ....................................................................................... 12 Tab.II.1.3. Plasmide ..................................................................................... 13 Tab.II.1.4. Neukonstruierte und -isolierte Plasmide .......................................... 14 Tab.II.1.5. Oligonukleotide .......................................................................... 16 Tab.II.2. Häufig verwendete Puffer und Lösungen ......................................... 20 Tab.II.8.1. Zelltiter und Proteinmenge ............................................................ 34 Tab.II.8.2. Eingesetzte Zuckerkonzentrationen und dazugehörige cpm .............. 36

III. Ergebnisse .......................................................................................50

Tab.III.1.1. Plattentest zum Nachweis einer funktionellen DalD aus pHEXD ..... 54 Tab.III.1.2. Plattentest zum Nachweis einer funktionellen DalD aus pLSD101 . 55 Tab.III.1.3. Plattentest der Exkonjuganten aus der Kreuzung

CSH36 /F’lac::dalD /pLSD101 /pPSO110 X S136∆ ................... 56 Tab.III.1.4. Plattentest des Selektionsstammes LTK31 .................................... 57 Tab.III.1.5. Plattentest LTK31-1 und LTK31-2 .............................................. 59 Tab.III.1.6. Plattenmarkertest LTK32 und LTK32-1 ....................................... 60 Tab.III.1.7. Ursprüngliche AtlR- und AtlS-Phänotypen ..................................... 61 Tab.III.1.8. Neu beobachtete AtlR- und AtlS-Phänotypen ................................ 62 Tab.III.1.9. Plattentest P1.∆(crr)::kan X LGS31 ........................................... 63 Tab.III.1.10. Entkoppelnde Mutationen aus LGS322-1 /pGJ9∆137

und LGS324-1 /pGJ9∆137 ...................................................... 68 Tab.III.1.11. Phänotypen der entkoppelten Mutanten ..................................... 69 Tab.III.1.12. Austausche bei pGAL3-1, pGAL3-2 und pGAL3-3 ...................... 71 Tab.III.1.13. Austausche bei pGAL3-4 und pGAL3-5 ..................................... 72 Tab.III.1.14. Mutationen aus LGS322 /pGJT9-3 und LGS322 /pGJT9-4 ......... 74 Tab.III.1.15. Markertest entkoppelnder Mutanten in LGS322 und LGS322-1 ... 76 Tab.III.1.16. Plattentest der Stämmen LGS322, LGS322-1 und LTK31-2

mit den „Suppressormutationen“ ............................................... 78 Tab.III.1.17. Zellerträge und Generationszeiten der Stämme LGS322 und

LGS322-1 mit verschiedenen mtlA-Plasmiden ............................. 79 Tab.III.1.18. Mutanten aus dem Plasmid pMaHisMtlAPr ................................. 82 Tab.III.1.19. Gesamtproteinkonzentrationen der Vesikel ................................. 83 Tab.III.1.20. Spezifische Phosphorylierungsaktivitäten der Vesikel .................... 86 Tab.III.1.21. KM

app-Werte und V der mtlA-Mutanten für D-Mtl in LGS322 .......... 90 Tab.III.1.22. Stammabhängige Phänotypen von mtlA-Mutanten ...................... 92 Tab.III.1.23. Zusammengefasste Ergebnisse der EIIMtl-Mutanten

im Stamm LGS322 .................................................................. 94

Tab.III.2.1. Plasmide der Reihen pMMX5-3x und pMMX5-4x .......................... 98 Tab.III.2.2. Aktivitäten der „Cys-Scanning“-MtlA-Derivate ............................... 98 Tab.III.2.3. Ergebnisse der Biotinmaleimid-Markierungen ............................. 104

Page 6: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV Abkürzungsverzeichnis

Abkürzungsverzeichnis

α-Me-Glc α-Methyl-Glukose

AB Antibiotikum Amp Ampicillin

Atl D-Arabinitol AMHB1 Arginin/Methionin/Histidin/Thiamin-Lösung

B Bakterien

Biotinmaleimid „Nα-(3-maleimidylpropionyl) biocytin“ bp Basenpaare

CAA Casa Amino Acids Cam Chloramphenicol Che Chemotaxisreaktion (auf Chemotaxisschwärmplatten) cpm Counts (radioaktive Impulse) pro Minute

C-Quelle Kohlenstoffquelle

DMSO Dimethylsulfoxid DOC Deoxycholic acid sodium salt monohydrate DTT Dithiothreitol

EI Enzym I der PTS

EII XY Domäne X des Enzym II, spezifisch für Kohlenhydrat Y EDTA Ethylendiamintetraacetat

EK Einzelkolonie

Fru D-Fruktose

Gal D-Galaktose Glc D(+)-Glucose

GLB Gel-Lade-Puffer („gel loading buffer“) Gly Glycerin Gt Generationszeit

HPr Histidinprotein des PTS

IPTG Isopropyl-β-D-Thiogalaktopyranosid

Kan Kanamycin k.W. kein Wachstum

Lac D-Laktose LKS Laborkultursammlung

Page 7: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

Abkürzungsverzeichnis V

Man D-Mannose McC MacConkey MKS Multiple Klonierungsstelle MM Minimalmedium

m.o.i. multiplicity of infection Mtl Mannitol

n.b. nicht bestimmbar n.g. nicht getestet n.m. nicht messbar n.z. nicht zugänglich

ODX Optische Dichte bei einer Wellenlänge von X nm

PCR Polymerase-Kettenreaktion PEP Phosphoenolpyruvat

PMSF Phenylmethylsulfonylfluorid PTS PEP-abhängiges Kohlenhydrat : Phosphotransferasesystem

RT Raumtemperatur

SDS Natriumdodecylsulfat („Sodium dodecyl sulfat“) Spc Spectinomycin

Stilben “4-acetamido-4’-maleimidylstilbene-2,2’-disulfonic acid, disodium salt”

Str Streptomycin

TEMED N,N,N',N'-Tetramethylethylenediamine Tet Tetracyklin Tp Transport

U Units

ÜK Übernachtkultur ÜN Über Nacht UZ Ultra-Zentrifuge

VM Vollmedium

WB Wasserbad

X-Gal 5-bromo-4-chloro-indoyl-β-D-galaktosid

Xul D-Xylulose Xyl D-Xylose

Page 8: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,
Page 9: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

I. Einleitung 1

I. Einleitung

I.1. Die Zelle

Die Kompartimentierung von Reaktionsräumen war einer der ersten Schritte bei

der Entstehung des Lebens. Dies wird sowohl bei Eukaryonten als auch bei Prokaryonten

durch die Abgrenzung von Zellen von der Umwelt mit Hilfe der Zytoplasmamembran

verwirklicht. In dieser Membran sorgen eine Lipid-Doppelschicht und Proteinmoleküle,

die hauptsächlich durch nicht-kovalente, kooperative Wechselwirkungen

zusammengehalten werden, nicht nur für die räumliche Trennung des Zellinneren von

der Umgebung, sondern auch für eine selektive Permeabilität, welche den Zellen die

Aufnahme und das Ausschleusen verschiedenster Substanzen ermöglicht. Die

Nährstoffaufnahme und das Ausschleusen giftiger Substanzen sind essentielle

Funktionen aber auch der bidirektionale Transfer von Proteinen, von DNA und von

Signalmolekülen ist erforderlich. Hinzu kommen die Fähigkeiten, Signale aus der

Umgebung zu erkennen und weiterzuleiten, Membran-assoziierte Reaktionen zu

katalysieren und Zell-Zell Kontakte herzustellen.

Zusätzlich zur Zytoplasmamembran findet man bei Bakterienzellen in der Regel

noch die Zellwand, die allerdings für hydrophile Verbindungen wie Ionen, Vitamine,

Kohlenhydrate, Aminosäuren und Peptide mit einem Molekulargewicht bis ca. 600

Dalton (Payne & Gilvarg, 1968; Decad & Nikaido, 1976) permeabel ist. Neben der

zusätzlichen Stabilität erfüllt sie daher den Zweck eines Molekularsiebs, wobei die

Substrattranslokation typischerweise durch erleichterte Diffusion über spezifische und

unspezifische Porine erfolgt. Bei der Aufnahme über die Zytoplasmamembran gibt es

nur in wenigen Fällen wie bei Glyzerin (Richey & Lin, 1972; Heller et al., 1980) oder

langkettigen Fettsäuren (Overath et al., 1969; Frerman & Bennet, 1973; Maloy et al.,

1980) Hinweise für passive erleichterte Diffusion über substratspezifische „Facilitatoren“.

Der Grossteil an Substraten passiert die Zytoplasmamembran durch aktiven Transport.

Page 10: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

2 I. Einleitung

I.2. Aktive Transportsysteme

Aktive Transportsysteme sind durch die Fähigkeit charakterisiert, unter

Energieverbrauch entgegen eines Konzentrationsgefälles spezifische Substrate zu

transportieren, wodurch z.B. Wachstum bei niedrigen Substratkonzentrationen

ermöglicht wird. Bei Bakterien kann man drei Gruppen von aktiven Transportsystemen

unterscheiden:

Primäre Transportsysteme, zu denen die ABC-Transporter gehören,

katalysieren die Aufnahme einer großen Zahl unterschiedlicher Substrate wie

Oligopeptide, Aminosäuren, Kohlenhydrate und Vitamine (Übersicht bei Furlong,

1987), wobei Licht- oder chemische Energie in Konzentrationsgradienten aus Ionen

oder gelösten Stoffen umgewandelt wird. Bei Bakterien ist die Abhängigkeit dieser

Transportsysteme von einem periplasmatischen Bindeprotein, einer relativ hohen

Substrataffinität und ATP als Energiequelle charakteristisch (Ames, 1986; Davidson,

2002). Systeme, die den Transport von Ionen ausschließlich mit der Energetisierung

durch ATP betreiben, werden ebenfalls zu dieser Gruppe gezählt (Übersicht bei

Pederson & Carafoli, 1987).

Bei sekundären Transportsystemen ist die Translokation des Substrates mit

dem Fluss von Ionen (H+, Na+, K+) entlang ihres elektrochemischen Gradienten

gekoppelt (Mitchell, 1963; West, 1970). Dazu gehören Antiportsysteme, welche

Substrat und Ionen in entgegengesetzter Richtung transportieren (z.B. Tetrazykline/H+-

Antiporter, TetA(C), Sutcliffe, 1978; TetA(A), Waters et al., 1983; Griffith et al., 1994).

Die Laktose-Permease aus E. coli (West, 1970; West & Mitchell, 1973; Kaback, 1990;

King et al., 1991) transportiert Substrat und Ionen in die gleiche Richtung und gehört

damit zu den Symportsystemen. Charakteristisch für diese Gruppe ist die meist aus 12

transmembranen α-Helices bestehende Topologie. Beiden genannten

Transportsystemen ist gemeinsam, dass das Substrat unmodifiziert in die Zelle gelangt.

Bei dem Transport über ein PTS (PEP-abhängiges Kohlenhydrat :

Phosphotransferasesystem) gelangt das Substrat phosphoryliert in die Zelle. Allerdings

ist für den Transport des Substrats eine Phosphorylierung nicht zwingend notwendig.

Vorangegangene Arbeiten sowie die vorliegende konnten zeigen, dass die chemische

Modifikation erst nach der Translokation erfolgt und der Transport von der

Phosphorylierung entkoppelt werden kann (Lolkema et al., 1990; Lolkema et al.,

1991a; Postma et al., 1993; Lengeler & Jahreis, 1996; Otte, 2000). Der eigentliche

Page 11: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

I. Einleitung 3

Transportschritt zeigt Gemeinsamkeiten zwischen den PTSs, den ABC-Transportern

sowie den sekundären Uniportern („Facilitatoren“; Lengeler et al., 1994).

I.3. PTS vermittelter Transport in Bakterien

Kundig, Gosh und Roseman (Kundig et al. 1964) konnten 1964 erstmals PTSs

biochemisch beschreiben. Weiterführende genetische (Murphy & Rosenblum, 1964a, b;

Egan & Morse, 1966; Tanaka & Lin, 1967) und biochemische Untersuchungen (Kundig

et al., 1966) zeigten bei einer Vielzahl von Kohlenhydraten die Beteiligung dieser

Systeme. Die der Phosphorylierung von Kohlenhydraten zu Grunde liegende allgemeine

Gesamtreaktion lautet:

Als weitere Besonderheit der PTSs wird deutlich, dass nicht ATP sondern

Phosphonenolpyruvat (PEP) als Phophorylgruppendonor dient. PEP steht dabei am

Anfang einer Phosphorylierungskaskade, an der folgend eine lösliche

Histidinproteinkinase EnzymI (EI; Gen ptsI) und das Histidin-Protein (HPr; Gen ptsH)

beteiligt sind. Die Gene ptsH und ptsI (und crr; Genprodukt EIIACrr) bilden ein Operon

(De Reuse & Danchin, 1988). Sie werden mit Ausnahme des Fruktose-PTS von allen

PTSs benötigt und daher zu den allgemeinen, substratunspezifischen Komponenten

gezählt. Die Übertragung der Phosphatgruppe vom PEP auf EI erfolgt durch

Autophosphorylierung des EI-Dimers an einem Histidin-Rest (Misset et al., 1980; Weigel

et al., 1982), welches seinerseits die Phosphorylgruppe auf einen Histidin-Rest des HPr

überträgt. Diesen allgemeinen PTS Komponenten stehen die Kohlenhydrat-spezifischen

EnzymeII (EIIs) gegenüber, mit denen das P~HPr in der Folge der

Phosphorylierungskaskade reagiert (Abb. I.1.).

Die bakteriellen PTSs sind aber nicht nur Kohlenhydrat-Transportsysteme,

vielmehr sind sie Teil eines zentralen Signaltransduktionssystems mit wichtigen

regulatorischen Funktionen, die sich über Katabolitenrepression, Induktorausschluss,

Chemotaxis und globale Regulation erstrecken (Postma et al., 1993; Lengeler &

Jahreis, 1996). Bisher sind bei E. coli K-12 über 20 verschiedene PTSs beschrieben, die

eine Vielzahl unterschiedlicher Substrate in die Zelle transportieren (Saier, 1993;

Lengeler et al., 1994; Postma et al., 1996; Tchieu et al., 2001).

Page 12: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

4 I. Einleitung

Abb. I.1. Transport und Phosphorylierung eines Substrates über ein PTS In der Abbildung sind die biochemischen Reaktionen dargestellt, die an der Gruppentranslokation während des Transports und der Phosphorylierung eines Substrates über ein PTS beteiligt sind. Dargestellt sind ein membrangebundenes, substratspezifisches EnzymII, mit den speziellen Domänen IIC, IIB, IIA, sowie die allgemeinen PTS-Komponenten, EnzymI und HPr, mit den entsprechenden Phosphorylierungsstellen (nach Lengeler & Jahreis, 1996).

I.4. Strukturelle und funktionelle Domänen der

EII-Permeasen

Auf der Grundlage von Sequenzvergleichen und Komplementationsstudien

lassen sich die Permeasen in fünf genetische Familien einteilen (Lengeler et al., 1994;

Lengeler & Jahreis, 1996). Ihnen liegt ein modularer Aufbau zu Grunde, der die drei

funktionell autonomen Domänen IIA, IIB und IIC (bzw. IIC und IID bei der Mannose

Familie) umfasst. Die Expression der EIIBMtl-Domäne von E. coli zeigte, dass EIIBMtl als

enzymatisch aktives Protein existieren kann und die in vitro Phosphorylierungsaktivität

zusammen mit EIIAMtl und EIICMtl wiederherstellen kann (Robillard et al., 1993).

Grundlegende Arbeiten hatte dabei vorher den einzelnen Domänen eine biochemische

Funktion zugewiesen (Grisafi et al., 1989; Van Weeghel et al., 1991a; Van Weeghel

et al., 1991b). In den jeweiligen Familien sind die Domänen in unterschiedlicher

Reihenfolge angeordnet und können frei oder fusioniert bzw. durch „Linker“ verbunden

vorliegen. Einander entsprechende Domänen aus einer PTS-Familie können sich

funktionell ersetzen. Die funktionelle Abhängigkeit des EIIScr von Crr (Lengeler et al.,

1982) sowie die Wiederherstellung des Glc+-Phänotyps in einer Crr--Mutante durch

Synthese eines intakten EIINag (Vogler et al., 1988) gehören zu den ersten Beispielen

funktioneller Übereinstimmung der strukturellen Domänen der PTS-

Page 13: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

I. Einleitung 5

Transportkomponenten. Ein Grund dafür ist, dass innerhalb einer Familie die strukturell

und katalytisch relevanten Reste konserviert sind. Die Ähnlichkeit (% identische

Aminosäuren) innerhalb einer Familie in den relevanten Regionen reicht von nahezu

identisch (>98%) bis zu wenigen, lokal begrenzten Motiven. In funktionellen Bereichen

der einzelnen Domänen können die hochkonservierten Bereiche teilweise durch ein bis

zwei Aminosäuren definiert werden (Lengeler, 1990; Lengeler et al., 1994). Die aus

etwa 100 AS bestehende hydrophile IIA-Domäne enthält einen konservierten Histidin-

Rest, der durch P~HPr phosphoryliert werden kann. Ein konserviertes Cystein wird in der

etwa gleichlangen hydrophilen IIB-Domäne von IIA phosphoryliert. Mit etwa 350 AS

bildet die membrangebundene IIC-Domäne den größten Teil des EnzymII-Proteins. Der

hydrophobe Bereich dieser Domäne kann 6-8 transmembrane Helices ausbilden, die

eine große hydrophobe, zytoplasmatische Schleife flankieren. In dieser Schleife findet

man oft ein GXXE-Motiv, wobei der Glutaminsäure-Rest (E) in allen bisher bekannten EII

konserviert ist und in vergleichbarem Abstand immer durch einen hochkonservierten

hydrophilen Rest (His, Asn oder Gln) begleitet wird. Im Gegensatz zu der variablen

modularen Anordnung der Domänen untereinander, weist eine auffällig hohe

Konservierung bestimmter Strukturen und Motive auf relevante Bereiche in dem Enzym

hin (Lengeler & Jahreis, 1996). Es ist offensichtlich, dass man sich bei der Beantwortung

der vielfältigen Fragen nach Substratspezifität, Mechanismus und Kopplung des PTS-

abhängigen Transports auf diese konservierten Bereiche konzentrieren sollte.

I.5. Der EIIMtl-Transporter

Das E. coli EIIMtl besteht aus einer einzigen Polypeptidkette von 637 Aminosäuren

Länge, die durch das mtlA-Gen (Solomon & Lin, 1972; Jacobson et al., 1979; Lee &

Saier, 1983) kodiert wird. Mit den Genen mtlD (Mtl 1-P-Dehydrogenase; Davis et al.,

1988; Jiang et al., 1990) und mtlR (Repressor; Figge et al., 1994) bildet das mtlA-Gen

ein Operon (Genreihenfolge mtlA, D, R), welches bei 80,7min auf dem E. coli-

Chromosom kartiert (Solomon & Lin, 1972; Lengeler, 1975a). Nach Transport und

Phosphorylierung des D-Mannitols (Mtl) durch das EIIMtl wird Mtl-1-P durch die NAD-

abhängige Mtl-1-P-Dehydrogenase zu D-Fruktose-6-P umgewandelt (Wolff & Kaplan,

1956; Klungsöyr, 1966; Solomon & Lin, 1972). Die Regulation des Systems unterliegt

dem Mtl-Repressor (MtlR), der molekulare Induktor ist ausschließlich Mtl (Tanaka et al.,

1967; Lengeler & Steinberger, 1978).

Page 14: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

6 I. Einleitung

Das EIIMtl-Protein lässt sich in drei funktionelle Domänen unterteilen (Abb. I.1.).

Die meist hydrophoben aminoterminalen AS der Position 1 bis 334 bilden die

membranüberspannende EIIC-Domäne (Abb. I.2.) mit der Substratbindestelle und der

Transporterfunktion (Grisafi et al., 1989; Lolkema et al., 1990; Briggs et al., 1992).

Das für die Übertragung der Phosphorylgruppe essentielle Cys-384 (Pas & Robillard,

1988a; Pas & Robillard, 1988b; Grisafi et al., 1989; Pas et al., 1991) befindet sich in

der folgenden hydrophilen EIIB-Domäne (AS 335 bis 457). Die AS 458 bis 637

gehören zur EIIA-Domäne, die ihrerseits das in der Phosphorylierungskette essentielle

konservierte His-554 enthält (Pas & Robillard, 1988b; Pas et al., 1991; van Weeghel et

al., 1991b, 1991c).

Die exakte Topologie der EIIC-Domäne wurde bisher noch nicht bestimmt.

Zahlreiche Untersuchungen deuten darauf hin, dass die funktionell aktive Form des

Proteins eine dimere Konformation aufweist (Übersicht bei Jacobson, 1992; Boer et al.,

1994; Boer et al., 1996; Koning et al., 1999; Heuberger et al., 2002). Hinsichtlich der

Sekundärstruktur wurde anhand von Hydropathiestudien ein Model mit sieben

transmembranen Segmente und einem periplasmatischen N-Terminus vorgeschlagen

(Lee & Saier, 1983). Dagegen führten die Ergebnisse von MtlA-PhoA-Fusionsstudien zu

einem Sekundärstrukturmodell mit sechs transmembranen α-Helices und einem

zytoplasmatischen N-Terminus (Sugiyama et al., 1991). Ergebnisse aus Tryptophan-

Fluoreszenzstudien unterstützen dieses Modell (Dijkstra et al., 1996). Weitere

Untersuchungen, deren Kern Hydrophobizitätsstudien und die Ermittlung einer

Konsensussequenz aus den EIICMtl verschiedener Stämme bildete, führten unter der

Berücksichtigung verschiedener Methoden zur Vorhersage von

Membranproteinstrukturen (Kyte & Doolittle, 1982; Engelman et al., 1986; von Heijne

& Gavel, 1988; von Heijne, 1992) zu einem EIIC-Modell aus 6 transmembranen

Helices, drei kurzen periplasmatischen und zwei großen zytoplasmatischen Schleifen

sowie einem zytoplasmatischen N-Terminus (Lengeler et al., 1994; Lengeler & Jahreis,

1996). Dieses Modell ist in Abbildung I.2., basierend auf einem Vergleich der aktiven

und näher charakterisierten EIICMtl-Aminosäueresequenzen von E. coli (Lee & Saier,

1983), S. carnosus (Fischer & Hengstenberg, 1992; Reiche et al., 1996), K.

pneumoniae (Otte & Lengeler, 2001), S. mutans (Honeyman & Curtiss, 2000) und B.

stearothermophilus (Henstra et al. 1996), dargestellt.

Page 15: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

I. Einleitung 7

Abb. I.2. Modell der Sekundärstruktur des IICMtl-Transporters aus E. coli (nach Sugiyama et al., 1991 und Lengeler et al., 1994; verändert)

Dem Modell liegen die Ergebnisse aus Sequenzvergleichen und mtlA-phoA Fusionsstudien zu Grunde. Periplasmatische und zytoplasmatische Schleifen sind durch arabische Zahlen gekennzeichnet. Die postulierten transmembranen α-Helices sind durch römische Zahlen gekennzeichnet. In den verglichenen Sequenzen identische Proteine sind schwarz unterlegt. Blaue Kreise zeigen Lücken bzw. Insertionen in den verglichenen AS-Sequenzen an. Wichtige am Transportmechanismus beteiligte AS sind rot hervorgehoben. Leere Kreise stellen Aminosäuresequenzen unbestimmter Länge dar. Weitere Erläuterungen sind im Text zu finden.

Bereits die Betrachtung der Sequenzvergleiche lässt eine besondere Funktion der

Schleife 5 aufgrund der sehr hohen Konservierung der AS vermuten. Die Ähnlichkeit

liegt in dem 87 AS langen Bereich zwischen den vermuteten Helices IV und V bei 55,2%

identischen AS, während die Konservierung über das gesamte EIICMtl (AS 1-344) bei

Page 16: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

8 I. Einleitung

38,4% liegt. Zudem befinden sich in der Schleife 5 mehrere konservierte Aminosäuren

die nachweislich eine wichtige Funktion beim Transportprozess haben. Dazu gehört im

EIIMtl das His195, welches essentiell für die Substratbindung zu sein scheint (Weng &

Jacobson, 1993). Darüber hinaus findet man in der Schleife 5 bei AS 254-257 mit der

Aminosäure-Folge -G-I-H-E- das in EII-Transportern hochkonservierte GXXE-Motiv

(Lengeler et al., 1990). Mutationen in diesem Bereich führten zum Verlust von

Bindungs- und Phosphorylierungsaktivität (Saraceni-Richards & Jacobson, 1997), zum

Verlust der Transportaktivität bei verbleibender Phosphorylierungsaktivität (Manayan et

al., 1988) oder zu einer Entkopplung von Transport und Phosphorylierung (Otte, 2000;

Turgut, diese Arbeit). Diese Ergebnisse deuten auf eine maßgebliche Beteiligung der

Aminosäuren des GIHE-Motivs an den komplexen Transport- und

Phosphorylierungsprozessen hin. Allerdings führten auch Austausche an dem

konservierten E218 (E218A, E218V) des EIICMtl zu einer funktionellen Entkopplung von

Transport und Phosphorylierung (Klawitter, 1992; Scholle, 1993; Heuel, 1997; Otte,

2000; Turgut, diese Arbeit), womit die gesamte Schleife 5 eine zentrale Struktur des

gekoppelten Transportprozesses zu sein scheint. Da dieser Prozess neben Transport und

Phosphorylierung auch die Bindung des Substrates beinhaltet, würde die Lokalisation

der oben genannten wichtigen Aminosäuren in einer zytoplasmatischen Schleife

widersinnig erscheinen. Überträgt man ein 1993 von Buhr & Erni für die Struktur vom

EIIGlc vorgeschlagenes Modell auf das EIIMtl, so würde ein Teil der Schleife 5 zu einem

transmembranen Bereich werden und das E257 des GIHE-Motivs im Periplasma liegen

(Lengeler et al., 1994). Allerdings gibt es auch für das von Lengeler vorgeschlagene

Sekundärstrukturmodell vom EIICMtl (Lengeler et al., 1994; Lengeler & Jahreis, 1996)

ein dreidimensionales Modell, das den Ergebnissen aus Sequenzanalysen,

Fusionsstudien und Hydrophobizitätstests entspricht. Nach diesem Modell von Lengeler

(Lengeler, 1990; Lengeler et al., 1994) faltet sich die Schleife 5 in das Innere des

EIICMtl-Transporters und bildet ein hydrophiles, katalytisches Zentrum (Abb. I.3.).

Da eine genaue Kenntnis der Struktur des EIICMtl einen wichtigen Fortschritt im

Verständnis der Funktion des Transportmechanismus bedeuten würde, wurde in dieser

Arbeit versucht, mit weiteren Experimenten zusätzliche Informationen zur Topologie zu

erhalten. Mit der gezielten Markierung von Cysteinen („Cystein-Scanning“) sollte vor

allem die relative Lage der offensichtlich funktionell sehr bedeutsamen Schleife 5

ermittelt werden.

Page 17: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

I. Einleitung 9

Abb. I.3. Modell der essentiellen Strukturelemente des PTS Transport-Systems am Beispiel des EIIMtl (nach Lengeler, 1990)

Es sind die allgemeinen Komponenten der PTS (EnzymI, HPr) sowie das substratspezifische IIMtl aus E. coli schematisch dargestellt. Für EIIC werden sechs transmembrane α-Helices mit einer Schleife 5 postuliert, die sich in den von den α-Helices gebildeten Kanal hineinfaltet. In dem hydrophilen Kern befinden sich die für den Transport essentiellen Aminosäuren (siehe Text).

Aber auch die Selektion von Mutationen, die den Transport entkoppeln, kann für

den Transport wichtige Aminosäuren identifizieren. Zusätzlich isolierte

Suppressormutanten könnten zudem noch Informationen über die relative Lage

einzelner Aminosäuren zueinander liefern. Wie bereits erwähnt, wurden schon einige

Mutationen charakterisiert, die zur Entkopplung des Transports von der

Phosphorylierung führten (Ruijter et al., 1992; Klawitter, 1992; Scholle, 1993; Heuel,

1997; Otte, 2000; Turgut, diese Arbeit). Ergänzend konnte gezeigt werden, dass das

Vorhandensein der EIIC-Domäne ausreicht, um einen funktionellen Transporter mit

intakter Substratbindestelle zu bilden (Grisafi et al., 1989; Briggs et al., 1992; Lolkema

et al., 1990). Beide Beobachtungen entsprechen der gängigen Theorie, dass es sich

beim Transport und der Phosphorylierung des Substrats über ein EII um zwei getrennte,

nacheinander ablaufende Reaktionen handelt, die nicht strikt gekoppelt sind (Lolkema

et al., 1990; Lolkema et al., 1991a; Postma et al., 1993; Lengeler & Jahreis, 1996).

Niedrigaffine Substrate wie D-Arabinitol können auch ohne gleichzeitige

Phosphorylierung durch das EIIMtl aufgenommen werden (Lengeler et al., 1994). So

Page 18: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

10 I. Einleitung

konnte nach dem Transport des niedrigaffinen Substrates D-Glucitol über EIIMtl sowie

des hochaffinen Substrates D-Mannitol über ein mutiertes EIIMtl, intrazellulär freies

Substrat nachgewiesen werden (Otte, 2000). Somit scheint der Grad der Kopplung von

der Affinität der Bindestelle zum Substrat abhängig zu sein. Hochaffine Substrate werden

im Wildtyp-EII so stark gekoppelt transportiert, dass ein Wachstum auf

unphosphoryliertem Substrat nicht möglich ist (Postma & Stock, 1980). Die erleichterte

Diffusion von niedrigaffinen Substraten wurde dagegen für die Aufnahme von

Galaktose über EIIGlc (Kornberg & Riordan, 1976), für Glukose über EIIBgl (Schnetz et

al., 1987) oder EIIScr (Schmid, 1988) sowie für D-Atl und Xyl über EIIGat (Reiner, 1977)

beschrieben.

Demnach vermitteln die entkoppelnden Mutationen eine Reduktion der Affinität

der zum Substrat. Durch diesen strukturellen oder funktionellen Effekt arbeitet der

Transporter als „Facilitator“ und katalysiert in einem energie-unabhängigen Prozess die

erleichterte Diffusion des Substrats über die Membran. Das Hauptsubstrat verhält sich

bei den veränderten Proteinen somit wie ein Nebensubstrat. Ein umgekehrt

proportionales Verhältnis zwischen Affinitätskonstante und Flussrate ist denkbar

(Lengeler et al., 1994; Lengeler & Jahreis, 1996), zumal entkoppelte EII einen teilweise

drastisch erhöhten KM-Wert haben (Ruijter et al., 1991; Ruijter et al., 1992; Scholle,

1993; Lengeler et al., 1994; Otte, 2000).

Neben den direkten strukturellen Untersuchungen mittels „Cystein-Scanning“

sollten in dieser Arbeit weitere EIIMtl-Varianten isoliert und charakterisiert werden, die

den Transport von Mannitol entkoppeln. Durch die Konstruktion neuer

Selektionssysteme wurde eine Selektion mit einem vollständigen EIIMtl (EIIMtlABC)

ermöglicht. Darüber hinaus wurde die Selektion von Suppressormutationen

durchgeführt. Durch die Kombination unterschiedlicher Mutationen mit Hilfe gezielter

Mutagenese wurde versucht, die erhaltenen Mutanten weiter zu charakterisieren. Bei der

Charakterisierung wurden verschiedene genetische und biochemische Methoden

angewendet.

Page 19: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 11

II. Material und Methoden

II.1. Bakterienstämme, Phagen, Plasmide und Oligonukleotide

In den folgenden Tabellen (II.1.1. - II.1.5.) sind die in dieser Arbeit verwendeten

Bakterienstämme, Phagen, Plasmide und Oligonukleotide beschrieben. Die

Nomenklatur richtet sich nach Berlyn et al. (1996). Abweichend hiervon wurden die

Gene der PTS-abhängigen Stoffwechselwege nach Postma et al. (1996) benannt.

Tab. II.1.1. Bakterienstämme

STAMM RELEVANTER GENO-/PHÄNOTYP REFERENZ

Escherichia coli K-12 Derivate

BMH71-18 thi-1 supE44 ∆(lac-proAB) [mutS::Tn10] /F‘ [proA+B+ lacIq Z∆M15]

Wallace et al. (1981); Kramer

et al. (1984)

CSH36 /F’ thi-1 ∆(lac-pro) supE44 /F’lac Miller (1972)

CSH36-1 CSH36 /F’lac::TnLSD101 (dalD dalK‘) diese Arbeit

HB101 F- ara-14 galK2 hsdS20 lacY1 mtlA1 proA2 recA13 rpsL20 supE44 thi-1 xyl-5 Leu- Thr-

Boyer et al. (1969)

JM109 thi-1 gutD::Tn10 ∆(lac-proA,B) recA1 endA1 gyrA1,96 hsdR17 supE44 relA1 /F’ [traD36 proA+B+ lacIq Z∆M15]

Yanisch-Perron et al. (1985)

JM109 (λDE3) JM109 [λDE3 (BamHI) int ::lacUV5-

T7gene1.0]

Yanisch-Perron et al. (1985)

JWL191 F- thi-1 metB1 argG6 hisG1 galT6 galP63 lacY1 Mak0 malT1 ∆(mtlAP,O50) gatR49 gutAP,O49 ptsI191 rpsL104 supE44 tonA2

Lengeler (1980)

JWL300 JWL191 Mak+ Aulkemeyer et al. (1991)

LGS31 F- thi-1 metB1 argG6 hisG1 galT6 lacY1 malT1 ∆(mtlAPA‘) MtlD+ gatR49 gatA50 gutAP,O49 gutA50 rpsL104 supE44 tonA2

Scholle (1993)

Page 20: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

12 II. Material und Methoden

Tab. II.1.1. Bakterienstämme (Fortsetzung)

STAMM RELEVANTER GENO-/PHÄNOTYP REFERENZ

LGS322 LGS31 ∆(gutR’MDBAP,O-recA) Scholle (1993)

LGS324 LGS322 Atlr diese Arbeit

LGS31-1 LGS31 /F‘lac::dalD diese Arbeit

LGS322-1 LGS322 /F‘lac::dalD diese Arbeit

LGS324-1 LGS323 /F‘lac::dalD diese Arbeit

LLR103 F- thi-1 metB1 argG6 hisG1 galT6 lacY1 ∆(mtlAP,O50) gatR49 gutAP,O49 ∆(crr)::kan rpsL104 supE44

Lux (1995)

LGT31 LGS31 ∆(crr)::kann diese Arbeit

LTK31 LGS31 ∆(ptsH ptsI crr)::kan diese Arbeit

LTK31-1 LTK31 /F‘lac::dalD diese Arbeit

LTK31-2 LTK31 /F‘lac::dalD /pUR404 diese Arbeit

LTK32 LTK31 Mak+ diese Arbeit

LTK32-1 LTK32 /F‘lac::dalD diese Arbeit

S136 F- lac-85 malA1 mel-2 rpsL Mtl- Schmitt (1968)

S136-3 S136 ∆(ptsH ptsI crr)::kan Schmid (LKS)

STL136 S136-3 /F‘lac::dalD diese Arbeit

TP2811 F- xyl-5 argH1 ∆lacX74 aroB ilvA ∆(ptsH ptsI crr)::kann

Lévy et al. (1990)

XL1 Blue thi-1 recA1 endA1 gyrA96 hsdR17 supE44 relA1 /F‘lac [proAB lacIqZ∆M15 Tn10 (Tetr)]

Bullock et al. (1987)

Tab. II.1.2. Phagen

Phagen Herkunft

P1.kc Lennox (1955)

R408 Dotto et al. (1981)

Page 21: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 13

Tab. II.1.3. Plasmide

Aminosäureaustausche in WT-Proteinen sind in den Ein-Buchstaben-

Abkürzungen der Aminosäuren sowie der numerischen Position der Aminosäure im

Protein dargestellt (Bsp.: E218A = Glutaminsäure an Position 218 mit Alanin

substituiert).

Plasmide Relevanter Geno-/Phänotyp Referenz

pALTER-1 Tcr Mutagenese-Vektor Smith (1985)

pGHL3 Apr dalD+ K+ T+ in pACYC177 Heilenmann, unveröffentlicht

pGJ9 Cmr pACYC184 mtlA+ (2,1kb SalI/EcoRV) Grisafi et al. (1989)

pGJ9∆137 pGJ9 mtlA’ ∆137AS Grisafi et al. (1989)

pHEX3/5 Cmr lacZP α-lacZ, Klonierungsvektoren (MCS aus pBlueskript KS+; SK+)

Heuel (1997)

pJOE637 Apr Tcr scrK+Y+A+B+R+ Schmid et al. (1988)

pPSO110 Cmr Tcr tnpA Schmid (LKS)

pSOL300 pHEX3 mtlAKAY2026 Otte (2000)

pSOL313 pSOL300 mtlA E218A Otte (2000)

pTIM101 Apr Scr, In vivo Klonierungsvektor Zeppenfeld et al. (2000)

pUR404 Tcr scrK+Y+A+B+R∆ Schmid et al. (1982)

pMaHisMtlAPr Überexpressionsvektor 6His-mtlA Montfort et al. (2001)

Page 22: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

14 II. Material und Methoden

Tab. II.1.4. Neukonstruierte und -isolierte Plasmide

Bei den Eigenschaften der Plasmidserie pMMX5-x wurde zur Veranschaulichung

der Mutation die Veränderung der vier WT-Cysteine von MtlA in eckigen Klammern

angegeben: [CCCC] = [CAS110 CAS320 CAS384 CAS571].

Plasmid Eigenschaften Beschreibung

pGAL3 pALTER-1 mtlA‘

pGAL3-1 pALTER-1 mtlA‘ E218A

pGAL3-2 pALTER-1 mtlA‘ E218V

pGAL3-3 pALTER-1 mtlA‘ H256P

pGAL3-4 pALTER-1 mtlA‘ E218A, L229Q, H256P

pGAL3-5 pALTER-1 mtlA‘ E218V, H256P

III.1.3.1. Seiten 69-71

pGJ9dEA pGJ9∆137 E218A (Selektion)

pGJ9dEV pGJ9∆137 E218V (Selektion)

pGJ9dHP pGJ9∆137 H256P (Selektion)

III.1.2.1. S. 67-69

pGJ9dHindIII pGJ9 ohne HindIII-Fragment in mtlA

pGJT9-1 pGJ9 E218A (ortsspez. Mut.)

pGJT9-1d pGJT9-1 mtlA‘ (∆ SnaBI-ClaI -Fragment)

pGJT9-2 pGJ9 E218V (ortsspez. Mut.)

pGJT9-2d pGJT9-2 mtlA‘ (∆ SnaBI-ClaI -Fragment)

pGJT9-3 pGJ9 H256P (ortsspez. Mut.)

pGJT9-3d pGJT9-3 mtlA‘ (∆ SnaBI-ClaI -Fragment)

pGJT9-4 pGJ9 E218A, L229Q, H256P (ortsspez. Mut.)

pGJT9-4d pGJT9-4 mtlA‘ (∆ SnaBI-ClaI -Fragment)

pGJT9-5 pGJ9 E218V, H256P (ortsspez. Mut.)

pGJT9-5d pGJT9-5 mtlA‘ (∆ SnaBI-ClaI -Fragment)

III.1.3.2. S. 72

pGJT9-6 pGJ9 H256A (ortsspez. Mut.) III.1.5.3. S. 87

pDSM1 pGJT9-3 P256Q

pDSM2 pGJT9-3 P256S

pDSM3 pGJT9-4 P256A

pDSM4 pGJT9-4 P256Q

III.1.4.1. S. 73-74

Page 23: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 15

Tab. II.1.4. Neukonstruierte und -isolierte Plasmide (Fortsetzung)

Plasmid Eigenschaften Beschreibung

pHEX5d pHEX5 ∆HindIII-Erkennungssequenz III.2.1.1. S. 96

pHEXD pHEX3 dalD dalK‘ III.1.1.1. S. 53

pLSD101 pTIM101 dalD dalK‘ III.1.1.1. S. 54

pMMX5 pHEX5d mtlA-6xHis [CCCC]

pMMX5-1 pMMX5 mtlA-6xHis C320A [CACC]

pMMX5-2 pMMX5-1 C110S [SACC]

pMMX5-3 pMMX5-2 C571S [SACS]

pMMX5-4 pMMX5-3 C384S [SASS]

III.2.1.1. S. 96-97

pMMX5-31 pMMX5-3 [SACS] S3C

pMMX5-32 pMMX5-3 [SACS] S110C

pMMX5-33 pMMX5-3 [SACS] S158C

pMMX5-34 pMMX5-3 [SACS] S199C

pMMX5-35 pMMX5-3 [SACS] S212C

pMMX5-36 pMMX5-3 [SACS] S242C

pMMX5-37 pMMX5-3 [SACS] S299C

pMMX5-41 pMMX5-4 [SASS] S3C

pMMX5-42 pMMX5-4 [SASS] S110C

pMMX5-43 pMMX5-4 [SASS] S158C

pMMX5-44 pMMX5-4 [SASS] S199C

pMMX5-45 pMMX5-4 [SASS] S212C

pMMX5-46 pMMX5-4 [SASS] S242C

pMMX5-47 pMMX5-4 [SASS] S299C

III.2.1.2. / III.2.1.3. S. 97-99

pMMX5-4HP pMMX5-4 H256P III.2.1.3. S.99

pMMX5-EA pMMX5 mtlA E218A III.1.5.3. S. 92

pRUG1 pMaHisMtlAPr mtlA E218A

pRUG2 pMaHisMtlAPr mtlA E218V

pRUG3 pMaHisMtlAPr mtlA H256P

pRUG4 pMaHisMtlAPr mtlA E218A H256P

III.1.5.2. S. 81-82

Page 24: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

16 II. Material und Methoden

Tab. II.1.4. Neukonstruierte und -isolierte Plasmide (Fortsetzung)

Plasmid Eigenschaften Beschreibung

pRUG5 pMaHisMtlAPr mtlA E218A H256P

pRUG6 pMaHisMtlAPr mtlA H256A

pRUG7 pMaHisMtlAPr mtlA H256Q

pRUG8 pMaHisMtlAPr mtlA H256S

III.1.5.2. S. 81-82

F‘lac::dalD F’lac::TnLSD101 dalD ScR III.1.1.1. S. 53

Tab. II.1.5. Oligonukleotide

In den Primern zur Mutagenese sind die Mutageneseziele farblich

hervorgehoben. Rot bezeichnet das Triplet der mutagenisierten Aminosäure. Bei der

HisTag-Konstruktion ist das Stop-Kodon dunkelrot, die Erkennungssequenzen für

Restriktionsenzyme blau und die Kodone für die sechs His blaugrün gefärbt.

Primer Sequenz Beschreibung

mtlA-A-Cy5 5‘- ACC TCT GCC GCC ACA TTA AC -3‘

mtlA-2A-Cy5 5‘- GAT GAT CAC TTA TCT CCT GCC -3‘

mtlA-B-Cy5 5‘- TGC TGG TGA ATA ACT TCT CC -3‘

Cy5-markierte Sequenzier-

Primer

mtlA-2B-Cy5 5‘- GTT CTT TGG TCG TGG TAG CGC -3‘ „

mtlA-C-Cy5 5‘- GCT TAC TTC GCT AAC ATC GC -3‘ „

mtlA-2C-Cy5 5‘- GAG TCT AAA GGC GCA TCT CCG -3‘ „

mtlA-D-Cy5 5‘- TGA CCA ACT TCC TCG ACA GC -3‘ „

mtlA-2D-Cy5 5‘- AGC TGG TGA AAG GCG GTT ACG -3‘ „

mtlA-EH-Cy5 5‘- TCC TGT TCC TCA ACA ACG CC -3‘ „

mtlA-HE-Cy5 5‘- GAT AGT CAG CGT GAA CAC GC -3‘ „

mtlA-1-Cy5 5‘- ACC CCA CCT TCT CCA TGT GG -3‘ „

mtlA-2-Cy5 5‘- CTT TGC GAC CGA GGA AGA TG -3‘ „

mtlA-3-Cy5 5‘- TTC ATG TCC TGC ATA CGA CG -3‘ „

mtlA-4-Cy5 5‘- AAG AAC ATG TAC GCC AGC AG -3‘ „

mtlA-5-Cy5 5‘- CGA TAA CGC CCA TGG TGG TG -3‘ „

Page 25: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 17

Tab. II.1.5. Oligonukleotide (Fortsetzung)

Primer Sequenz Beschreibung

E218A (+) 5‘- CAA TCT TCT TCC TGA TTG CCG CTA ACC CAG GTC CAG G -3‘

Mutagenese-Primer

E218A (-) 5‘- CCT GGA CCT GGG TTA GCG GCA ATC AGG AAG AAG ATT G -3‘

E218V (+) 5‘- CAA TCT TCT TCC TGA TTG TCG CTA ACC CAG GTC CAG G -3‘

E218A (-) 5‘- CCT GGA CCT GGG TTA GCG ACA ATC AGG AAG AAG ATT G -3‘

H256P (+) 5‘- CTT CCT GGG GGG TAT CCC AGA AAT CTA CTT CCC G -3‘

H256P (-) 5‘- CGG GAA GTA GAT TTC TGG GAT ACC CCC CAG GAA G -3‘

H256A (+) 5‘- CTT CCT GGG GGG TAT CGC CGA

AAT CTA CTT CCC G -3‘ „

H256A (-) 5‘- CGG GAA GTA GAT TTC GGC GAT ACC CCC CAG GAA G -3‘

H256Q (+) 5‘- CTT CCT GGG GGG TAT CCA GGA AAT CTA CTT CCC G -3‘

H256Q (-) 5‘- CGG GAA GTA GAT TTC CTG GAT ACC CCC CAG GAA G -3‘

H256S (+) 5‘- CTT CCT GGG GGG TAT CAG CGA AAT CTA CTT CCC G -3‘

H256S (-) 5‘- CGG GAA GTA GAT TTC GCT GAT ACC CCC CAG GAA G -3‘

MtlA-HIS 1 5‘- GGA ATT CCC GTC GAC TGG ACA

GTT AAC CGA TTC AGT G -3‘ Konstruktion

eines mtlA-6xHisTag

MtlA-HIS 2 5‘- TTG GAT CCT TAG TGG TGG TGG TGG TGG TGC TTA CGA CCT GCC AGC AGT TCC AGC ACT TC -3‘

C110S (+) 5‘- CGC TGG GCG GCT GGT CTA TTA

AGC ACT TCG AC -3‘ Mutagenese-

Primer

C110S (-) 5‘- GTC GAA GTG CTT AAT AGA CCA GCC GCC CAG CG -3‘

Page 26: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

18 II. Material und Methoden

Tab. II.1.5. Oligonukleotide (Fortsetzung)

Primer Sequenz Beschreibung

C320A (+) 5‘- CAT CGC GGG TGT GGC TGC GGC GAT GGC TGT C -3‘

Mutagenese-Primer

C320A (-) 5‘- GAC AGC CAT CGC CGC AGC CAC ACC CGC GAT G -3‘

C384S (+) 5‘- CGT AAA ATC ATC GTT GCC TCT GAC GCC GGT ATG GG -3‘

C384S (-) 5‘- CCC ATA CCG GCG TCA GAG GCA ACG ATG ATT TTA CG -3‘

C571S (+) 5‘- GGG CGT CGT GTT CTC TCA GTA CCC GGA AGG CG -3‘

C571S (-) 5‘- CGC CTT CCG GGT ACT GAG AGA ACA CGA CGC CC -3‘

S3C (+) 5‘- GGT GTT TTT ATG TCA TGC GAT ATT

AAG ATC AA -3‘ “

S3C (-) 5‘- TTG ATC TTA ATA TCG CAT GAC ATA AAA ACA CC -3‘

S110C (+) 5’- CTG GGC GGC TGG TGC ATT AAG CAC TTC G -3’

S110C (-) 5’- CGA AGT GCT TAA TGC ACC AGC CGC CCA G -3’

S158C (+) 5‘- GAT TGT TGA AGC CCT GTG CAA AAT GCT GGC TGC GG -3‘

S158C (-) 5‘- CCG CAG CCA GCA TTT TGC ACA GGG CTT CAA CAA TC -3‘

S199C (+) 5‘- CCA CGG TAT CTT CTG CCC GCT GGG TAT TCA G -3‘

S199C (-) 5‘- CTG AAT ACC CAG CGG GCA GAA GAT ACC GTG G -3‘

S212C (+) 5‘- CCA TGA ACT GGG TAA ATG CAT CTT CTT CCT GAT TG -3‘

S212C (-) 5‘- CAA TCA GGA AGA AGA TGC ATT TAC CCA GTT CAT GG -3‘

S242C (+) 5‘- GGT AGC GCT AAA CAG TGC GCG GGC GGT GCG GC -3‘

S242C (-) 5‘- GCC GCA CCG CCC GCG CAC TGT TTA GCG CTA CC -3‘

Page 27: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 19

Tab. II.1.5. Oligonukleotide (Fortsetzung)

Primer Sequenz Beschreibung

S299C (+) 5‘- CGG CAT CTC CGG GTT GCA TCC TTG CTG TAC TGG -3‘

S299C (-) 5‘- CCA GTA CAG CAA GGA TGC AAC CCG GAG ATG CCG -3‘

II.2. Chemikalien, Isotope und Enzyme

Handelsübliche Grundchemikalien, Detergenzien, Lösungsmittel,

Puffersubstanzen, Kohlenhydrate, Vitamine, Antibiotika und Aminosäuren wurden von

den Firmen Boehringer (Mannheim), Difco (Michigan, USA), Life Technologies und Roth

(Karlsruhe), Merck (Darmstadt), Amersham Pharmacia (Freiburg, Braunschweig), Riedel

de Haën (Seelze), Serva (Heidelberg) und Sigma (Deisenhofen) bzw. der Sigma-Aldrich

Firmengruppe bezogen. Radioaktive Isotope stammten von Amersham LIFE SCIENCE

(Buckinghamshire, England). DNA-modifizierende Enzyme und Feinchemikalien für

DNA-Techniken stammten von den Firmen Genomed (Bad Oeynhausen), Boehringer

(Mannheim) und Life Technologies (Karlsruhe). Bei der Sequenzierung wurden das

“T7SequencingTM-Kit“, das ‘‘Cy5TM AutoRead Sequencing Kit‘‘ der Firma Pharmacia

Biotech (Freiburg) und das „Thermo Sequenase fluorescent labelled primer cycle

sequencing kit with 7-deaza-dGTP“ der Firma Amersham Pharmacia Biotech

(Buckinghamshire, England) eingesetzt. Spezifische DNA-Primer für die Sequenzierung,

PCR-Amplifikation und Mutagenese wurden von der Firma Interactiva (Ulm) und TIB

MOLBIOL (Berlin) synthetisiert. Sulfhydrylreagenzien (Biotinmaleimid und Stilben)

wurden von Molecular Probes Inc. (Eugene, OR 97402-0469) geliefert. Eingesetztes

H2O stammte aus der hauseigenen VE-Anlage, zweifach entsalztes H2O wurde mit der

„Seradest LFM 20“-Anlage von Seral (D-56235, Ransbach) hergestellt.

Page 28: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

20 II. Material und Methoden

Tab.II.2. Häufig verwendete Puffer und Lösungen

ABKÜRZUNG ZUSAMMENSETZUNG KONZENTRATION

GLB, 5fach Glyzerin TBE Bromphenolblau Xylencyanolblau

50% 0,5fach 0,25% 0,25%

TBE, 10fach Tris-Base

Borat EDTA 0,5M pH 8,0 H2O

108g 55g

40ml ad 1000ml

TE 10.1 Tris-HCl pH 8,0

EDTA pH 8,0 10mM 10mM

KPi [X M, pH Y] Kaliumdihydrogenphosphat, X M

di-Kaliumhydrogenphosphat, X M

In der Tabelle sind häufig verwendeter Puffer und Lösungen und deren Zusammensetzung angegeben.

II.3. Nährmedien

II.3.1. Minimalmedium

Als Minimalmedium wurde ein Standard-Phosphatmedium nach Tanaka et al.

(1967) verwendet. Nach dem Autoklavieren wurde die entsprechende

Kohlenstoffquelle, soweit nicht anders angegeben, in einer Endkonzentration von

0,2% (w/v) zugegeben. Bei Bedarf erfolgte eine Supplementierung mit Aminosäuren

(20mg/l der L-Form; Methionin und Cystein 40mg/l) und Thiamin (B1) (50mg/l). Bei

Derivaten des Stammes JWL181 wurde Thiamin mit 100mg/l eingesetzt, da eine

Wachstumslimitierung bei den Stämmen LGS322 und LGS323 mit nur 50mg/l Thiamin

beobachtet wurde. Vitamine (5mg/l) wurden je nach Verwendung dem Medium

entsprechend zugegeben. MM-Platten enthielten zusätzlich 12g/l Gibco-Agar.

II.3.2. Vollmedien (LB0, LB und 2xTY)

LB0-Vollmedium setzte sich aus 10g Bacto-Trypton (Difco), 10g Hefeextrakt und

5g NaCl auf 1000ml H2O bidest zusammen. Zur Herstellung von LB-Medium (Lennox

1955) wurde LB0-Medium nach dem Autoklavieren zu einer Konzentration von

Page 29: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 21

0,2% (w/v) und CaCl2 (2,5 mM) steril zugesetzt. 2xTY-Medium bestand aus 13g Bacto-

Trypton (Difco), 5g NaCl und 10g Hefeextrakt auf 1000ml H2O. Zur Herstellung von

LB0-Platten wurden zu 1l LB0-Medium 12g Gibco-Agar zugegeben.

II.3.3. MacConkey (McC) - Indikatorplatten

Als Selektionsplatten wurden MacConkey-Indikatorplatten verwendet

(MacConkey, 1905). Sie bestanden aus 40g MacConkey-Agar Base (Difco) in 1000ml

H2O. Die zu testende Kohlenstoffquelle wurde nach dem Autoklavieren in einer

Endkonzentration von 1% (w/v) steril zugegeben. Zuckeralkohole wurden in gleicher

Konzentration vor dem Autoklavieren eingewogen. Die Konzentration bei D-Mannitol

Platten lag dementsprechend bei 55mM.

II.3.4. IPTG/X-Gal-Indikatorplatten

In diesem Vollmedium war zusätzlich zu dem selektionierenden Antibiotikum

1mM IPTG und 0,02% (w/v) X-Gal enthalten. X-Gal-Platten können bei bestimmten

Klonierungen das Vorhandensein eines Inserts anzeigen. Alle Vektoren, die ein α-lacZ

mit einer integrierten multiplen Klonierungsstelle (mks) tragen, sind dafür geeignet. Auf

X-Gal-Indikatorplatten erscheinen Kolonien, die einen Vektor mit Insert erhalten haben

weiß. Diejenigen, die nur den Vektor tragen, erscheinen blau.

II.3.5. P1-Weichagar

P1-Weichagar diente zur Herstellung und Titration von P1-Phagenlysaten. Nach

der Vorschrift von Arber (1960) setzte er sich aus 8g Nutrient Broth, 5g NaCl, 6,5g

Difco-Agar auf 1000ml H2O zusammen.

II.3.6. Chemotaxis-Schwärmplatten

Die Herstellung von Chemotaxis-Schwärmplatten (ohne EDTA) erfolgte nach

einer von Grübl (1989) modifizierten Vorschrift nach Adler (1973). Die Platten

enthielten 3,9ml KH2PO4 (1M); 6,1ml K2HPO4 (1M); 1,0ml (NH4)2SO4 (1M); 1,0ml

MgSO4 (1M; nach den Autoklavieren steril zugegeben) und 2,7g Difco-Agar auf 1l

zweifach entsalztes H2O. Kohlenhydrate wurden in Endkonzentrationen zwischen

100µM und 1mM zugegeben.

Page 30: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

22 II. Material und Methoden

II.3.7. Medien mit Antibiotikazusatz

Antibiotika wurden, wenn nicht anders angegeben, in folgenden

Endkonzentrationen steril zugesetzt: Ampicillin (Amp/Ap) 100µg/ml; Chloramphenicol

(Cam/Cp) 25µg/ml; Tetracyklin (Tet/Tc) 10µg/ml (alle in 50% Ethanol gelöst);

Kanamycin (Kan/Kn) 25µg/ml; Spectinomycin (Spc/Sp) 100µg/ml; Streptomycin

(Str/Sm) 50µg/ml (alle in H2O gelöst).

II.3.8. Medium zum Anlegen von Dauerkulturen (nach Lengeler)

Ein salzarmes Medium (Slant) enthielt 20g Bacto-Trypton, 10g Hefeextrakt und

0,2% (v/v) Glyzerin auf 1l Wasser. Eine getestete Einzelkolonie wurde ÜN in 8ml

Medium angezogen. Die Kultur wurden abzentrifugiert und in 4ml Slant 50:50 (10g

Bacto-Trypton, 5g Hefeextrakt in 500ml Wasser und 500ml Glyzerin 87%)

resuspendiert. Je 2ml wurden in sterile Wheaton-Röhrchen überführt und getrennt bei -

20°C gelagert.

II.4. Anzuchtverfahren

Die für die Anzucht von Stämmen der JWL-Stammreihe verwendeten

Minimalmedien wurden mit Thiamin, L-Arginin, L-Methionin und L-Histidin (B1AMH)

supplementiert. Sollten plasmidkodierte Funktionen erhalten bleiben, wurden

entsprechende Antibiotika in den bereits genannten Konzentrationen zugegeben.

II.4.1. Wachstumskurven

Wachstumskurven wurden in Erlenmeyerkolben mit dem 10fachen Volumen des

zu messenden Kulturvolumens durchgeführt. Aus einer gut gewachsenen ÜK wurden die

Zellen zu einem Titer von 2,5-5x107 Bakterien/ml angeimpft und bei 37oC im

Schüttelwasserbad inkubiert. Bei Wachstum in Minimalmedien erfolgte die Messung bei

OD420 (1=5x108 B/ml), die Trübungszunahme in Vollmedien wurde bei OD650

(1=1x109 B/ml) gemessen. Die Generationszeiten wurden rechnerisch aus der

Kurvengleichung der Wachstumskurve in der exponentiellen Phase ermittelt, wobei in

der halb-logarithmischen Darstellung eine exponentielle Trendlinie mit der Gleichung

Page 31: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 23

y = m ∗ eb ∗ x

erstellt wurde. Der Wert b ergab durch

G = ln2 / b

den Wert für die Generationszeit G.

II.4.2. Anzucht der Bakterien für Transportmessungen

Die Anzucht der Stämme erfolgte aerob in LB0-Medium und falls erforderlich mit

den entsprechenden Antibiotika. Nach dem Animpfen der Kultur aus einer ÜK zu einem

Titer von 5x107 B/ml (OD420=0.1) wurden die Zellen bis zum Erreichen eines Titers von

5x108 B/ml im Schüttelwasserbad bei 37°C inkubiert. Eine Induktion des

Transportsystems war nicht erforderlich, da nur mit konstitutiv exprimierten Systemen

gearbeitet wurde. Anschließend wurden die Zellen abzentrifugiert (Hettich-

Tischzentrifuge), in MM gewaschen und zu einem Titer von ca. 1x108 B/ml in MM

aufgenommen. Nach Bestimmung der genauen Test-OD erfolgte der Transporttest.

II.4.3. Anzucht der Bakterien für Proteinüberexpressionen

Eine Überexpression wurde bei der Herstellung von EIIMtl-Membranvesikeln

angewandt und in zwei unterschiedlichen Systemen durchgeführt:

1. An der Reichsuniversität in Groningen (RUG) wurde das Plasmid

pMaHisMtlAPr benutzt, dass eine Induktion über Hitze ermöglichte. In diesem Plasmid

ist das mtlA hinter den starken λ PR Promotor kloniert, der unter der Kontrolle des auf

dem Plasmid vorhandenen thermolabilen (cI875) λ-Repressors steht (Davison et al.,

1987). Hierzu wurde eine getestete EK in 2ml LB0-Medium+Cam unter Schütteln 7h bei

30°C im WB inkubiert um anschließend 100ml LB0-Medium+Cam anzuimpfen. Diese

Kultur wurde ÜN bei 30°C im WB inkubiert. Mit je 25ml ÜK wurden 3x 1l LB0-

Medium+Cam angeimpft und bei 30°C und 250Upm im Inkubator (New Brunswick

Scientific Co. Inc. - Model G25 Incubator Shaker) bis zu einer OD650=ca. 0,8

angezogen. Für die Hitzeinduktion wurde der Inkubator 10min auf 65°C, 20min auf

45°C und dann 2h auf 42°C eingestellt. Anschließend wurden die Zellen durch

Zentrifugation geerntet.

Page 32: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

24 II. Material und Methoden

2. In pMMX5-Derivaten wurde die Überexpression nach der veränderten

Methode von Tabor und Richardson (1985) mit Hilfe des T7-RNA-Polymerasesystems

von Studier und Moffat (1986) durchgeführt. Bei dieser Methode wird die Eigenschaft

der T7-RNA-Polymerase genutzt, im Wesentlichen spezifische T7-Promotoren zu

erkennen. Durch Insertion des mtlA-Genes hinter den T7-Promotor in pHEX5 (Heuel,

1997) und gezielter Induktion der T7-RNA-Polymerase-Synthese mit Isopropyl-ß-D-

thiogalactopyranosid (IPTG) konnte MtlA in erhöhter Menge in dem Stamm

JM109(λDE3) (Yanisch-Perron et al.,1985) produziert werden. Das Gen für die T7-

RNA-Polymerase liegt in Stamm JM109(λDE3) chromosomal unter Kontrolle des durch

IPTG induzierbaren lacUV5-Promotors vor. Durch Induktion mit IPTG kommt es zur

Expression der T7-RNA-Polymerase, welche dann die hinter den T7-Promotor klonierten

Gene transkribiert.

Mit dem entsprechenden Plasmid frisch transformierte JM109(λDE3)-Zellen

wurden als ÜK bei 37°C angezogen und am nächsten Morgen zu einem Titer von

ungefähr 5x107 B/ml in LB0-Medium+Cam angeimpft. Bei einer Zelldichte von ca.

7x108 B/ml erfolgte die Induktion der Überproduktion mit 2mM IPTG. Nach 1,5-2h

wurden die Zellen geerntet.

II.4.4. Anzucht der Bakterien zur Herstellung von Zellextrakten

War eine Proteinüberexpression bei der Herstellung von Zellextrakten nicht

möglich oder notwendig, wurde bei der Anzucht wie folgt verfahren. Aus einer ÜK in

2xTY-Medium wurde zu einem Titer von 3-5x107 B/ml angeimpft und bei 37°C im

Schüttler bis zur spätexponentiellen Phase (ca. 1x109 B/ml) inkubiert. Anschließend

wurde die Kultur durch Zentrifugation geerntet dann zweimal in 1%-igem NaCl

gewaschen und direkt weiter verarbeitet oder bei -20°C aufbewahrt.

II.5 Herstellung von Zellextrakten

II.5.1. Präparation von Zellextrakten mit der „French Press“

Nach der Ernte wurden die Zellen mit Tris [20mM; pH 7,6], NaN3 [1mM]

gewaschen und das Sediment mit 5ml Puffer (Tris [20mM; pH 7,6], NaN3 [1mM], DTT

[5mM]) je Gramm Nassgewicht der Zellen überschichtet und auf Eis ÜN im Kühlraum

gelagert.

Page 33: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 25

Anschließend wurde dem Puffer 1mM PMSF, 1mM MgCl2 und je eine Spatelspitze

DNAse und RNAse zugegeben und die Zellen darin vorsichtig resuspendiert. Der

Aufschluss der Zellen erfolgte bei >10.000psi in der „French Press“. Der Zellaufschluss

wurde mit 2mM EDTA versetzt, anschließend 10min bei 15.000Upm zentrifugiert und

der Überstand weitere 90min bei 48.000Upm zentrifugiert. Die Membranvesikel

wurden in 2ml Puffer (Tris [25mM; pH 8,4], NaN3 [1mM], DTT [5mM]) je Nassgewicht

der Zellen resuspendiert und in flüssigem N2 gelagert.

II.5.2. Präparation von Zellextrakten durch Ultraschallbehandlung

Die Anzucht der Kulturen erfolgte wie unter II.4. beschrieben. Nach

Zentrifugation wurde das Sediment zweimal in 1/5 Volumen 1%iger (w/v) NaCl-Lösung

gewaschen. Die Zellen wurden in gekühltem Tris [0,1M; pH 7,6] auf einen Titer von ca.

1x1011 B/ml eingestellt und während des Aufschlusses durch Ultraschall in EtOH-

Eiswasser gekühlt. Beschallt wurde in Intervallen von 20s/20s

(Ultraschall/Abkühlungsphase) bis das Extrakt klarer wurde. Nach der Kontrolle des

Extraktes unter dem Mikroskop wurden Zelltrümmer und nicht aufgeschlossene Zellen

durch 20-minütige Zentrifugation bei 14.000Upm/4°C entfernt. Zur weiteren

Auftrennung von Membranen und Zellinhalt wurde der Überstand in der Mini-UZ 30min

bei 80.000Upm/4°C zentrifugiert und das Membranpellet anschließend in 1/50

Volumen geeigneten Puffers resuspendiert.

II.6. Genetische Techniken

II.6.1. Strichkreuzungen

Donor und Rezipient wurden in 5ml LB0-Medium angeimpft und in der

exponentiellen Wachstumsphase geerntet. Nach zweimaligem Waschen in MM wurden

die Zellen in 0,2ml MM aufgenommen. Mit einer Pipette wurde zuerst der Donor auf

die entsprechende Selektionsplatte aufgetragen und nach dem Eintrocknen senkrecht

dazu der Rezipient.

Page 34: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

26 II. Material und Methoden

II.6.2. Flüssigkreuzungen

Donor und Rezipient wurden in Vollmedium angezogen und nach dem Erreichen

der exponentiellen Phase in einem Verhältnis von 1:10 (Donor:Rezipient) in einem

Erlenmeyerkolben unter sehr langsamem Schütteln gemeinsam inkubiert. Die Kreuzung

wurde durch Resuspendieren in MM und eine kurze Vortexbehandlung unterbrochen.

Entsprechende Verdünnungen wurden auf Selektionsplatten ausplattiert.

II.6.3. Transformation von E. coli

Plasmid-DNA wurde nach der CaCl2-Methode (Sambrook et al., 1989) in die

Bakterienzellen transformiert. Alternativ dazu wurde eine vereinfachte

Transformationsmethode eingesetzt, bei der 5ml 2xTy-Medium mit 0,2ml einer

Übernachtkultur der zu transformierenden Bakterien angeimpft und 2 Stunden bei 37°C

im Roller inkubiert wurde. Nach Zentrifugation der Zellen wurde das Sediment in 0,2ml

kaltem CaCl2 (0,1M) resuspendiert und für 30min auf Eis gestellt. Mit den kompetenten

Zellen wurde die Transformation wie bei Sambrook et al. (1989) beschrieben

durchgeführt.

II.6.4. Transformation von E. coli durch Elektroporation

Bei Versuchen in denen eine höhere Transformationsrate erforderlich war, wurde

die Elektroporation eingesetzt. Dazu wurden E.coli-Zellen wie in dem Handbuch zum

ELEKTRO CELL MANIPULATOR 600 von BTX beschrieben in LB0-Medium bis zu einer

OD650 von 0,5-1 bei 37°C unter Schütteln angezogen. Die Zellen wurden dann viermal

mit kaltem, sterilem Wasser gewaschen und schließlich auf 1/2000 des

Ausgangsvolumens in 10% (v/v) Glyzerin resuspendiert. Während des gesamten

Vorgangs wurden die Zellen auf 4°C gehalten. Die Zellen konnten portioniert und bei -

80°C aufbewahrt werden. 50µl der Zellsuspension wurden in eine

Elektroporationsküvette mit 2mm Schlitz (Eurogenetech) gegeben. Nach der Zugabe der

DNA wurde gemischt, das Gerät auf 2,5kV und R5 eingestellt und die Zellen dadurch

für ungefähr 5ms der Spannung ausgesetzt. Anschließend wurden die Zellen sofort in

eiskaltes Medium gegeben und dort für ca. 5min inkubiert. Dann wurden sie für 30-

90min unter Schütteln bei 37°C inkubiert und anschließend auf Selektionsplatten

plattiert.

Page 35: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 27

II.6.5. P1-Transduktion

Zur Durchführung von P1-Transduktionen wurde die von Lengeler (1966)

modifizierte Methode nach Arber (1960) angewendet.

II.6.5.1. Herstellung von Plattenlysaten

P1-Weichagar wurde aufgekocht und im Wasserbad auf 55°C temperiert. Auf

3ml Weichagar wurden 0,25ml einer in LB-Medium angezogenen, gut gewachsenen

ÜK des Donorstammes und etwa 106 P1.kc-Phagen gegeben. Der zur Infektion benutzte

P1.kc sollte dabei möglichst auf einem WT-ähnlichen E. coli K-12-Stamm vermehrt

worden sein. Dieser Ansatz wurde rasch gemischt, auf eine vorgewärmte LB-Platte

gegossen und gleichmäßig verteilt. Die Platte wurde nach Erstarren des Weichagars bei

37°C bis zum Einsetzen der konfluenten Lyse inkubiert und dann zwecks Ernte der

Phagen mit 3ml LB-Medium überschichtet. Abgeschwemmt wurden die Phagen indem

der Ansatz ungefähr 30-60min vorsichtig bei RT geschwenkt oder ÜN bei 4°C

aufbewahrt wurde. Die Phagensuspension wurde mit einer Pipette von der Platte

abgezogen und zur Entfernung von Bakterien und Agarresten 15min bei 5.000Upm

zentrifugiert. Das Phagenlysat wurde nach Zugabe von einigen Tropfen CHCl3

geschüttelt und anschließend bei 4°C aufbewahrt. Zur Bestimmung des Phagentiters

wurden entsprechende Verdünnungen des Lysats (10-6, 10-7, 10-8, 10-9) wie oben

beschrieben mit Bakterien und Weichagar gemischt und ÜN auf Platten inkubiert.

II.6.5.2. Transduktion

Für eine P1-Transduktion wird eine m.o.i. von 0,2 als geeignet angesehen. Dazu

wurde eine in LB angezogene ÜK des Rezipientenstammes zunächst verdünnt (meistens

1:5) und mit 108 der auf dem Donorstamm vermehrten Phagen infiziert. Dieser Ansatz

wurde 20min bei 37°C inkubiert. Eine Neuinfektion der Zellen wurde durch Zugabe von

P1-Saline (7,5g Na-Citrat, 5g NaCl auf 1000ml H2O) und vortexen gestoppt. Die

Bakterien wurden noch einmal mit P1-Saline gewaschen und - je nachdem welche Art

von Markern übertragen werden sollte - direkt auf Selektionsplatten plattiert oder zur

Etablierung von Antibiotikaresistenzen vorher 1h bei 37°C in 3-4ml LB0 inkubiert.

Page 36: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

28 II. Material und Methoden

II.7. DNA-Techniken

II.7.1. Analytische Agarosegele

Für die Auftrennung von DNA-Fragmenten wurden Agarosegel-Elektrophoresen

nach Sambrook et al. (1989) durchgeführt. Je nach Größe der Fragmente wurden

0,7%ige (w/v) bzw. bei kleinen DNA-Fragmenten 1,5%ige (w/v) Agarosegele in 1xTBE-

Puffer benutzt. Die Elektrophorese erfolgte in einem mit 0,5µg/ml Ehtidiumbromid

versetzten TBE-Puffer bei einer Spannung von 100V und einer Stromstärke von 100 bis

160mA. Das in die DNA interkalierende Ethidiumbromid konnte auf einem UV-

Leuchttisch bei 254nm sichtbar gemacht und zur Auswertung mit einer

Videodruckanlage (UVP, Herolab, Wiesloch) dokumentiert werden. Zur

Größenzuordnung der aufgetrennten Fragmente wurde ein Standard („1kb-ladder“) der

Firma Life Technologies benutzt.

II.7.2. Präparative Agarosegele und DNA-Fragmentisolierungen

Die präparative Auftrennung von DNA-Fragmenten erfolgte wie oben

beschrieben. Um Beschädigungen der DNA durch UV-Strahlung möglichst gering zu

halten, wurden die gesuchten DNA-Fragmente mit einer UV-Handlampe (λ = 302nm)

sichtbar gemacht und mit einem Skalpell aus dem Agarosegel ausgeschnitten. Die

Isolation der aus den präparativen Gelen ausgeschnittenen DNA-Fragmente erfolgte

mit Hilfe des Qiaex Gel Extraction Kits von Qiagen nach Angaben des Herstellers.

II.7.3. Präparation von Plasmid-DNA

Die Isolierung kleinerer Mengen von Plasmid-DNA (Miniplasmidisolierung)

erfolgte durch alkalische Lyse (Birnboim &. Doly, 1979) nach dem Protokoll von

Sambrook et al. (1989). Abweichend von dieser Vorschrift wurde der GET-Lösung

(50mM Glukose; 10mM EDTA; 25mM Tris-HCl, pH 8,0) 4mg/ml Lysozym zugesetzt.

Bei Plasmiden mit geringer Kopienzahl wurde bei gleichem Ansatzvolumen die doppelte

Zellmenge eingesetzt. Zur Isolierung hochreiner Plasmid-DNA für Sequenzierungen

wurden das „Jet Star-Kit“ (Genomed) oder das ‚‚Flexi-Prep-Kit‘‘ (Pharmacia Biotech)

nach Angaben der Hersteller benutzt.

Page 37: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 29

II.7.4. Bestimmung der DNA-Konzentration

Die Bestimmung der DNA-Konzentration erfolgte nach Sambrook et al. (1989)

durch die photometrische Messung der Extinktion der DNA-Proben bei 260nm. Dabei

entspricht OD260=1 etwa 50 µg/ml doppelsträngiger DNA. Um den Grad der

Verunreinigung durch Proteine zu ermitteln, wurde die Extinktion der Proben bei einer

Wellenlänge von 280nm gemessen. Reine Präparationen sollten einen Quotienten

OD260 / OD280 von 1,8 bis 2,0 aufweisen. Werte unter 1,8 erlauben keine exakte

Konzentrationsbestimmung.

II.7.5. DNA-Restriktion

Für die analytische oder präparative Spaltung von DNA wurden entsprechend

den Herstellerangaben 1-3 Einheiten des Restriktionsenzyms pro µg DNA (DNA-

Konzentration einer Miniplasmidisolierung: 0,5 bis 1,5µg/µl) zugegeben und bei der für

das Enzym optimalen Reaktionstemperatur im vom Hersteller empfohlenen Puffer

inkubiert. Zur Analyse wurde etwa eine Stunde, für Präparationen 2-3 Stunden und bei

Restriktionen mit chromosomaler DNA über Nacht verdaut. Bei Restriktionen mit mehr

als einem Enzym wurde der für alle Enzyme günstigste Inkubationspuffer oder der

‘‘One-Phor-All‘‘-Puffer PLUS (Pharmacia Biotech) verwendet. Vor der

gelelektrophoretischen Auftrennung wurde den Reaktionen 5xGLB zugegeben.

II.7.6. “Klenowbehandlung“ von DNA-Fragmenten

Zum Auffüllen 5’-überstehender Enden bzw. Abbau 3’-überstehender Enden

wurde eine Behandlung der DNA mit der Klenow-Polymerase nach Ausubel et al.

(1990) durchgeführt. Dieses Enzym besteht aus der großen Untereinheit der DNA-

Polymerase I (ohne 5’→3’ Exonuklease-Aktivität), die in Abwesenheit von dNTP

überstehende 3’-Enden abverdaut und 5’-überstehende Enden bei Zugabe eines dNTP-

Mixes auffüllen kann. Die entstehenden „glatten“ Enden wurden für Klonierungen von

PCR-Produkten oder zur Ligation von DNA-Enden, die mit unterschiedlichen Enzymen

geschnitten wurden, benötigt. Pro µg DNA wurden 0,5 Einheiten Klenow-Enzym und der

vom Hersteller empfohlene Puffer zugegeben und bei 30°C für 5min inkubiert.

Anschließend wurde der dNTP-Mix (50mM Tris-HCl, pH7,0 und je 125µM dATP, dCTP,

dGTP sowie dTTP) in einer Endkonzentration von 6,25µM zugegeben und der Ansatz

Page 38: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

30 II. Material und Methoden

weitere 15min bei 30°C inkubiert. Nach Hitzeinaktivierung des Enzyms bei 70°C für

15min wurde die DNA direkt zur Ligation eingesetzt.

II.7.7. Ligation von DNA-Fragmenten

DNA-Fragmente wurden durch Zugabe von 1 Einheit T4-DNA-Ligase (Life

Technologies oder Boehringer) je µg DNA und dem entsprechenden Ligase-Puffer

ligiert. Das zu ligierende Fragment wurde bei 3’- oder 5’-überhängenden Enden in etwa

5-fachem, bei der Ligation „glatter“ Enden in ca. 10-fachem Überschuß gegenüber

dem Vektor eingesetzt. Der Ligationsansatz, mit einem maximalen Volumen von 20µl,

wurde über Nacht bei 14°C inkubiert und konnte danach direkt zur Transformation

entsprechender Zellen eingesetzt werden.

II.7.8. DNA-Sequenzierung

Die Sequenzierung der DNA erfolgte entsprechend der Kettenabbruchmethode

nach Sanger (Sanger et al., 1977; Sanger 1981). Dabei wurde nach den Angaben des

Herstellers des „T7-SequencingTM-Kit“ der Firma Pharmacia vorgegangen. Zur

radioaktiven Markierung der DNA wurde [35S]-ATP eingesetzt. Um Kompressionen zu

beseitigen, wurde dem Ansatz falls erforderlich während der Primeranlagerung 1µl T4-

Gen32-Protein zugegeben (Kaspar et al. 1989). Je nach Stärke der radioaktiven

Markierung erfolgte die Exposition des Röntgenfilms für 12-24h. Beim Einsatz der

markierten Primer wurde das „Cy5TM AutoReadTM Sequencing Kit“ oder das „Thermo

Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP“ und

beim Gebrauch spezifischer, unmarkierter Primer der „Cy5TM-dATP Labelling Mix“

verwendet. Die Sequenzreaktion für das „Thermo Sequenase fluorescent labelled primer

cycle sequencing kit with 7-deaza-dGTP“ wurden in dem „1605 Air Thermo-Cycler“ der

Firma Idaho Technology Inc. (Idaho Falls, USA) nach folgendem Ansatz durchgeführt:

1,6µl Cy5-Primer [5µM]

2µl BSA [2,5mg/ml]

ca. 2ng DNA

ad 24µl H2O

Page 39: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 31

Je 6µl wurden auf jeweils 2µl A-, C-, G-, T-Mix gegeben und in eine 10µl Glaskapillare

gezogen. Die Glaskapillaren wurden in den Thermocycler getan und folgendes

Programm gestartet.

4min 95°C Denaturierung 1 Zyklus

10sec 98°C Denaturierung

15sec X°C1 Anlagerung

30sec 72°C Elongation

25 Zyklen

4min 95°C Denaturierung 1 Zyklus 1 Die Anlagerungstemperatur X richtete sich nach der Tm (Schmelztemperatur) der Primer. Erfahrungsgemäß eignete sich als Anlagerungstemperatur die von Interaktiva angegebene Tm nach der „nearest neighbour“-Methode (Giesen et al. 1998).

Anschließend wurde 6µl des Gel-Lade-Puffers zugegeben. Die Auftrennung der Cy5-

Proben erfolgte mit Hilfe des ALFExpressTM der Firma Pharmacia (Freiburg).

II.7.9. Amplifikation von DNA mit Hilfe der Polymerase-Kettenreaktion

Die Polymerase-Kettenreaktion (PCR) erfolgte nach einem Protokoll von Saiki et

al. (1985). Hierfür wurde der „1605 Air Thermo-Cycler“ der Firma Idaho Technology

Inc. (Idaho Falls, USA) verwendet. Dabei wurde nach Vorschrift der Firma gearbeitet

und folgender Standardansatz (50µl Gesamtvolumen) gewählt:

5 µl Template-DNA (1:50 verd. pGJ9 MPI) 5 µl Reaktionspuffer (10-fach) 5 µl MgCl2 (30mM) 5 µl dNTP-Mix (je 2mM) 5 µl Primer 1 (5µM) 5 µl Primer 2 (5µM) 5 µl Goldstar-Polymerase (0,4u)

15 µl H2O

Die Proben wurden in eine Glaskappilare gezogen, versiegelt und nach einmaliger

Denaturierung für 2min bei 95°C wurde folgender Temperaturzyklus 30 Mal

durchlaufen:

Page 40: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

32 II. Material und Methoden

10sec 95°C Denaturierung

20sec 50/60°C Anlagerung der Primer

1,5min 72°C Elongation

Nach Beendigung des Laufes wurden 2µl des Ansatzes auf ein Kontrollgel

aufgetragen und Produkte bei dem 50°C- und 60°C-Ansatz festgestellt. Zur weiteren

Verwendung des PCR-Produktes wurden eine Gelelektrophorese und anschließend eine

Fragmentisolierung (II.7.2.) durchgeführt. Das isolierte Fragment wurde in einen

entsprechend geschnittenen Vektor, wie unter II.7.7. beschrieben, kloniert.

II.7.10. Entsalzen und Reinigen von DNA durch Ethanol-Fällung

Um DNA zu entsalzen bzw. von Enzymen zu reinigen, wurde eine Ethanol-

Fällung nach Sambrook et al. (1989) durchgeführt. Dabei wurde zur DNA 0,1

Volumenteile (VT) 3M NaAc (pH6,0) und 2,5 VT 100% Ethanol gegeben, 30min

zentrifugiert und das getrocknete Sediment in einer adäquaten Menge H2O

aufgenommen.

II.7.11. Inaktivierung von Enzymen

Die Inaktivierung von Enzymen erfolgte einerseits durch 10min Hitzebehandlung

bei 65°C oder, falls erforderlich, durch dreimaliges Schockgefrieren in

Ethanol/Trockeneis mit anschließendem Auftauen in einem 70°C WB. Alternativ wurde

eine Phenolextraktion mit anschließender Ethanolfällung durchgeführt.

II.7.12. Primer-Phosphorylierung

Wenn es erforderlich war wurden Primer nach folgender Methode mit der T4-

Polynukleotid-Kinase von Boehringer phosphoryliert:

10µl Primer [10pmol/µl] 2,5µl Kinase-Puffer [10fach] 0,5µl T4-Polynukleotid-Kinase [10U/µl] 2,5µl ATP [10mM] 9,5µl H2O

Page 41: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 33

Der 25µl-Ansatz wurde 30min bei 37°C im WB inkubiert. Die Reaktion wurde

anschließend durch 10min bei 70°C im WB beendet und anschließend bei -20°C

gelagert.

II.7.13. Gerichtete „Altered Sites II“-Mutagenese

Die Mutagenese mit dem „Altered Sites II in vitro Mutagenesis System“ von

Promega erfolgte nach Angabe des Herstellers mit phosphorylierten Mutagenese-

Primern. Dabei wurde die Variante unter Einsatz der Einzelstrang-DNA mit dem Stamm

BMH71-18 aus dem „Altered Sites I“-System verwendet.

II.7.14. Gerichtete „QuikChange™“-Mutagenese

Neuere Mutagenesen wurden mit dem „QuikChange™ Site-Directed

Mutagenesis Kit“ der Firma Stratagene durchgeführt. Hierfür wurde der „T-Gradient

Thermo-Cycler“ der Firma Biometra verwendet und nach Vorschrift der Firma folgender

Standardansatz (50µl Gesamtvolumen) gewählt:

5µl 10xPCR-Puffer

1µl Plasmid [10ng/µl]

1µl Primer (+) [10µM]

1µl Primer (-) [10µM]

1µl dNTP [je 2,5mM]

1µl Pfu-Turbo-Polymerase [2,5Units/µl]

40µl H2O

Für den Austausch von maximal zwei Basen wurde folgendes Programm in dem

Thermocycler durchgeführt.

10min 94°C Denaturierung 1 Zyklus

1min 94°C Denaturierung

1min 50°C Anlagerung

16min 68°C Elongation

18 Zyklen

10min 68°C Elongation 1 Zyklus

∞ 4°C Kühlung

Page 42: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

34 II. Material und Methoden

Anschließend wurde durch Zugabe von 1µl des Restriktionsenzyms DpnI die

methylierte Matrizen-DNA 1,5h bei 37°C im WB abgebaut und 50µl superkompetente

XL1blue-Zellen mit 1µl der verdauten DANN transformiert.

II.8 Chemische und biochemisch-analytische Techniken

II.8.1. Bestimmung der Proteinkonzentration

Der Proteingehalt einer Probe wurde mit Hilfe des „Bio-Rad Protein Assay Dye

Reagent Concentrate“ nach Bradford (1976) den Angaben des Herstellers entsprechend

durchgeführt. Die Eichkurve wurde mit im Probenpuffer gelöstem Rinderserumalbumin

(BSA) aufgenommen.

II.8.2. Bestimmung der Zellzahl

Die Trübung des Mediums wurde photometrisch verfolgt. In MM wurde mit einer

Wellenlänge von 420nm gemessen, in LB0 bei einer Wellenlänge von 650nm. Zellzahl

und Proteinmenge ließen sich entsprechend einer Absorptionseinheit (OD=1) des

Spektralphotometers bei der entsprechenden Wellenlänge wie folgt bestimmen:

Tab.II.8.1. Zelltiter und Proteinmenge

WELLENLÄNGE (nm) ZELLTITER PROTEINMENGE (mg/ml)

650 1 x 109 0,25

420 5 x 108 0,125

Angegeben ist das Verhältnis von Proteinmenge und Zelltiter zu einer Absorptionseinheit bei verschiedenen Wellenlängen für Kulturen von E. coli K-12.

II.8.3. Bestimmung der spezifischen Transportaktivitäten

Zur Bestimmung der Transportaktivitäten wurden Transporttests nach Schmid et

al. (1982), durchgeführt. Die in vivo Bestimmungen der Transportaktivitäten wurden bei

25oC in Minimalmedium durchgeführt. Dazu wurden 1ml einer exponentiell

gewachsenen Zellsuspension mit einem Titer von 5x108 B/ml und 100µl radioaktives

Substrat in separaten Reagenzgläsern für 5min im Wasserbad bei 25oC äquilibriert. Die

Reaktion wurde durch die Zugabe von 900ml Zellsuspension zum radioaktiven Substrat

Page 43: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 35

gestartet. Zu verschiedenen Zeitpunkten (in der Regel: 10s, 20s, 30s, 40s) wurden

jeweils 200µl aus dem Teströhrchen entnommen, sofort über ein Membranfilter

(Schleicher und Schuell, Porengröße 0,6µm) abgesaugt und zweimal mit 1ml

raumtemperiertem MM+ gewaschen. Die Filter wurden anschließend getrocknet und in

5ml Szintillationsflüssigkeit Quicksafe N von Zinsser Analytic (Frankfurt/M) gegeben. Als

Nullwert galten Zellen, die plasmidkodiert kein zu untersuchendes Transportsystem

enthielten. Transportunabhängige, unspezifische Anlagerungen des radioaktiven

Substrates an diese Zellen wurden auf Eis gemessen. Die Bestimmung der cpm-Rate

erfolgte im Szintillationszähler „Liquid Scintillation Analyzer 1600TR“ von Canberra

Packard (Illinois). Vier zeitabhängige Werte einer Probe wurden graphisch aufgetragen.

Dabei zeigte sich, dass die Aufnahme des Substrates schon nach 10s nicht mehr linear

erfolgte (s. Abb.II.8.1. Substrataufnahme von D-Mtl). Daher wurde der Wert nach zehn

Sekunden für die Berechnung der spezifischen Transportaktivität auf eine Minute

hochgerechnet. Die Auswertung erfolgte nach folgender Formel:

spezifische Transportaktivität =

⋅⋅⋅⋅⋅⋅⋅⋅

Protein mg min nmol

V V t ODK ∆cpm V 4

BF650

A

mlcpm

∆cpm = Gezählte Impulse pro Minute abzüglich Nullwert

K = Substratkonzentration der radioaktiven Stammlösung [mol/l]

OD650 = gemessene Extinktion der eingesetzten Zellsuspension bei 650nm

t = Zeitpunkt der Probenentnahme [min]

VA = Volumen des Ansatzes [ml] (hier: 1)

VB = Volumen der eingesetzten Bakteriensuspension [ml] (hier: 0,9)

VF = auf den Filter gegebenes Probenvolumen [ml] (hier: 0,2)

Z = radioaktive Zerfallsrate der Stammlösung [cpm/ml]

4 = Umrechnungsfaktor für die Berechnung der Proteinmenge aus der Extinktion (OD650=1 entspricht 0,25mg Protein/ml)

Page 44: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

36 II. Material und Methoden

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40t [sec]

cpm

[10

-3]

Abb.II.8.1. Substrataufnahme von D-Mtl Exemplarisch ist die Aufnahme von Mannitol in LGS322/pGJ9 dargestellt ( = LGS322/pGJ9; = Nullwert). Es ist zu sehen, dass die lineare Aufnahme spätestens nach zehn Sekunden endet.

Um aus den spezifischen Transportaktivitäten KM-Werte ermitteln zu können,

wurden die Messungen bei unterschiedlichen Substratkonzentrationen durchgeführt. Die

jeweiligen Konzentrationen und radioaktiven Zerfallsraten der in einem Verhältnis von

1:10 im Test eingesetzten Zuckerlösungen sind in der folgenden Tabelle dargestellt.

Tab. II.8.2. Eingesetzte Zuckerkonzentrationen und dazugehörige cpm

D-Mtl Konz. [µM] 3 5 7 10 15 20 30 50 100

cpm [x10-3] 31 53 78 107 168 210 197 210 236

II.8.4. Ermittlung des KM-Wertes und Vmax nach der „Lineweaver-Burk“-

Transformationsvorschrift

Bei Enzymen variiert die Katalysegeschwindigkeit V mit der Substratkonzentration

[S]. V ist definiert als die Anzahl der pro Sekunde entstehenden Mole eines Produkts.

Die Maximalgeschwindigkeit Vmax wird erreicht, wenn alle Bindungsstellen am Enzym mit

Page 45: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 37

Substrat gesättigt sind. Die Bedeutung des KM-Wertes geht aus der Michaelis-Menten-

Gleichung hervor:

Mmax

K SS

VV +

=

Bei sehr kleinen Substratkonzentrationen – wenn [S] viel kleiner als KM – gilt:

V = [S]Vmax/KM; das heißt, die Geschwindigkeit ist der Substratkonzentration direkt

proportional. Bei hohen Substratkonzentrationen wird V = Vmax; das bedeutet, dass die

Geschwindigkeit maximal ist, unabhängig von der Substratkonzentration. Bei [S] = KM

ist V = Kmax/2. Der KM-Wert entspricht daher der Substratkonzentration, bei der die

Reaktionsgeschwindigkeit die Hälfte ihres Maximalwertes erreicht. Um die Michaelis-

Menten-Beziehung in Form einer Geraden wiederzugeben, nimmt man von beiden

Seiten der Gleichung den Kehrwert:

][1 1 1

max

M

max SVK

VV ∗+=

Trägt man 1/V gegen 1/[S] auf, so ergibt sich ein Lineweaver-Burk-Diagramm

mit dem Ordinatenabschnitt 1/Vmax und der Steigung KM/Vmax.

1/V

Steig

ung = KM

/Vma x

0

y-Achsenabschnitt = 1/Vm a x

1/[ ]S

x-Achsenabschnitt =-1/K

M

Abb.II.8.2. Schematische Darstellung eines Lineweaver-Burk-DiagrammsDer Schnittpunkt der x- und y-Achse entspricht dem Nullpunkt beider Achsen

Page 46: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

38 II. Material und Methoden

Durch Variation der Substratkonzentration bei den Transportmessungen konnten

über die oben angegebenen Grundlagen die Größen KMapp und Vmax in den einzelnen

Fällen ermittelt werden. Mittelwerte mehrerer Messungen wurden durch die Formel

nx∑ ermittelt, wobei x die Werte der einzelnen Messungen und n die Anzahl der

Messungen sind. Die Standardabweichung als Maß dafür, wie weit die jeweiligen Werte

um den Mittelwert streuen, wurde nach folgender Formel berechnet:

( )( )1

22

−∑ ∑nn

xxn.

II.8.5. Ermittlung des Kd-Wertes

Die Ermittlung des Kd-Wertes der Bindekinetik von dem EIIMtl und dessen

Varianten wurde mit der Fluss-Dialyse („flow dialysis“; Vos et al., nicht veröffentlicht) an

der Reichsuniversität in Groningen (RUG) durchgeführt. Dabei wird das aus einer

Dialysekammer austretende freie radioaktive D-Mtl in Abhängigkeit von vorhandenen

EIIMtl-Vesikeln bei steigender D-Mtl-Konzentration gemessen. Das freie D-Mtl diffundiert

bei 25°C durch eine Dialysemembran aus der Dialysekammer in die Flusskammer. Dort

wird ein Fluss-Puffer (25mM Tris, pH 7,6) mit einer Rate von 230µl pro Minute durch

die Flusskammer geleitet und in Fraktionen gesammelt. Die zu diesem Zweck

eingesetzten Vesikel wurden mit der „French-Press“ hergestellt. Im Einzelnen wurde der

Versuch wie folgt durchgeführt.

Bindetest mit Vesikeln

430µl Reaktionsmix wurden mit 20µl Vesikeln zu einer Endkonzentration von

25mM Tris [pH 7,6], 5mM DTT, 5mM MgCl2 und 0,25% dPEG (v/v) gemischt und

10min bei 25°C equilibriert. Anschließend wurden 380µl des Reaktionsmix in die

dreimal mit H2O gewaschene Dialysekammer pipettiert. Zu dem Zeitpunkt t=0min

wurde 1µl [3H]-D-Mtl [10µM] zugegeben. Bei t=1min wurden in fünf Fraktionen jeweils

6 Tropfen aufgenommen. Im Folgenden wurde zu bestimmten Zeitpunkten weiteres

[3H]-D-Mtl zugegeben und weitere Fraktionen aufgenommen:

Page 47: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 39

t = 3min + 2µl [3H]-D-Mtl [10µM]

t = 4min je 6 Tropfen in 5 Fraktionen aufnehmen

t = 6min + 2µl [3H]-D-Mtl [10µM]

t = 7min je 6 Tropfen in 5 Fraktionen aufnehmen

t = 9min + 2µl [3H]-D-Mtl [10µM]

t = 10min je 6 Tropfen in 5 Fraktionen aufnehmen

t = 12min + 2µl [3H]-D-Mtl [10µM]

t = 13min je 6 Tropfen in 5 Fraktionen aufnehmen

t = 15min + 4µl [3H]-D-Mtl [10µM]

t = 16min je 6 Tropfen in 5 Fraktionen aufnehmen

t = 18min + 8µl [3H]-D-Mtl [10µM]

t = 19min je 6 Tropfen in 5 Fraktionen aufnehmen

Die aufgenommenen Fraktionen wurden mit 2ml Scintillationsflüssigkeit versetzt

und in dem Scintillationszähler gemessen. Über die kontinuierliche Zugabe erreicht man

annähernd einen Konzentrationsgradienten von 26nM - 524nM [3H]-D-Mtl in der

Dialysekammer. Allerdings muss die gleichzeitige unabhängige Diffusion des Mannitols

aus der Kammer („leakage“) berücksichtigt werden. Zu diesem Zweck wurden zwei

„Leerwertmessungen“ durchgeführt, die später in die Berechnung des Kd-Wertes

eingebunden wurden.

Ermittlung des Leerwertes

Leerwert 1: 380µl Reaktionsmix ohne Vesikel (25mM Tris, pH 7,6; 5mM DTT;

5mM MgCl2; 0,25% (v/v) dPEG) wurden in die dreimal mit H2O gewaschene

Dialysekammer pipettiert und 10min bei 25°C äquilibriert. Bei t.=.0min wurden 10µl

[3H]-D-Mtl [10µM] zu einer Endkonzentration von 256nM zugegeben. Nach 20sec

wurden in fünf Fraktionen jeweils sechs Tropfen aufgenommen. Die aufgenommenen

Fraktionen wurden mit 2ml Scintillationsflüssigkeit versetzt und in dem

Scintillationszähler gemessen.

Leerwert 2: 380µl Reaktionsmix ohne Vesikel (25mM Tris, pH 7,6; 5mM DTT;

5mM MgCl2; 0,25% dPEG) wurden in die dreimal mit H2O gewaschene Dialysekammer

pipettiert und 10min bei 25°C äquilibriert. Bei t.=.0min wurden 20µl [3H]-D-Mtl

[10µM] zu einer Endkonzentration von 500nM zugegeben. Nach 20sec wurden in fünf

Page 48: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

40 II. Material und Methoden

Fraktionen jeweils sechs Tropfen aufgenommen. Die Aufnahme der Fraktionen wurde

jeweils nach 5min:20sec und 10min:20sec wiederholt. Die aufgenommenen Fraktionen

wurden mit 2ml Scintillationsflüssigkeit versetzt und in dem Scintillationszähler

gemessen.

Berechnung des Kd-Wertes (pers. Mitteilung E. Voss / RUG)

Für die mathematische Umsetzung der erhaltenen Werte wurden drei

Gleichungen zu Grunde gelegt, die in ihrer Kombination mit Hilfe eines

Näherungsprogramms zu der Berechnung des Kd-Wertes führen:

s0x)-(s0 n0 n ∗=

n = Konzentration der Bindestellen in Dialysekammer [nM]

n0 = Anfängliche Konzentration der Bindestellen in Dialysekammer [nM]

s0 = Konzentration der [3H]-D-Mtl Stocklösung [nM]

x = Menge des zugegebenen [3H]-D-Mtl [nM]

Diese Gleichung korrigiert die Konzentration der vorhandenen Bindestellen, die

durch Zugabe von weiterem Mannitol verdünnt wird. Je mehr Mannitol (x) zugegeben

wird, desto kleiner wird die Konzentration der freien Bindestellen.

2 xn 4 - n) x (k

- 2

n) x (k b2 ∗∗++++

= (1)

b = Menge des an das Enzym gebundenen [3H]-D-Mtl [nM]

k = Kd-Wert des Enzyms

x = Menge des zugegebenen [3H]-D-Mtl [nM]

n = Konzentration der Bindestellen in Dialysekammer [nM]

Dieser Gleichung liegt das Verhältnis zwischen Enzym (E), Substrat (S) und

Enzym-Substrat-Komplex (ES) zugrunde. Im chemischen Gleichgewicht gilt:

E + S ⇔ ES

Page 49: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 41

Für den Kd-Wert ergibt sich folgende Gleichung: [ES]

[S] [E] Kd = (2)

In der Gleichung entspricht die Menge des an das Enzym gebundenen [3H]-D-

Mtl dem Enzym-Substrat-Komplex: [ES]x=xb. Die Anzahl der Bindestellen in der

Dialysekammer ergibt sich aus der Summe von freiem Enzym und mit Substrat

gebundenem Enzym: [E]x+x[ES]x=xn. Ähnlich verhält es sich bei der

Substartkonzentration. Sie ist die Summe aus freiem Substrat und Enzym-Substrat-

Komplex: [S]x+x[ES]x=xx. Ersetzt man in den letzten beiden Gleichungen [ES] durch b,

so ergibt sich für Ex=xn-b und Sx=xx-b. Wenn man die neuen Parameter in die

Gleichung für den Kd-Wert (1) einsetzt; erhält man:

bb) -(x b) -(n k = (3)

Über die Umstellung der Gleichung (3) nach null ergibt sich:

0 x n b k) n (x - 2b =∗+∗++ (4)

Die Auflösung der Gleichung (4) nach b ergibt wiederum die Gleichung (1) mit

der es möglich ist, die Menge des an das Enzym gebundenen [3H]-D-Mtl zu berechnen.

2b) -(x r3 b) -(x r2 r1 y ∗+∗+=

y = freies [3H]-D-Mtl, dass durch die Membran dialysiert ist [cpm]

x = Menge des zugegebenen [3H]-D-Mtl [nM]

b = Menge des an das Enzym gebundenen [3H]-D-Mtl [nM]

r1 = 0

r2 = wird über die Leerwerte ermittelt

r3 = 0

Diese Gleichung berechnet die Menge an freiem [3H]-D-Mtl [nM], dass durch

die Membran dialysiert ist. Dieser Wert steht natürlich in Zusammenhang mit dem in der

Dialysekammer vorhandenen Enzym, dass eine Bindung eingehen kann (b) und dem

zugegebenen [3H]-D-Mtl (x). Weiterhin wird die Hintergrundstrahlung durch r1

Page 50: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

42 II. Material und Methoden

einbezogen, wurde aber hier gleich null gesetzt, da dies schon bei den Messwerten

berücksichtigt wurde. Gleiches gilt für den Wert r3, der die Bindung an die

Dialysekammer darstellt. Diese Bindung konnte nicht festgestellt werden und somit

wurde dieser Wert ebenfalls gleich null gesetzt. Der Wert r2 ergibt sich aus der

Auswertung der Leerwertmessungen.

Aus den Werten der zweiten Leerwertmessung wurde eine lineare Regression

erstellt aus deren Geradengleichung (y=mx+b) die „leakage“-Rate (-m/b ∗ 100%)

berechnet wurde. Um r2 zu ermitteln, wurde in einer Kombination aller drei

Gleichungen unter Eingabe der ersten Leerwertmessung und des ersten Wertes der

zweiten Leerwertmessung eine Näherungsrechnung durchgeführt. Alle

enzymabhängigen Werte (n, n0, k, b) wurden in dieser Rechnung gleich null gesetzt, da

kein Enzym vorhanden ist.

0100020003000400050006000700080009000

10000

0 100 200 300 400 500 6003H-Mtl [nM]

cpm

Abb. II.8.3. Exemplarische Bindekurve Dargestellt ist eine Bindekurve für die Bindung von [3H]-D-Mtl an das 6His-Tag EIIMtl (H6wt). ( = Leerwertmesspunkte; gepunktete Linie = lineare Regression der Leerwertmesspunkte;

= Bindekurve H6wt).

Mit Hilfe der „leakage rate“ und des r2-Wertes konnte die Referenzgerade für

die enzymunabhängigen [3H]-D-Mtl-Dialyse erstellt werden. Diese grafische Darstellung

der [3H]-D-Mtl-Dialyse verläuft nicht mehr linear, wenn bindendes Enzym vorhanden ist

(siehe Abb. II.8.3.). Die Bindekurve wird unter Berücksichtigung der gemessenen cpm

und den Werten r2 und „leakage-rate“ abgeleitet. Aus der Abweichung dieser Kurve

Page 51: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 43

von der Leerwertgeraden lassen sich über ein Computerprogramm die Konzentration

und der Kd-Wert des untersuchten Enzyms berechnen.

II.8.6. Test der PTS-abhängigen in vitro Phosphorylierung

Die in den Kd-Wert-Bestimmungen eingesetzten Vesikel wurden vorher auf ihre

Phosphorylierungsaktivität getestet. Dazu wurde an der RUG der PEP-abhängige

Phosphorylierungs-Test nach Robillard und Blaauw (1987) durchgeführt. Die

spezifischen Phosphorylierungsaktivitäten der Vesikel wurden in 25mM Tris-HCl (pH

7,6), 5mM MgCl2, 5mM DTT, 5mM PEP, 0,25% (v/v) decylPEG, 10µM HPr und 0,1µM

EnzymI bei 30°C gemessen. Die Menge an [14C]-D-Mtl und Enzym variierten in den

einzelnen Versuchsansätzen. Die Versuchsansätze wurden 10min bei 30°C inkubiert

bevor die Reaktion mit radioaktivem D-Mannitol gestartet wurde. Das Volumen der

Ansätze betrug 100µl wovon in verschiedenen Zeitabständen vier mal jeweils 20µl

Probe auf eine Dowex AG1-X2-Säule geladen wurde. 10µl des Ansatzes wurden zur

Bestimmung der Radioaktivität in dem Ansatz verwendet. Anschließend wurden die

Säulen dreimal mit H2O gespült und das gebundene D-Mannitol-P mit zwei mal 1,8ml

HCl [0,2M] eluiert. Nach Zugabe der „Scint-Flüssigkeit“ wurde die Radioaktivität in

einem Scintillationszähler gemessen. Die spezifische Aktivität wurde nach folgender

Formel berechnet:

⋅∗∗

∗=Protein mg min

nmol P V t F cpm∆ Akt. spez.

A

∆cpm = gezählte Impulse pro min abzüglich Nullwert

F = spez. Radioaktivität des Substrates [nmol/cpm]

t = Reaktionszeit [min]

P = eingesetzte Proteinmenge [mg/ml]

VA = Gesamtvolumen des Ansatzes [ml]

II.8.7. SDS-Polyacrylamid-Gel-Elektrophorese

Zur Auftrennung von Proteinen wurde eine SDS-Gelelektrophorese nach

Laemmli (1970) durchgeführt, bei der die durch SDS denaturierten Proteine

Page 52: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

44 II. Material und Methoden

entsprechend ihrem Molekulargewicht aufgetrennt werden. Die Proteingele hatten

folgende Zusammensetzung:

Trenngel:

4ml Acrylamid-Bisacrylamid (30%/0,8% (w/v))-Lösung

4,9ml H2O

3ml 1,5M Tris pH8,8

120µl 10% (w/v) SDS

120µl 10% (w/v) Ammoniumpersulfat

Sammelgel:

1ml Acrylamid-Bisacrylamid (30%/0,8% (w/v))-Lösung

6,3ml H2O

3ml 1,5M Tris pH8,8

100µl 10% (w/v)SDS

65µl 10% (w/v) Ammoniumpersulfat

Die Lösungen wurden vermischt und 5min entgast. Nach Zugabe von 40 bzw.

5µl TEMED-Lösung zum Trenn- bzw. Sammelgel wurden 10x8cm große und 1,5mm

dicke Gele gegossen. Die Proben wurden in einem Puffer nach Laemmli (1970) (60mM

Tris-HCl, pH6,8; 1% (w/v) SDS; 1% (v/v) 2-Mercaptoethanol; 10% (v/v) Glyzerin;

0,01% (w/v) Bromphenolblau) resuspendiert und vor dem Auftragen 3min bei 95oC

hitzedenaturiert. Als Größenstandart wurde ein nichtradioaktiver Proteinstandard (Biorad

low range, Biorad Laboratories) verwendet. Der verwendete Laufpuffer bestand aus

25mM Tris-HCl; 0,2% (v/v) Glyzerin und 0,1% (w/v) SDS mit einem pH-Wert von 6,8.

Bei der Elektrophorese erfolgte im Sammelgel bei 15 bis 20mA die Fokussierung

der Proteinproben auf eine scharfe Lauffront und im Trenngel bei 25 bis 30mA die

Auftrennung der Proben. Hatte die Lauffront das untere Gelende erreicht wurde der

Lauf beendet. Das Trenngel wurde mit einer Lösung (0,1% (w/v) Serva BlauG; 10% (v/v)

Essigsäure; 24% (v/v) Methanol) gefärbt, entfärbt (10% (v/v) Essigsäure, 25% (v/v)

Methanol) bis der Standard zu erkennen war und unter Vakuum bei 65°C getrocknet

(LKB Bromma, 2003 Slab Gel Dryer). Um radioaktiv markierten Substanzen sichtbar zu

machen, wurde nach dem Trocknen eine Autoradiographie durchgeführt.

Page 53: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 45

II.8.8. Gezielte Markierung von Cysteinen („Cystein-Scanning“)

Die Methode des Cystein-Scannings, wie sie hier angewendet wurde, dient zur

Lokalisierung der relativen Lage von definierten Aminosäuren zur Zytoplasmamembran

in Membranproteinen. Dazu wird ein Membranprotein konstruiert, das an einer

definierten Position einen einzelnen Cysteinrest enthält. Durch den Einsatz von

membranpermeablen (hier: Biotinmaleimid) und membranimpermeablen

Sulfhydrylreagenzien (hier: Stilben) kann im Idealfall ermittelt werden, ob dieser

definierte Cysteinrest im Peri- oder Zytoplasma lokalisiert ist. Dabei wird mit einem

membranimpermeablen Sulfhydrylreagenz vorinkubiert, um im Periplasma befindliche

Cysteine zu identifizieren. Im Zytoplasma und unter Umständen in der Membran

liegende Cysteine werden bei diesem Vorgang nicht belegt. Eine anschließende

Markierung mit dem membranpermeablen Biotinmaleimid erreicht theoretisch alle

Cysteine unabhängig von ihrer Lage. Es kann aber nicht an Cysteinen binden, die

bereits mit Stilben abgedeckt oder membranständig sind. Allerdings ist die

Membranpermeabilität von Biotinmaleimid stark von dem pH-Wert, der Temperatur,

Konzentration und Inkubationszeit abhängig (Loo und Clarke, 1994). In der hier

beschriebenen Versuchsdurchführung erwies sich das Biotinmaleimid als weitgehend

membranimpermeabel. Folglich können im Zytoplasma oder in der Membran liegende

Cysteine in keinem Fall markiert werden. Im Periplasma befindliche Cysteine werden

nach einer Vorinkubation mit Stilben nicht durch Biotinmaleimid markiert, wohl aber bei

alleiniger Inkubation mit Biotinmaleimid. Da in diesem Test gebundenes Biotinmaleimid

nachgewiesen wird, kann durch unterschiedliche Kombination der eingesetzten

Sulfhydrylreagenzien in ganzen Zellen und in Membranpräparationen die allgemeine

Zugänglichkeit von Cysteinen und deren Lage im Membranprotein ermittelt werden.

II.8.8.1. Markierung ganzer Zellen mit Biotinmaleimid

300ml Kultur des Stammes JM109(λDE3) mit den entsprechenden pMMX5-

Derivaten wurden wie in II.4.3. beschrieben angezogen und zentrifugiert. Das Sediment

wurde aufgeteilt wobei ein Teil eingefroren und der andere in 3ml KPi-Puffer [100mM;

pH 7,5] resuspendiert wurde. Die 3ml Kultur wurden wiederum in je 1,5 ml aufgeteilt.

Ein Teil wurde mit 1mM Stilben aus einer 50mM Stocklösung 15min bei

Raumtemperatur vorinkubiert. Nach der Inkubation wurde der Ansatz zweimal mit KPi-

Puffer [100mM; pH 7,5] gewaschen. Anschließend wurden beide Teile 30min mit

Page 54: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

46 II. Material und Methoden

200µM Biotinmaleimid aus einer 30mM Stocklösung bei RT markiert. Die Reaktion

wurde mit 50mM β-Mercapto-EtOH abgestoppt, die Kulturen zweimal mit KPi-Puffer

[100mM; pH 7,5] gewaschen und die Sedimente eingefroren.

II.8.8.2. Markierung von Membranvesikeln mit Biotinmaleimid

In diesem Schritt wurde die allgemeine Zugänglichkeit der Cysteine im

Membranprotein überprüft. Zur Herstellung von Membranvesikeln wurde das

unmarkierte Sediment aus II.8.7.1. in je 3ml KPi-Puffer [100mM; pH 7,5] resuspendiert.

In der praktischen Durchführung wurden aus den beiden markierten Sedimenten

parallel Membranvesikel hergestellt. Die somit vier Ansätze wurden jeweils in COREX-

Röhrchen überführt und mit je 10µl Protease-Inhibitor-Cocktail (SIGMA, P-8849)

versetzt. Die folgende Ultraschallbehandlung der Zellen wurde wie in II.5.2.

beschrieben durchgeführt. Die Sedimente wurden in 150µl KPi-Puffer [100mM; pH 7,5]

resuspendiert. Die bereits als ganze Zellen markierten Membranvesikel wurden in der

Zwischenzeit auf Eis gelagert. 150µl der unmarkierten Membranvesikel wurde wieder

mit 1mM Stilben 15min bei RT vorinkubiert. Um eine Permeabilität der Vesikel zu

gewährleisten, wurde der Ansatz zweimal in EtOH-Trockeneis gefroren und in dem

Ultraschallbad (RT) aufgetaut. Im nächsten Schritt wurden beide Ansätze 30min mit

200µM Biotinmaleimid bei RT markiert. Im Folgenden wurden alle vier Ansätze in

Lösung gebracht („solubilisiert“).

II.8.8.3. Solubilisierung von Membranvesikeln

Die vier Ansätze wurden in den Zentrifugenröhrchen mit DOC-

Solubilisierungspuffer [20mM Tris, pH8; 300mM NaCl; 10mM β-Mercapto-EtOH;

0,5% (w/v) DOC (Deoxycholic acid sodium salt monohydrate (SIGMA-ALDRICH; D-

89552) 100µM D-Mannitol] auf 1500µl aufgefüllt und 45min auf Eiswasser gerührt.

Der Anteil an DOC wurde in vier Portionen alle fünf Minuten hinzugegeben. Nach einer

Zentrifugation von 45min bei 45.000Umin/4°C wurde das solubilisierte

Membranprotein über eine Ni-NTA-Säule gereinigt. Dies war erforderlich, damit die

übrigen ebenfalls am Cystein markierten Proteine der Zelle möglichst vollständig aus

dem Hintergrund entfernt wurden.

Page 55: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 47

II.8.9. Reinigung von MtlA über eine Ni-NTA-Säule

Da das MtlA für die Reinigung mit einem His-Tag versehen wurde, konnte es

über Ni-NTA-Säulen gereinigt werden. Alle Zentrifugationsschritte mit den Säulen

wurden bei 2.000Upm 2min mit geschlossenem Deckel durchgeführt. Vor dem Beladen

der Säulen mit dem Überstand wurden diese mit 600µl DOC-Solubilisierungspuffer

equilibriert. Der Überstand aus II.8.7.3. wurde mit 10mM Imidazol versehen und mit

zweimal 600µl wurden die Säulen beladen. Der Waschschritt erfolgte mit 600µl DOC-

Waschpuffer [20mM Tris, pH8; 300mM NaCl; 30mM Imidazol; 0,1% (w/v) DOC;

100µM D-Mannitol]. Das Protein wurde mit 200µl DOC-Elutionspuffer [20mM Tris,

pH7,6; 200mM Imidazol; 100µM D-Mannitol] eluiert und das Eluat bei -20°C gelagert.

II.8.10. Immuno-Nachweis von Proteinen mit spezifischen Antikörpern

Nach der Reinigung wurden die Proteine und deren Markierung mit

Biotinmaleimid in einer Western-Hybridisierung nachgewiesen. Die Durchführung und

die verwendeten Antikörper werden folgend beschrieben.

II.8.10.1. Nachweis des His-Tag

Um festzustellen, ob mit den Ni-NTA-Säulen das richtige Protein gereinigt wurde,

wurde eine „Semidry“-Western-Hybridisierung in der „TRANS-BLOT SD SEMI-DRY

TRANSFER CELL“ von BIO-RAD (USA, CA 54547) mit Anti-His Antikörpern

durchgeführt. Der Aufbau der Hybridisierung erfolgte mit folgenden auf Gelgröße

zugeschnittenen Komponenten:

[Deckel (Kathode)]

2x Filterpapier (GB 004 GEL-BLOTTING Paper. Schleicher & Schuell, D-37582)

SDS-Gel

Nitrocellulose Transfer-Membran (PROTRAN. Schleicher & Schuell, D-37582)

2x Filterpapier (GB 004 GEL-BLOTTING Paper. Schleicher & Schuell, D-37582)

[Boden (Anode)]

Die Nitrocellulose wurde 5sec in Wasser inkubiert, bevor sie wie alle anderen

Hybridisierungs-Komponenten 30min bei RT in dem Hybridisierungspuffer (25mM Tris,

192mM Glycin, 20% (v/v) Methanol [pH 8,3]) equilibriert wurde. Die Hybridisierung

Page 56: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

48 II. Material und Methoden

wurde wie oben beschrieben aufgebaut und die Transferparameter abhängig von der

Gelgröße eingestellt. Bei zwei kleinen Gelen (jeweils ca. 8,5cm x 5cm x 1,5mm) wurden

60min Transfer bei 20V gewählt. Die Membran wurde anschließend mit Ponceau S

(0,2% (w/v) in 3% (v/v) TCA) gefärbt um die Übertragung zu bestätigen. Nachdem die

Membran mit H2O entfärbt wurde, erfolgte ein 20minütiger Waschschritt in TNT (20mM

Tris/HCl [pH 7,5], 0,5M NaCl, 0,05% (v/v) Tween 20) bei RT. Anschließend wurde die

Membran ÜN bei 4°C in TNT/3% (w/v) BSA (Albumine Bovine Fraction V, BIOMOL, D-

22769) geblockt.

In dem folgenden Schritt wurde die Reaktion mit dem Penta-His Antikörper von

QIAGEN (mouse anti-(H)5, Cat. No. 34660) durchgeführt. Dazu wurde die Membran

1h bei RT mit 6ml Antikörper-Lösung (TNT, 1% (w/v) BSA, 0,067µg/ml Penta-His AK) in

einer verschweißten Plastiktasche inkubiert. Die Membran wurde dann drei mal 10min

bei Raumtemperatur in TNT gewaschen.

Anschließend wurde die Membran mit der Meerrettich-Peroxidase

(„Horseradishperoxidase“, N31430. Pierce, Rockford, IL 61105), die 1:10000 in

TNT/1% (w/v) BSA verdünnt wurde, 1,5h bei RT in einer verschweißten Plastiktasche

inkubiert. Die Membran wurde dann wieder drei mal 10min bei Raumtemperatur in

TNT gewaschen.

Die darauf folgende Chemilumineszens-Reaktion wurde nach Angaben des

Herstellers mit der „Western Blot Chemiluminescence Reagent“ (NEN Life Science

Products, Boston, MA 02118-2512) durchgeführt. Der Nachweis der

Chemilumineszens wurde bei unterschiedlichen Expositionszeiten zwischen 10 und

60sec auf dem „Hyperfilm ECL“ (Amersham Pharmacia Biotech UK Limited)

durchgeführt.

II.8.10.2. Nachweis der Biotinmaleimid-Markierung

Der Nachweis der Biotinmaleimid-Markierung erfolgte ähnlich wie unter

II.8.10.1. beschrieben. Es wurden lediglich andere spezifische Antikörper eingesetzt. Da

bei der Methode des Cystein-Scanning das Biotinmaleimid den ersten Antikörper

darstellt und die Bindung schon während der Markierung erfolgte, fiel dieser

Inkubationsschritt weg. In der zweiten Antikörperreaktion wurde das Streptavidin-

Meerrettich-Peroxidase-Konjugat (RPN 1231)“ (SHRPC) von Amersham Pharmacia

Biotech UK Limited statt HRP eingesetzt. Die Membran wurde in 10ml Antikörperlösung

Page 57: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

II. Material und Methoden 49

(TNT, 1% (w/v) BSA, 2µl SHRPC) bei 4°C in einer verschweißten Plastiktasche inkubiert.

Alle folgenden Schritte wurden wie beschrieben durchgeführt.

II.9. Computerprogramme

Die Auswertung der DNA- und Protein-Sequenzen erfolgte mit Hilfe folgender

Programme:

BLAST, The NCBI BLAST family of programs (Altschul et al., 1997)

DNASIS for Windows, Version 2 (Hitachi Software; San Bruno)

AlLIGN, Version 1.01 (Scientific u. Educational Software, 1989)

Vector NTI Suite, Version 6.0 (InforMax, Inc.; No. Bethesda, MD 20852)

TMHMM (Transmembrane Hidden Markov Model, Sonnhammer et al., 1998)

Page 58: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

50 III. Ergebnisse

III. Ergebnisse III.1. Selektion und Untersuchung entkoppelter Mutanten

Während des Transportvorganges eines hochaffinen Substrates über das

Phosphoenolpyruvat-abhängige Kohlenhydrat:Phosphotransferasesystem wird das

Substrat normalerweise durch eine Phosphorylierung chemisch modifiziert. Dabei wird

davon ausgegangen, dass bei hochaffinen Substraten der Transport über die

Zytoplasmamembran und die anschließende Phosphorylierung gekoppelt ablaufen. Es

sind sowohl bei Escherichia coli als auch bei Klebsiella pneumoniae entkoppelte EIIMtl

Mutanten beschrieben worden (Klawitter, 1992; Scholle 1993; Heuel, 1997; Otte,

2000), bei denen Transport und Freisetzung des Substrates in das Zytoplasma

unabhängig von der Phosphorylierung ablaufen. Diese Mutanten geben Hinweise auf

wichtige am Transportprozess beteiligte Aminosäuren und deren Einfluss auf die

Kopplung von Translokation des Substrates und Energetisierung des Transporters.

Daher war es von großem Interesse, die Selektionssysteme zu optimieren, um weitere

Mutanten zu selektionieren und diese anschließend zu charakterisieren.

III.1.1. Konstruktion von Stämmen zur Selektion entkoppelter Mutanten

Die früheren und in dieser Arbeit verwendeten Selektionssysteme benutzen einen

semisynthetischen Stoffwechsel, der es E. coli ermöglicht, unphosphoryliertes („freies“)

D-Mannitol zu verstoffwechseln. Da die Mtl.1P-Dehydrogenase nicht in der Lage ist,

unphosphoryliertes Mtl umzusetzen, wurde in früheren Ansätzen der Stamm LGS323

(∆(mtlAPA‘) MtlD+) mit den Plasmiden pGJ9∆137 (mtlAPA’) und pASL14 (dalD+K+)

transformiert (Scholle, 1993). Die carboxyterminale Deletion des mtlA in dem Plasmid

pGJ9∆137 beinhaltet die Nukleotidsequenz, welche für die AS His554 der IIAMtl-

Domäne kodiert, wodurch ein gekoppelter Transport von Mtl verhindert wird. Eine

direkte Phosphatgruppenübertragung von HPr auf das Cys384 der IIBMtl-Domäne ist

nicht möglich (Scholle, 1993). Das Gen dalD codiert für die D-Arabinitol-

Dehydrogenase (DalD) aus Klebsiella oxytoca M5a1, welche sowohl unphosphoryliertes

D-Arabinitol (Atl) als auch unphosphoryliertes D-Mannitol (Mtl) als Substrat erkennt und

Page 59: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 51

eine Umsetzung zu D-Xylulose (Xul) bzw. D-Fructose (Fru) katalysiert (Wood et al.,

1961; Tanaka et al., 1967; Charnetzky & Mortlock, 1974; Lengeler 1975b; Heuel et

al., 1998). Bei der Selektion auf Wachstum mit D-Mtl erhält man Mutanten, die den

entkoppelten Transport von D-Mtl ermöglichen (siehe Abb. III.1.1.). Die

Reproduzierbarkeit dieses Systems scheiterte jedoch an der starken Kurierung des

Plasmides pASL14. Um eine Kurierung und somit den Verlust der Fähigkeit, freies

Mannitol umzusetzen, zu verhindern, musste dalD auf stabilere Plasmide kloniert

werden.

Abb.III.1.1. Wildtyp- und semisynthetischer Stoffwechselweg für den D-Mtl-Abbau in E. coli

Unter I. WT ist der D-Mtl-Abbau im WT und unter II. mtlA∆137 der semisynthetische D-Mtl-Abbau in LGS322-1 /pGJ9∆137 dargestellt. Rote Pfeile: Stoffwechselweg für den normalen, d.h. gekoppelten Transport von D-Mtl über ein Wild-Typ II.CBAMtl. Unterbrochene rote Pfeile ( ): kein Transport. Grüne Pfeile: Stoffwechselweg bei entkoppeltem Transport von D-Mtl. Die IIC-Domäne mit entkoppeltem Transport ist mit einem Stern versehen (IICMtl*). Orangefarbene Pfeile: Phosphatgruppenübertragung über allgemeine PTS-Komponenten. Unterbrochene orangefarbene Pfeile ( ): keine Phosphatgruppenübertragung. Grau schattiert: Deletierte Domäne des II.CBAMtl. ~AS: An der Phosphatgruppenübertragung beteiligte Aminosäuren. MtlD: Mtl.1P-Dehydrogenase. DalD: D-Arabinitol-Dehydrogenase. Weitere Erläuterungen siehe Text und Abkürzungsverzeichnis.

Page 60: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

52 III. Ergebnisse

Abb. III.1.2. Schematische Darstellung der Konstruktion von F’lac::dalD

Die einzelnen Schritte der Konstruktion werden im nachfolgendenText näher beschrieben. Die grafisch hervorgehobenen genetischen Elemente sind nicht maßstabsgetreu dargestellt. bla = Gen für eine β-Lactamase (Ampicillin-Resistenz, ApR). IR = zwei sich invertiert wiederholende Sequenzen (ermöglichen die Transposition von TnLSD101). mks = multiple Klonierungsstelle. ori = Replikationsursprung des Plasmides pBR322. spc = Gen für eine Spectinomycin-Resistenz (SpR).

Page 61: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 53

III.1.1.1. In vivo Klonierung von dalD auf ein F’-Plasmid

In einem ersten Ansatz wurde das Gen dalD in den Niedrigkopien-Vektor pHEX3

(Heuel, 1997) kloniert. Das resultierende Plasmid pHEXD zeigte jedoch eine für das

Selektionssystem zu hohe Kurierungsrate. Da F’-Plasmide eine hohe Stabilität in

Bakterien zeigen, wurde anschließend das F’lac als Träger des Gens dalD gewählt.

Bei der Konstruktion des F’lac::dalD -Plasmides wurde nach Schmid et. al. (1991)

und Zeppenfeld et. al. (2000) das Gen zwischen zwei sich invertiert wiederholende

Sequenzen („inverted repeats“ = IR) kloniert, um es so als Transposon springen zu

lassen. Das verwendete Plasmid pTIM101 erlaubt zusätzlich eine „Blau/Weiß-Selektion“

durch α-Komplementation, trägt eine multiple Klonierungsstelle aus dem pHEX3, ein Ω-

Fragment zur Verhinderung unphysiologischer Expression durch einen fremden,

stromaufwärts liegenden Promotor und eine Spectinomycin-Resistenz. Das Gen für die

Transposase (tnpA), welche das Springen des Transposons ermöglicht, wird von einem

weiterem Plasmid pPSO110 exprimiert, wodurch eine Stabilisierung des Transposons in

einem pPSO110-freien Stamm gewährleistet ist. Im folgenden werden die Einzelschritte

beschrieben, welche zur Konstruktion des Plasmides F’lac::dalD durchgeführt wurden

(siehe Abb. III.1.2.).

Konstruktion des Plasmids pHEXD (dalDK’)

Das erste für den semisynthetischen Stoffwechsel benötigte Gen dalD stammt aus

Klebsiella oxytoca M5a1. Es kodiert für eine D-Arabinitol-Dehydrogenase (DalD) und

wurde aus dem Plasmid pGHL3 (Heilenmann, unveröffentlicht) in die mks des

Niedrigkopie-Vektors pHEX3 subkloniert. Ein Doppelverdau von pGHL3 mit den

Restriktionsenzymen HindIII und EcoRI ergab u.a. ein 2,7kb großes dalD/dalK‘-

Fragment, welches anschließend mit dem entsprechend verdauten Vektor pHEX3 zum

neuen Plasmid pHEXD ligiert wurde. Die Funktionalität der D-Arabinitol-Dehydrogenase

(DalD) aus pHEXD wurde in dem Stamm LGS322 getestet. Der Stamm LGS322 kann

über das Glukose-PTS (II.CBAGlc) freies D-Arabinitol transportieren (Budde, 1991),

welches ohne DalD nicht verstoffwechselt wird.

Page 62: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

54 III. Ergebnisse

Tab. III.1.1. Plattentest zum Nachweis einer funktionellen DalD aus pHEXD

Platten1 Stamm

McC Atl MM Atl LB0

LGS322 /pHEX3 s - +

LGS322 /pHEXD 2+ + + 1Supplementation mit den entsprechenden Antibiotika, Kohlenhydraten und Aminosäuren (siehe Abkürzungsverzeichnis) wie im Teil II der Arbeit angegeben. Phänotyp der Kolonien auf McC-Platten: 3+ = dunkelrot mit trübem Hof; 2+ = dunkelrot; + = rot; (+) = rosa ; (w) = rosa mit weißem Rand; w = weiß; s = sensitiv; - = kein Wachstum. Phänotyp der Kolonien auf MM-Platten: + = Wachstum; (+) = schwaches Wachstum, auf den Platten erst nach 2-3 Tagen sichtbar; - = kein Wachstum. Phänotyp auf LB0-Platten: + = Wachstum; (+) = schwaches Wachstum; - = kein Wachstum.

Der Markertest zeigt, dass dalD vom Plasmid pHEXD in ausreichender Menge

exprimiert wird, und somit ein schnelles Wachstum auf freiem D-Arabinitol ermöglicht

(Phänotyp Atl2+). LGS322/pHEX3 ist ohne dalD auf D-Arabinitol sensitiv Phänotyp, was

vermutlich auf eine intrazelluläre Anhäufung von D-Atl 5-P zurückzuführen ist.

Konstruktion des Plasmids pLSD101 mit dem Transposon TnLSD101

Um das dalD+/dalK‘-Fragment des Plasmids pHEXD auf ein F’lac-Plasmid

springen zu lassen, musste es vorher in ein künstliches Transposon kloniert werden.

Dieses Transposon wurde durch die beiden IRs auf dem Plasmid pTIM101 gebildet. Das

dalD+/dalK‘-Fragment wurde folglich mit den Restriktionsenzymen ClaI und SacI (SstI)

aus dem Plasmid pHEXD geschnitten und in die entsprechenden Stellen der mks des

Plasmides pTIM101 kloniert. Das resultierende Plasmid wurde pLSD101 genannt.

Die Funktionalität von pLSD101 wurde in dem Stamm LGS322/pGJ9∆137

E218A überprüft. Der Austausch E218A, der in mtlA∆137 kodiert wird, ermöglicht den

Transport von freiem D-Mannitol in die Zelle (Klawitter, 1992; Scholle 1993; Otte,

2000) und eine funktionelle DalD den zum Wachstum notwendigen Abbau von

D-Mannitol. Folglich wurde das Plasmid in den benannten Stamm transformiert und das

Wachstum auf D-Mtl und D-Atl getestet (Tab. III.1.2.).

Page 63: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 55

Tab. III.1.2. Plattentest zum Nachweis funktioneller DalD aus pLSD101

Platten1 Stamm LGS322

McC Mtl Cam/Spc

McC Mtl Cam

McC Mtl Spc

MM Mtl Cam/Spc

MM Atl Cam/Spc

/pGJ9∆137 E218A

- w - - -

/pLSD101 - - w - -

/pGJ9∆137 E218A /pLSD101

2+ 2+ 2+ + +

1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

Der neue Stamm LGS322 /pGJ9∆137 E218A /pLSD101 zeigt ausreichende

Expression von DalD, um eine entkoppelte IIMtl-Mutante auf freiem D-Mannitol bzw.

D-Arabinitol wachsen zu lassen.

Konstruktion des Kreuzungs-Stammes STL136 mit dem Plasmid F’lac::dalD

Der Stamm CSH36 mit den Plasmiden F’lac, pLSD101 (TnLSD101) und

pPSO110 (tnpA+) wurde benötigt, um das Transposon TnLSD101 mit dalD+/dalK‘ auf

das F’lac -Plasmid springen zu lassen. Kompetente Zellen des Stammes CSH36 /F’lac

wurden parallel mit den beiden Plasmiden pLSD101 und pPSO110 transformiert und

die Selektion auf LB0Cam/Spc-Platten durchgeführt. Gereinigte und getestete Kolonien

der gesuchten Exkonjuganten (CSH36 /F’lac /pLSD101 /pPSO110) wurden in

LB0Cam/Spc angeimpft, über Nacht bei 37°C und anschließend für 3 Tage jeweils bei

RT oder im Kühlschrank inkubiert. In dieser Zeit sollte die Transposition F’lac::TnLSD101

ermöglicht werden. Darauffolgend wurden die Kulturen in LB0 gewaschen und eine

Flüssigkreuzung mit dem Stamm S136-3 durchgeführt. Das Ausstreichen auf

LB0Spc/Kan - Platten selektionierte die S136-3-Stämme, welche das F’lac::TnLSD101

erhalten hatten. 56 Exkonjuganten wurden auf LB0-Platten gereinigt und anschließend

getestet, wovon sechs Kolonien den folgenden Phänotyp zeigten (Tab. III.1.3.).

Page 64: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

56 III. Ergebnisse

Tab. III.1.3. Plattentest der Exkonjuganten aus der Kreuzung CSH36 /F’lac::dalD /pLSD101 /pPSO110 X S136∆

Platten1 Stamm

McC Glc

McC Lac

McC Mtl

LB0

Amp LB0

Cam LB0

Spc LB0

Kann

CSH36 /F’lac::TnLSD101 /pPSO110 /pLSD101

2+ + 2+ + + + -

S136-3 w w w - - - +

S136-3 F’lac::TnLSD101

w + w - - + +

1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. Angegeben sind die Ergebnisse vom Donor, Rezipienten und Exkonjuganten.

Der neue Stamm S136-3/F’lac::TnLSD101 zeigt die gewünschten Phänotypen und

wurde STL136 genannt. Mit Hilfe dieses Stammes konnte das F’lac::TnLSD101 (im

folgenden kurz F’lac::dalD genannt) in die verschiedenen Stämme zur Mutantenselektion

und -Charakterisierung gekreuzt werden.

III.1.1.2. Konstruktion der Selektions-Stämme LGS31-1, LGS322-1 und

LGS323-1

Für die Verstoffwechselung von D-Mannitol wurde das F’lac::dalD in die

gewünschten Selektionsstämme LGS31, LGS322 und LGS323 gekreuzt. Zur

Gegenselektion wurden die Rezipientenstämme mit dem Plasmid pGJ9∆137E218A

transformiert. Dies ermöglichte in Verbindung mit F’lac::dalD eine Gegenselektion auf

MM Mtl-Platten. Zudem kodiert das Plasmid eine Chloramphenicol-Resistenz, die

ebenfalls zur Selektion genutzt werden konnte.

Die Stämme LGS31/pGJ9∆137 E218A, LGS322/pGJ9∆137 E218A und

LGS322/pGJ9∆137E218A wurden jeweils mit dem Stamm STL136 gekreuzt und auf

MM-Mtl.Cam- und MM-Mtl.Cam/Spc-Platten ausgestrichen. Gereinigte und getestete

Exkonjuganten wurden in MM.Gly-Medium angeimpft und die ÜK dreimal in neues

Medium überimpft. Anschließend wurde eine geeignete Verdünnung der Kulturen auf

LB0-Platten ausgestrichen. Dabei zeigte sich bei etwa 2% der getesteten EK ein Verlust

des Plasmides. Die kurierten Stämme LGS31./F’lac::dalD, LGS322-/F’lac::dalD und

LGS323./F’lac::dalD wurden entsprechend LGS31-1, LGS322-1 und LGS323-1

genannt.

Page 65: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 57

III.1.1.3. Konstruktion des Selektions-Stammes LTK31 (∆mtlA MtlD+

recA+ ∆(ptsHIcrr)::kan)

In einem zweiten Selektionssystem wurde die Phosphorylierungskette nicht in dem

EIIMtl-Transporter sondern an den allgemeinen PTS-Komponenten des Stammes LGS31

unterbrochen (Abb.III.1.3.). Mit Hilfe einer P1-Transduktion wurde eine ∆(ptsH ptsI

crr)::kan-Kasette aus dem Stamm TP2811 in den Stamm LGS31 gekreuzt. Die

Integration der ∆(ptsH ptsI crr)::kan-Kasette in das Chromosom von LGS31 bewirkt eine

Deletion der Gene ptsH, ptsI und crr. Folglich werden das HPr (ptsH) und EI (ptsI) der

allgemeinen PTS-Komponenten sowie das EIIAGlc (crr) nicht mehr exprimiert. Da die

Methode eine Rekombination in vivo erfordert, wurde der Stamm LGS31 (recA+) den

∆recA-Stämmen LGS322 und LGS323 vorgezogen. Die Selektion erfolgte auf

LB0Kan/Str-Platten und ergab eine für diese Methode hohe Transduktionsrate. Nach der

Reinigung auf LB0-Platten wurden 56 EK in einem Plattentest überprüft, wovon 51 das

gewünschte Ergebnis zeigten (Tab. III.1.4.).

Tab. III.1.4. Plattentest des Selektionsstammes LTK31

Platten1 Stamm

McC Mtl

McC Glc

McC Fru

McC Gal

LB0

Str LB0

Kan LB0

Tet LB0

Spc

LGS31 w 3+ 3+ s + - - -

LTK31 w w w s + + - - 1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

Die gewünschten Transduktanten zeigten einen KnR/Pts--Phänotyp (Glc-, Fru-).

Der resultierende Stamm wurde LTK31 genannt.

Konstruktion der Selektions-Stämme LTK31-1 und LTK31-2 mit den Plasmiden F’lac::dalD (DalD+ SpcR) u. pUR404 (scr+ ScrR- TetR)

Für die Selektion von entkoppelten Mutanten war es erforderlich, dass im Stamm

LTK31 die Gene dalD und scrK vorhanden waren (Abb.III.1.3.). Nach der Reduktion

von D-Mannitol durch DalD muss die entstandene D-Fruktose für eine weitere

Verstoffwechselung phosphoryliert werden. Da das EIIFru als Folge der Deletion der

Gene für die allgemeinen PTS-Komponenten inaktiviert wurde, erhielt LTK31 alternativ

das konjugierbare Plasmid pUR404. Dieses exprimiert aufgrund einer Deletion in scrR

Page 66: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

58 III. Ergebnisse

konstitutiv scrK, welches für die ATP-abhängige D-Fruktose-Kinase ScrK kodiert (Schmid

et al. 1988, Aulkemeyer et al. 1991).

Abb.III.1.3. Alternativer semisynthetischer Stoffwechselweg für den D-Mtl-Abbau in E. coli

III. WT ∆ptsHIcrr: Semisynthetischer D-Mtl-Abbau in LTK31-1/pGJ9. Unterbrochene rote Pfeile ( ): kein normaler Transport. Grüne Pfeile( ): Stoffwechselweg bei entkoppeltem Transport von D-Mtl. IICMtl*: IICMtl mit entkoppeltem Transport. Grau schattiert: Allgemeine PTS-Komponenten, deren Gene deletiert wurden. DalD: D-Arabinitol-Dehydrogenase. ScrK: D-Fruktose-Kinase. Weitere Erläuterungen siehe Text und Abkürzungsverzeichnis.

In den Stamm LTK31 wurde deshalb zunächst das F‘lac::dalD aus LGS31-1

gekreuzt und auf LB0Kan/Spc-Platten selektioniert. Gereinigte und getestete

Exkonjuganten (LTK31./F‘lac::dalD) wurden LTK31-1 genannt. Der Rezipient LTK31-1

wurde anschließend mit dem Donorstamm PS5 /pUR404 gekreuzt und auf

LB0Kan/Spc/Tet-Platten ausgestrichen. Nach Reinigung auf LB0-Platten wurde der

Exkonjugations-Stamm LTK31-1./pUR404 in einem Plattentest identifiziert und LTK31-2

genannt.

Page 67: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 59

Tab. III.1.5. Plattentest LTK31-1 und LTK31-2

Platten1 Stamm

MM Fru MM Scr LB0

Kan LB0

Spc LB0

Tet

PS5 /pUR404 ( scr+ ScrR- TetR )

+ + - - +

LTK31 ( ∆(ptsHI crr)::kan )

- - + - -

LTK31-1 ( DalD+ SpcR ∆(ptsHI crr)::kan )

- - + + -

LTK31-2 ( DalD+ SpcR ∆(ptsHI crr)::kan scr+ ScrR- TetR )

- - + + +

1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

Der Stamm LTK31-1 zeigte die durch das F‘lac::dalD vermittelte Spectinomycin-

Resistenz und LTK31-2 zusätzlich die von pUR404 kodierte Tetracyklin-Resistenz. Das

Plasmid pUR404 vermittelte keinen Scr+-Phänotyp in LTK31-2, da das EIIScr die EIIAGlc-

Domäne (crr) benötigt (Tab. III.1.5.).

Konstruktion des Stammes LTK32-1 ( ∆(ptsHI crr)::kan Mak+ )

Der Stamm JWL300 zeigt eine erhöhte Expression (Mak+) des normalerweise

kryptisch vorliegenden mak-Lokus. Diese Mutation ermöglicht dem PtsI--Stamm JWL300

das Wachstum auf D-Fruktose (Aulkemeyer et al. 1991). Ein P1-Phagenlysat aus dem

Donor JWL300 wurde zur Transduktion in den Rezipienten LTK31 eingesetzt und die

Transduktanten auf MM Fru-Platten selektioniert. Dabei waren nach sechs Tagen ca. 50

Kolonien auf der Selektionsplatte zu sehen. Auf der Platte mit der negativen Kontrolle

wuchsen ebenfalls nach sechs Tagen 3 Kolonien, die als Spontanmutationen klassifiziert

aber nicht genauer charakterisiert wurden. Nach Reinigung und Identifizierung wurde

der LTK31 Mak+-Stamm LTK32 genannt. Über eine Konjugation mit LGS322-1 wurde

das F‘lac::dalD in den Rezipienten LTK32 gekreuzt. LTK32-/F‘lac::dalD wurde LTK32-1

genannt. Die nachfolgende Tabelle zeigt die Phänotypen, die bei der Konstruktion und

Kontrolle der Stämme betrachtet wurden.

Page 68: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

60 III. Ergebnisse

Tab. III.1.6. Plattenmarkertest LTK32 und LTK32-1

Platten1 Stamm

MM Fru MM Scr LB0

Kann LB0

Spc

JWL300 Mak+ (+) - - -

LTK31 ∆(ptsHI crr) - - + -

LTK32 ∆(ptsHI crr) Mak+ (+) - + -

LGS322-1 F‘lac::dalD + - - +

LTK32-1 F‘lac::dalD ∆(ptsHI crr) Mak+

(+) - + +

1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

LTK32 zeigt die Fähigkeit auf Fructose (MM Fru = (+)) zu wachsen, welche aus

dem Stamm JWL300 in LTK31 tranzduziert werden konnte. Es bestätigte sich das

erwartete sehr langsame Wachstum auf dieser Kohlenstoffquelle. Das für die Selektion

erforderliche DalD konnte mit dem Plasmid F‘lac::dalD aus LGS322-1 in LTK32 gekreuzt

werden (LTK32-1 auf LB0Spc = +), (Tab. III.1.6.).

III.1.1.4. Vergleich der eingesetzten Selektionssysteme

In erster Linie sollte bei der Konstruktion der neuen Systeme eine hohe

Reproduzierbarkeit der Ergebnisse erreicht werde, die bei pASL14 als Folge starker

Plasmidkurierung nicht gegeben war. Das stabile Einzelkopieplasmid F‘lac::dalD erlaubte

sowohl die Selektionen neuer Mutationsarten bzw. -orte als auch die Bestätigung der

erhalten Mutationen.

Vergleich der Stämme LGS322 und LGS323 (nach Scholle, 1993)

Der Transport von Atl über das EIIMtl weist auf einen funktionellen Einbau der

Translokationsdomäne des EIIMtl hin. Dieser Hinweis ist besonders bei Mtl--Mutanten

hilfreich, die den Transport betreffen. Mit dem Stamm LGS323 sollte der Transport von

D-Arabinitol über ein plasmidkodiertes, verkürztes EIIMtl getestet werden. Dazu musste

der WT-Transport von D-Atl in LGS322 ausgeschaltet werden. Der Stamm LGS323

wurde als AtlR Variante von LGS322 selektioniert (Scholle, 1993). LGS322 ist auf McC

Atl sensitiv, kann aber mit einem DalD+-Plasmid zu Atl+ transformiert werden. Die

Sensitivität von LGS322 wird auf eine cytoplasmatische Anhäufung von D-Atl-P

Page 69: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 61

zurückgeführt, die mit der Verstoffwechselung von D-Atl oder D-Atl-P durch DalD

verhindert werden kann (Scholle, 1993). Der Stamm LGS323 erschien dagegen sowohl

mit als auch ohne DalD auf McC Atl weiß. 1991 zeigte Budde, dass auch das Glukose-

PTS (IICBAGlc) Atl transportieren kann, wohingegen alle anderen bekannten Atl-

Transportsysteme (Gat-PTS, Gut-PTS, Fru-PTS, Mtl-PTS) in LGS322 inaktiviert sind. Der

Stamm LGS323 zeigte bei Transporttests mit α-Methyl-Glukose, welches bei einer

Testkonzentration von 25µl über ein aktives Glc-PTS aufgenommen wird, keine

Transportaktivität, wohingegen der Elternstamm LGS322 eine Transportaktivität von 14

[nmol pro mg Protein pro Minute] aufwies. Weiterhin war LGS322/pJOE637 Scr+

während LGS323/pJOE637 einen Scr—Phänotyp zeigte. Das Plasmid pJOE637 (scr+)

vermittelt nur bei Vorhandensein eines intakten EIIAGlc (crr+) einen Scr+-Phänotyp. Die

AtlR von LGS323 wurde daraufhin auf eine Mutation in crr (crr-) zurückgeführt.

Tab. III.1.7. Ursprüngliche AtlR- und AtlS-Phänotypen (nach Scholle, 1993)

Platten1 Stamm

Relevanter Genotyp McC Atl McC Scr McC Glc

α-Me-Glc Tp2

LGS322 ∆mtlA ptsG+crr+ s w 3+ 14

LGS323 ∆mtlA ptsG+ w w 2-3+ 0

LGS322 /pASL14 ∆mtlA ptsG+crr+

/dalD 3+ n.g. 3+ n.g.

LGS323 /pASL14 ∆mtlA ptsG+

/dalD w n.g. 2-3+ n.g.

LGS322 /pJOE637

∆mtlA ptsG+crr+

/scr+ s 3+ n.g. n.g.

LGS323 /pJOE637

∆mtlA ptsG+

/scr+ w w n.g. n.g.

1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. 2Die Anzucht der Zellen für den α-Me-Glc-Transporttest erfolgte zur Messung des uninduzierten Basalniveaus in MM CAA (0,1%) ohne Zugabe von Glukose. 14C-α-Me-Glc wurde in einer Endkonzentration von 25µM zugegeben. Die Messwerte sind in [nmol × min-1 × mg Protein-1] angegeben.

Der in dieser Arbeit eingesetzte LGS323 aus der Glyzerinkultur von Scholle

zeigte jedoch auf Atl und Scr einen abweichenden Phänotyp. Diese Variante von

LGS323 wurde LGS324 genannt.

Page 70: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

62 III. Ergebnisse

LGS324 zeigte mit DalD einen 2+ Phänotyp auf McC Atl, war aber ohne DalD

noch AtlR. Zudem war LGS324./pJOE637 Scr+. Eine Mutation in crr konnte damit

weitestgehend ausgeschlossen werden (WT-Expression von NagE vorausgesetzt; Vogler

et al., 1988). Um die Auswirkungen einer authentischen crr--Mutation auf den Atl-

Phänotyp festzustellen, wurden mit Hilfe einer Genkassette eine crr-Deletionen in den

Stamm LGS31 eingeführt. In den RecA--Stämmen LGS322 und LGS324 konnte keine

eindeutige Insertion der Genkassette erreicht werden (Tab. III.1.8.).

Tab. III.1.8. Neu beobachtete AtlR- und AtlS-Phänotypen

Platten1 Stamm Genotyp

McC Atl McC Scr

LGS322 ptsG+crr+ s w

LGS324 ptsG+crr+ w w

LGS322 /pHEXD ptsG+crr+ /dalD 2+ w

LGS324 /pHEXD ptsG+crr+ /dalD 2+ w

LGS322 /pJOE637 ptsG+crr+/scr+ s 3+

LGS324 /pJOE637 ptsG+crr+/scr+ w 3+ 1Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

Mit Hilfe einer P1-Transduktion wurde die ∆(crr)::kan-Kasette aus LLR103 in

LGS31 gekreuzt. Die Selektion erfolgte auf LB0Kan/Str-Platten. Nach Ausplattierung des

halben Transduktionsansatzes und Inkubation ÜN wurden 400 EK gezählt. Nach der

Reinigung auf LB0-Platten wurden 14 EK in einem Plattentest auf Kan- und Str-Resistenz

überprüft. Der transduzierte Stamm LGS31 wurde LGT31 genannt. Außerdem wurden

die Transduktanten mit den Plasmiden pJOE637 (scr+) bzw. pHEXD (dalD) transformiert,

um eine Kontrolle auf den Scr- und Atl-Phänotyp zu ermöglichen. Der Stamm LTK31

(∆(ptsH ptsI crr)::kan) wurde ebenfalls eingesetzt.

Aus dem Markertest (Tab. III.1.9.) ergaben sich folgende Beobachtungen: Eine

crr-Deletion konnte keine vollständige Atl-Resistenz bewirken. LGT31/pJOE637 (scr+)

war Scr-, was auf eine korrekte Insertion der Genkassette hinweist. LGT31 war weniger

sensitiv als der Elternstamm LGS31, wies aber mit dalD einen Atl+-Phänotyp auf. Die

crr-Deletion reduzierte die Sensitivität, wobei allerdings immer noch Atl in die Zelle

Page 71: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 63

transportiert werden konnte. Folglich war die Atl-Resistenz von LLR103 nicht alleine auf

∆crr zurückzuführen.

Tab. III.1.9. Plattentest P1.∆(crr)::kan X LGS31

Platten 1 Stamm

McC Atl MM Xyl LB0Kan + scr 2

McC Scr Tet + dalD 3

McC Atl Cam

LGS322 ∆mtlA ∆recA s 2+ - 3+ 2+

LGS323 ∆mtlA ∆recA Atlr 4 w 2+ - w W

LGS324 ∆mtlA ∆recA Atlr w 2+ - 3+ 2+

LLR103 ∆crr ∆mtlAP,O w 2+ + (w) W

LGS31 ∆mtlA ss 5 2+ - 3+ 2+

LGT31 ∆mtlA ∆crr s 2+ + (w) 2+

LTK31 ∆mtlA ∆(ptsHI crr) w 2+ + w 2+ 1 Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. 2 Die Stämme der jeweiligen Zeile wurden mit dem Plasmid pJOE637 (scr+) transformiert. 3 Die Stämme der jeweiligen Zeile wurden mit dem Plasmid pHEXD (dalD) transformiert (Ausnahme: 4 Die Daten für LGS323 wurden aus der Tabelle III.1.8. übernommen). 5 ss = supersensitiv: kein Wachstum auf der Platte, kein Papillenwachstum.

Die Phänotypen aller Stämme auf McC Atl mit und ohne dalD zeigten, dass der

Transport von Atl nicht zwangsläufig zu einer Sensitivität führte. Die Stämme LGS324

und LTK31 waren ohne dalD AtlR aber mit dalD Atl+.

Aus den Beobachtungen geht hervor, dass mehrere Faktoren zu einer Resistenz

bzw. Sensitivität führen. In Bakterien ist die Anhäufung von phosphorylierten

Zwischenprodukten häufig die Ursache toxischer Effekte (Ferenci und Kornberg, 1973;

Lengeler, 1975; Solomon und Lin, 1972). D-Atl-P kann von E. coli K-12 nicht weiter

verstoffwechselt werden und wirkt so auf die Zellen toxisch. Der Transport von D-Atl

kann über das EIIGlc erfolgen. Ob bei dem Transport eine teilweise oder vollständige

Phosphorylierung des Substrates stattfindet, ist nicht bekannt. Die Phosphorylierung von

D-Atl könnte daher durch das EIIGlc, der Xylulose-Kinase XylB (Scangos und Reiner,

1979) oder eine weitere unbekannten Kinase erfolgen. Eine Deletion von crr verhindert

in jedem Fall den gekoppelten Transport von D-Atl über das EIIGlc durch die Repression

der Expression des EIIGlc. Ein entkoppelter Transport würde aber immer noch freies D-Atl

in die Zelle bringen. Bei einer Anhäufung von Arabinitol kann XylB D-Atl

phosphorylieren und zu einer Sensitivität führen (Scangos und Reiner, 1979). Dagegen

Page 72: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

64 III. Ergebnisse

wird in Gegenwart von dalD D-Atl zu D-Xylulose (Charnetzky und Mortlock, 1974a) und

D-Xylulose durch XylB zu D-Xylulose-5iP verstoffwechselt (Lawlis et al., 1984), welches in

den Pentosephosphat-Zyklus eingespeist werden kann. Eine Resistenz kann vorliegen,

wenn der Transport von D-Atl oder dessen Phosphorylierung verhindert wird. Eine XylB--

Mutante mit dalD würde dementsprechend zu einer nicht toxischen Anhäufung von D-

Xylulose und einem Atl--Phänotyp führen. Alle AtlR- und AtlS-Stämme zeigten jedoch den

gleichen Xyl+-Phänotyp. Eine durch die beschriebenen Ergebnisse nicht ersichtliche

Kombination dieser Faktoren ist in dem Stamm LGS323 zu erwarten.

Für die Selektionssysteme konnte kein Stamm konstruiert werden, der die

relevanten Eigenschaften von LGS323 besaß. Die weiteren Versuche wurden

hauptsächlich mit dem Stamm LGS322 durchgeführt.

LGS322-1 (∆mtlA ∆gut DalD+) /pGJ9∆137 (mtlAPA’)

Von den oben genannten Selektionssystemen wurde im Lauf der Arbeit

hauptsächlich der Stamm LGS322-1./pGJ9∆137 benutzt. Parallel durchgeführte

Selektionen mit den Stämmen LGS31-1.(∆mtlA dalD+)./pGJ9∆137 und LGS324-1

(∆mtlA ∆gut dalD+ AtlR) /pGJ9∆137 ergaben keine neuen Mutationsarten.

LTK32-1 (∆mtlA ∆(ptsH ptsI crr)::kan DalD+ Mak+) /pGJ9 (mtlA)

Im Stamm LTK32-1./pGJ9 erfolgt die Phosphorylierung der D-Fruktose über die

Mannofruktokinase (Mak). Der Stamm LTK32-1-/pGJT9-1 zeigte wie erwartet nur sehr

schlechtes Wachstum auf MM-Mtl-Cam-Platten und keinen deutlichen + Phänotyp auf

McC-Mtl-Cam-Platten. Die Aktivität der Mannofruktokinase war in diesem System nur

sehr gering zumal sie schon dem Donorstamm JWL300 nur eine Generationszeit von

160min auf MM mit 1% Fru ermöglichte (Aulkemeyer et al., 1991). Um die Selektion zu

beschleunigen, wurde in einem weiteren System die Fruktokinase aus dem Sucrose-

Operon eingesetzt.

LTK31-2 (∆mtlA ∆(ptsH ptsI crr)::kan DalD+ ScrK+) /pGJ9 (mtlA)

Um festzustellen, ob das System LTK31-2-/pGJ9 grundsätzlich zu einer Selektion

von entkoppelten mtlA-Mutanten geeignet war, wurde der Stamm LTK31-2 mit dem

Plasmid pGJT9-1 transformiert. Dieses Plasmid entstand aus pGJ9, in das die

Page 73: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 65

entkoppelnde Mutation E218A mit Hilfe der lokalisierten Mutagenese eingeführt wurde

(siehe III.1.3.2.). Der Stamm LTK31-2-/pGJT9-1 zeigte gutes Wachstum auf MM-Mtl-

Cam-Platten. In einer 1:107 Mischung mit LGS31 (Mtl-) wuchs der Stamm mit

deutlichem 2+ Phänotyp auf McC-Mtl-Cam-Platten durch den Bakterienrasen. Damit

konnte gezeigt werden, dass dieses System das Wachstum von entkoppelten Mutanten

der E218A-Art ermöglicht.

III.1.2. Entkoppelte Mutanten aus den Selektionen

Die Selektion der entkoppelten Mutanten erfolgte in den beschriebenen

Selektions-Systemen nach gleichem Vorgehen. Eine EK des eingesetzten Stammes wurde

in einem Reagenzglas in 5ml LB0Cam angeimpft und über Nacht bei 37°C in einem

Roller (bzw. Schüttelwasserbad bei 30°C und 42°C) inkubiert. Von der ÜK wurden

0,3ml (≈ 6 x 108 Zellen bei einer durchschnittlichen OD650.=.2 der ÜN-Kulturen) direkt

auf einer Selektionsplatte ausgestrichen. Die Selektion konnte sowohl auf MM-Mtl-

Cam- als auch auf McC-Mtl-Cam-Platten durchgeführt werden. Aufgrund der

deutlicheren Identifikation von Mutanten wurden hauptsächlich MM-Platten verwendet.

Die Zellen wurden vor dem Ausplattieren nicht gewaschen, um durch das LB0-Medium

noch etwas Wachstum auf dem MM-Medium und damit weitere Mutationen zu

ermöglichen. Um ein Austrocknen des Agars zu verhindern, wurden die Platten in

Plastiktüten luftdicht verschlossen und anschließend mehrere Tage inkubiert bis Einzel-

bzw. rote Kolonien zu sehen waren. Die Inkubationstemperatur wurde je Ansatz

zusätzlich variiert (30°C, 37°C bzw. 42°C).

Die so erhaltenen Kolonien wurden gereinigt und anschließend noch einmal auf

ihren Mtl-Phänotyp überprüft. Bei einem positiven Phänotyp wurde eine

Plasmidisolierung durchgeführt und der entsprechende Selektionsstamm mit dem

erhaltenen Plasmid transformiert. Damit konnte sichergestellt werden, dass der

beobachtete Phänotyp nicht chromosomal kodiert war. Aus den mutierten Plasmiden

wurde das HindIII-SnaB1-Fragment des mtlA-Gens ausgeschnitten (siehe Abb. III.1.4.)

und an Stelle des entsprechenden Fragments in das Plasmid pGJ9∆137 kloniert. Nach

Retransformation des entsprechenden Selektionsstamms konnte bei einem Mtl+-

Phänotyp davon ausgegangen werden, dass die Mutation in dem HindIII-SnaB1-

Fragment des mtlA-Gens lag. Dieses Fragment wurde anschließend doppelsträngig

sequenziert, um die Mutation zu ermitteln.

Page 74: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

66 III. Ergebnisse

Die erhaltenen Mutanten und Ihre Phänotypen werden in Teil III.1.5. dieser

Arbeit näher beschrieben. Zum besseren Verständnis folgender Punkte des Ergebnisteils

wird nachstehend die mtlA-Sequenz aus E. coli mit für diese Arbeit relevanten

Informationen angegeben.

Abb. III.1.4. Sequenz des Genes mtlA aus E. coli K-12

-35 -10 SalI TTGACA TAT AAT +1 CCCGTCG ACTGGACAGT TAACCGATTC AGTGCCAGAT TTCGCAGTAT CTACAAGGTC CGGCTACCTC RBS AGGAG G TGCCGCCACA TTAACAAAAA ACCTCGGGCT TCCAGCCTGC GCGACAGCAA ACATAAGAAG GGGTGTTTTT mtlA-Start 1 S3 20 HindIII 40 50 60 70 ATGTCATCCG ATATTAAGAT CAAAGTGCAA AGCTTTGGTC GTTTCCTCAG CAACATGGTG ATGCCAAATA 80 90 100 110 120 130 140 TCGGCGCGTT TATCGCGTGG GGTATCATCA CCGCGTTATT TATTCCAACA GGGTGGTTAC CGAACGAGAC 150 160 170 180 190 200 210 GCTGGCGAAG CTGGTCGGGC CGATGATCAC TTATCTCCTG CCGCTGCTGA TCGGTTATAC CGGTGGTAAG 220 230 240 250 260 270 280 CTGGTAGGCG GCGAACGTGG CGGCGTAGTC GGTGCCATCA CCACCATGGG CGTTATCGTC GGCGCAGACA 290 300 310 320 C110 340 350 TGCCGATGTT CCTCGGTTCT ATGATTGCAG GTCCGCTGGG CGGCTGGTGC ATTAAGCACT TCGACCGCTG 360 370 380 390 400 410 420 GGTAGACGGT AAGATCAAAT CCGGTTTTGA GATGCTGGTG AATAACTTCT CCGCAGGCAT CATCGGGATG 430 440 450 460 470 S158 480 490 ATCCTCGCTA TTCTGGCATT CCTCGGCATT GGCCCGATTG TTGAAGCCCT GTCCAAAATG CTGGCTGCGG 500 510 520 530 540 550 560 GCGTTAACTT CATGGTTGTC CATGACATGC TGCCGCTGGC GTCTATCTTT GTTGAACCGG CGAAAATCCT 570 580 590 S199 610 620 630 GTTCCTCAAC AACGCCATTA ACCACGGTAT CTTCTCGCCG CTGGGTATTC AGCAGTCCCA TGAACTGGGT S212 650 E218 660 670 680 690 700 AAATCAATCT TCTTCCTGAT TGAAGCTAAC CCAGGTCCAG GTATGGGCGT GCTGCTGGCG TACATGTTCT 710 720 S242 740 750 760 H256 TTGGTCGTGG TAGCGCTAAA CAGTCTGCGG GCGGTGCGGC AATCATCCAC TTCCTGGGGG GTATCCACGA 780 790 800 810 820 830 840 AATCTACTTC CCGTATGTGC TGATGAATCC GCGTCTGATC CTCGCAGTCA TCCTCGGCGG TATGACTGGC 850 860 870 880 890 S299 910 GTGTTCACGC TGACTATCCT GGGCGGTGGT CTGGTTTCTC CGGCATCTCC GGGTTCTATC CTTGCTGTAC 920 930 940 950 C320 970 980 TGGCGATGAC ACCAAAAGGT GCTTACTTCG CTAACATCGC GGGTGTGTGT GCGGCGATGG CTGTCTCCTT 990 1000 1010 1020 1030 1040 1050 CGTTGTCTCT GCTATTTTGC TGAAAACCAG CAAAGTGAAA GAAGAAGATG ATATTGAAGC AGCAACTCGT 1060 1070 1080 1090 1100 1110 1120 CGTATGCAGG ACATGAAAGC TGAGTCTAAA GGCGCATCTC CGCTGTCTGC TGGCGATGTG ACTAACGACC

Page 75: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 67

SnaBI 1140 C384 1160 1170 1180 1190 TGAGCCACGT ACGTAAAATC ATCGTTGCCT GTGACGCCGG TATGGGTTCC AGTGCGATGG GCGCAGGCGT 1200 1210 1220 1230 1240 1250 1260 TCTGCGTAAG AAAATTCAGG ATGCAGGTCT GTCGCAGATT TCTGTTACTA ACAGCGCGAT CAACAACCTG 1270 1280 1290 1300 1310 1320 1330 CCGCCAGATG TGGACCTCGT CATCACTCAC CGTGACCTGA CCGAACGCGC TATGCGCCAG GTTCCGCAGG 1340 1350 1360 1370 1380 1390 1400 CACAGCATAT TTCGCTGACC AACTTCCTCG ACAGCGGCCT GTACACCAGC CTGACCGAAC GTCTGGTTGC 1410 1420 1430 1440 1450 1460 1470 TGCCCAACGC CACACGGCAA ACGAAGAGAA AGTAAAAGAC AGCCTGAAAG ACAGCTTTGA CGATTCCAGT 1480 1490 1500 1510 1520 1530 ∆137 GCTAACCTGT TCAAGCTAGG CGCGGAGAAC ATCTTCCTCG GTCGCAAAGC GGCAACCAAA GAAGAAGCGA 1550 1560 1570 1580 1590 1600 1610 TTCGTTTTGC TGGCGAGCAG CTGGTGAAAG GCGGTTACGT TGAGCCGGAA TACGTTCAGG CGATGCTGGA 1620 1630 1640 1650 H554 1670 1680 TCGTGAAAAA CTGACCCCGA CTTATCTGGG TGAGTCTATC GCGGTGCCAC ACGGTACGGT TGAAGCGAAA 1690 1700 1710 C571 1720 1730 1740 1750 GATCGCGTAC TGAAAACGGG CGTCGTGTTC TGCCAGTACC CGGAAGGCGT GCGCTTCGGT GAAGAAGAAG 1760 1770 1780 1790 1800 1810 1820 ATGACATTGC CCGTCTGGTG ATTGGTATTG CTGCCCGTAA CAACGAGCAC ATTCAGGTTA TCACCAGCCT 1830 1840 1850 1860 1870 1880 1890 GACCAATGCA CTGGATGATG AGTCCGTCAT CGAGCGTCTG GCACACACCA CCAGCGTGGA TGAAGTGCTG 1900 1910 mtlA-Stopp GAACTGCTGG CAGGTCGTAA GTAATCCAAT CCCACCCTCT CCACATGGAG AAGGTGGGGT TAATTGCCTG BamHI ATGCGCTACG CTTATCAGGA TCCCAGGATG CATCACAATT TGTTGAATTT GCACGTTCTT GTAGG

Abb. III.1.4. Sequenz des Genes mtlA aus E. coli K-12 (nach Lee & Saier, 1983 - korrigiert 1993)

Dargestellt ist die Nukleotidsequenz in dem Bereich deslA in E. coli K-12. Die vermuteten -35 und -10-Regionen (Davis et al., 1988; Jiang et al., 1990) und die mögliche Ribosomenbindestelle (RBS) sind in Boxen mit darüber angegebenen Konsensussequenzen dargestellt. Der mögliche Transkriptionsstartpunkt der mRNA-Synthese ist mit +1 gekennzeichnet (Davis et al., 1988). Die Zählung beginnt mit dem Adenin des ATG-Startcodons. Farblich hervorgehoben sind folgende Sequenzteile: blau = Start- und Stoppkodon; grün = Erkennungssequenzen relevanter Restriktionsenzyme; rot = relevante Tripletts für wichtige AS; orange = Ende des mtlA∆137-Fragmentes.

III.1.2.1. Entkoppelte Mutanten aus den Selektionen LGS322-1 (∆mtlA ∆gut DalD+) /pGJ9∆137 (mtlAPA’) und LGS324-1 (∆mtlA ∆gut DalD+ AtlR) /pGJ9∆137 (mtlAPA’)

Bei den Selektionen in den beiden oben genannten Stämmen waren nach 4-6

Tagen wenige (0-5) mögliche Mutanten auf den Platten zu erkennen. Erwartungsgemäß

dauerte es bei 30°C und 42°C 2-3 Tage länger bis Kolonien zu erkennen waren. Mit

Page 76: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

68 III. Ergebnisse

Ausnahme der Mutation E218V wurden die erhaltenen Mutationsarten bei allen

Temperaturen isoliert. Die Variante E218V konnte nur einmal bei 37°C isoliert werden.

Temperaturabhängige Wachstumsunterschiede stellten sich in allen untersuchten Fällen

als chromosomal codiert heraus. Bei 22 unabhängig voneinander isolierten Mutanten

wurden folgende entkoppelte Mutationen identifiziert:

Tab. III.1.10. Entkoppelnde Mutationen aus LGS322-1 /pGJ9∆137 und LGS324-1 /pGJ9∆137

Phänotyp

E218A E218V H256P

Mutation in Selektionstemp.

bp 653 GAA GCA

bp 653 GAA GTA

bp 767 CAC CCC

30 [°C] 2 - 3

37 [°C] 5 (2) 1 6 (3)

42 [°C] 2 - 3

Gesamt 9 1 12

Die Tabelle gibt die Art und Anzahl der erhaltenen Mutationen bei unterschiedlichen Temperaturen wieder. Die betroffenen Nukleotide und deren Nummern sind blau hervorgehoben (Zählung wie in Abb. III.1.4.). In Klammern ist der Anteil der Mutanten aus LGS324-1 angegeben.

In neun Fällen führte die Transversion des zweiten Adenins in dem Triplett 218

(GAA) zu Cytosin zu dem Aminosäureaustausch E218A (Glutaminsäure zu Alanin). Eine

weitere Transversion in demselben Nukleotid zu Thymin führte zu dem AS-Austausch

E218V (Glutaminsäure zu Valin). Zwölf Mutationen betrafen das Adenin in dem Triplett

256 (CAC). Diese bewirkten eine Transversion zu Cytosin und damit den AS-Austausch

H256P (Histidin zu Prolin). Bei der Selektion mit den beiden Stämmen zeigte sich, dass

die Inkubationstemperatur vermutlich keinen Einfluss auf die Art der Mutation hatte. Die

Plasmide mit den jeweiligen Mutationen wurden folgendermaßen benannt:

Plasmid resultierender AS-Austausch

pGJ9∆EA = E218A pGJ9∆EV = E218V pGJ9∆HP = H256P

Die Eigenschaften der Plasmide sind nachfolgend in der Tab. III.1.11.

dargestellt.

Page 77: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 69

III.1.2.2. Entkoppelte Mutanten aus der Selektion LTK31-2 (∆mtlA ∆(ptsH ptsI crr)::kan DalD+ ScrK+) /pGJ9 (mtlA)

Die Selektionen mit diesem Stamm wurden bei 37°C auf MM-Mtl-Cam-Platten

durchgeführt. Dabei wurden nach 3 Tagen 3-6 Kolonien je Platte beobachtet. Von acht

unabhängig isolierten und untersuchten Mutanten zeigten sechs den Austausch E218A

(Transversion GAA GCA) und zwei den Austausch H256P (Transversion CAC

CCC). Somit wurde mit diesem System keine neue Mutation selektioniert, allerdings

konnten die Ergebnisse aus dem vorangegangenen System bestätigt werden. Die

Phänotypen aller entkoppelten Mutanten sind in der folgenden Tabelle III.1.11.

dargestellt. Die verwendeten Plasmide sind wie oben beschrieben aus den originalen

Mutanten konstruiert worden und entsprechen den Phänotypen der ursprünglich

isolierten Mutanten.

Tab. III.1.11. Phänotypen der entkoppelten Mutanten

Markerplatten1 Stamm McC Mtl MM Mtl LB0Cam LB0Spc

LGS322-1 w - - +

LGS322-1 /pGJ9∆137 w - + +

LGS322-1 /pGJ9∆EA 2+ + + +

LGS322-1 /pGJ9∆EV 2+ + + +

LGS322-1 /pGJ9∆HP 2+ + + +

1 Für Symbole und sonstige Erklärungen siehe Tab. III.1.1.

III.1.3. Entkoppelte Mutanten aus lokalisierter Mutagenese

Um auf einem weiteren Weg zeigen zu können, dass die beobachteten

Phänotypen von der beschriebenen Mutation abhängen, wurden die entsprechenden

Mutationen durch lokalisierte Mutagenese in das Plasmid pGJ9 eingeführt. Dadurch

konnten auch die Auswirkungen der Mutationen in einem nicht deletierten mtlA

(EIIMtlABC) untersucht werden. Um ein mit dem pGJ9∆137 vergleichbares

Deletionsplasmid zu erhalten, wurde anschließend über vorhandene Restriktionsenzym-

Schnittstellen eine Deletion eingeführt (siehe III.1.3.2.). Weiterhin bot sich die

Möglichkeit einen Doppelaustausch in den betroffenen Tripletts einzuführen, um bei

Wachstumsuntersuchungen und der Selektion von Suppressormutanten Reversionen zu

erschweren.

Page 78: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

70 III. Ergebnisse

III.1.3.1. Konstruktion des Plasmides pGAL3 (mtlA’) und seiner mutierten Derivate Die lokalisierte Mutagenese wurde nach dem „Altered Sites“ in vitro

Mutagenese System von Promega ausgeführt. Dazu musste ein Fragment aus mtlA,

welches das zu mutierende Triplett enthält, in den Mutagenese-Vektor pALTER-1

kloniert werden. Das Plasmid pGJ9 (Abb. III.1.5.) wurde mit HindIII verdaut und das

resultierende

2,1kb-mtlA’-Fragment in die entsprechende HindIII-Restriktionsschnittstelle von

pALTER-1 kloniert. Die korrekte Ausrichtung des Fragments wurde mit einer BamHI-

Restriktionsanalyse überprüft und die beiden Enden des Fragments über Sequenzanalyse

identifiziert. Das Plasmid wurde pGAL3 genannt. Das System mit dem Mutagenese-

Vektor pALTER-1 verwendet zur Erhöhung der Mutagenese-Ausbeute ein Ampicillin-

Reperatur-Oligonukleotid. Nach durchgeführter Mutagenese besitzt der Vektor die

Antibiotikaresistenzen gegen Tetracyklin und Ampicillin. Während der Mutagenese

wurde festgestellt, dass es eine Tandem-Duplikation einer 11bp langen Sequenz (5’-

GGCGTGCTGCT-3’) in mtlA (Basen 676-686) und in der Tet-Resistenz von pALTER-1

(876-886) gibt, die häufiger zu Deletionen führte. Daher wurde im Folgenden immer

eine Selektion mit Tetracyklin durchgeführt, um das Vorkommen deletierter Plasmide zu

unterdrücken.

SalI

(575

0)

ATG (1/5882)

Hin

dIII

(30)

SnaB

I (11

32)

∆137

(153

2)

Bam

HI (

1978

)H

inC

ladI

II (2

135)

I (21

41)

(574

6)

mtlA tet’ ‘tetp15A ori cat

pGJ9

Abb. III.1.5. mtlA-Plasmid pGJ9 (nach Grisafi et al., 1989)

Schematische Darstellung des mtlA-Plasmids pGJ9. Die Position der Erkennungssequenzen der relevanten Restriktionsenzyme und die Deletion ∆137 sind in Klammern angegeben. Die Zählung beginnt mit dem Adenin des ATG-Startcodons (1/5882).

Page 79: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 71

Konstruktion der Plasmide pGAL3-1, pGAL3-2 und pGAL3-3 mit zweifachem

Basenaustausch

Die Konstruktion der Plasmide erfolgte durch den Einsatz der Mutagenese-Primer

E218A (+), E218V (+) und H256P (+). Bei der Auswahl der neuen Codone wurde

nach zwei Kriterien vorgegangen:

1. Es mussten mindestens zwei Basenaustausche im Codon für eine Reversion zu

der WT-Aminosäure an der jeweiligen Stelle erforderlich sein.

2. Von den verbleibenden Codonen wurde das mit der häufigsten Verwendung

(„codon usage“) in mtlA in E. coli gewählt.

In der folgenden Tabelle sind die aus der Mutagenese resultierenden

Doppelaustausche dargestellt, wie sie durch einzelsträngige Sequenzierung

nachgewiesen wurden.

Tab. III.1.12. Austausche bei pGAL3-1, pGAL3-2 und pGAL3-3 1

Plasmidname Mutagenese-Primer

Basenaustausch Basennummern2

pGAL3-1 E218A (+) GAA GCC 652-654

pGAL3-2 E218V (+) GAA GTC 652-654

pGAL3-3 H256P (+) CAC CCA 766-768 1 Phänotypen in Teil III.1.5.1. 2 Zählung wie in Abb. III.1.4.

Konstruktion der Plasmide pGAL3-4 und pGAL3-5 mit zweifachen AS-Austauschen

Die Konstruktion dieser Plasmide erfolgte durch den gleichzeitigen Einsatz zweier

Mutagenese-Primer in einem Mutageneseansatz. Damit konnten die unterschiedlichen

Mutationen, die einen entkoppelten Transport von D-Mannitol ermöglichen, kombiniert

und ihr Phänotyp untersucht werden. Dabei wurden die Kombinationen, die für die AS-

Austausche E218A (+)/H256P(+) und E218V(+)/H256P(+) kodieren, gewählt. In der

folgenden Tabelle sind die resultierenden Nukleotid-Austausche dargestellt, wie sie

durch einzelsträngige Sequenzierung nachgewiesen wurden.

Page 80: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

72 III. Ergebnisse

Tab. III.1.13. Austausche bei pGAL3-4 und pGAL3-51

Plasmidname Mutagenese-Primer

Basenaustausch Basennummern2

pGAL3-4 E218A (+)

H256P (+)

GAA GCC (CTG CAG)3 CAC CCA

652-654 685-687 766-768

pGAL3-5 E218V (+) H256P (+)

GAA GTC CAC CCA

652-654 766-768

1.Phänotypen in Teil III.1.5.1. 2.Zählung wie in Abb. III.1.4. 3-unbeabsichtigter Austausch L229Q (Leucin zu Glutamin).

III.1.3.2. Klonierung der Plasmidreihe pGJT9 mit einem vollständigen

mtlA-Gen

Die mutierten mtlA-Fragmente mussten aus den vorangehend beschriebenen

pGAL3-Plasmiden über einen HindIII-Verdau zurück in den mtlA-Vektor pGJ9 kloniert

werden. Dafür wurde zur Vereinfachung das Plasmid pGJ9dHindIII konstruiert, dem das

entsprechende HindIII-Fragment fehlte. Die mtlA HindIII-Fragmente aus den mutierten

pGAL3-Plasmiden wurden nach der Klonierung in pGJ9dHindIII einzelsträngig

sequenziert und die neu konstruierten wie in Tab.II.1.4. Plasmide benannt.

Um ein dem pGJ9∆137 entsprechendes Deletionsplasmid zu erhalten, wurden

die neuen Plasmide mit SnaBI und ClaI verdaut. Anschließend wurde der um ca. 1kb

verkürzte Vektor nach einer Klenow-Behandlung religiert. Die dadurch entstandenen

Plasmide trugen mtlA’-Gene, die eine Deletion des für das Cys384 aus Domäne IIBMtl

und das His554 aus IIAMtl kodierenden Bereiches aufwiesen (Vgl. Abb. III.1.4.). Die

Klonierungen ergaben folgende Plasmide.

pGJT9-1 = pGJ9∆HindIII + mtlA HindIII-Fragmente aus pGAL3-1 = pGJ9 E218A

pGJT9-1d = pGJT9-1 mtlA‘ (SnaBI/ClaI-Deletion)

pGJT9-2 = pGJ9∆HindIII + mtlA HindIII-Fragmente aus pGAL3-2 = pGJ9 E218V

pGJT9-2d = pGJT9-2 mtlA‘ (SnaBI/ClaI-Deletion)

pGJT9-3 = pGJ9∆HindIII + mtlA HindIII-Fragmente aus pGAL3-3 = pGJ9 H256P

pGJT9-3d = pGJT9-3 mtlA‘ (SnaBI/ClaI-Deletion)

pGJT9-4 = pGJ9∆HindIII + mtlA HindIII-Fragmente aus pGAL3-4 = pGJ9 E218A, L229Q, H256P

Page 81: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 73

pGJT9-4d = pGJT9-4 mtlA‘ (SnaBI/ClaI-Deletion)

pGJT9-5 = pGJ9∆HindIII + mtlA HindIII-Fragmente aus pGAL3-5 = pGJ9 E218V, H256P

pGJT9-5d = pGJT9-5 mtlA‘ (SnaBI/ClaI-Deletion)

III.1.4. Selektion von Suppressormutanten

Aus der Selektion von Suppressormutanten in Stämmen mit entkoppeltem aber

vollständigem EIIMtl sollten Mutationen an anderer Stelle im mtlA gesucht werden, die

entkoppelte Mutanten wieder in den Mtl+-Phänotyp umwandeln. Die entkoppelnden

Mutationen E218A und E218V (pGJT9-1 und pGJT9-2) zeigten in dem vollständigen

MtlA keine Beeinträchtigung des Wachstums auf D-Mannitol (siehe Teil III.1.5.1.),

können also nicht zur Suppressor-Selektion eingesetzt werden. Dagegen verursachten

die Mutationen H256P, E218A/L229Q/H256P und E218V/H256P im Stamm LGS322

einen Mtl--Phänotyp. Mit den Stämmen LGS322 /pGJT9-3 /pGJT9-4 und /pGJT9-5

konnte so eine Selektion auf Supressormutanten durchgeführt werden. Eine ÜK des

jeweiligen Stammes wurde auf MM Mtl-Cam-Platten ausgestrichen und bei 30°C bzw.

37°C inkubiert. Erhaltene Kolonien wurden gereinigt, getestet, Zellen der

entsprechenden Kolonien mit dem Plasmid transformiert, das HindIII-SnaB1-Fragment

neu kloniert und anschließend sequenziert.

III.1.4.1. Suppressormutanten aus den Stämmen LGS322 /pGJT9-3 (H256P),

/pGJT9-4 (E218A/H256P) und /pGJT9-5 (E218V/H256P)

Nach vier Tagen Inkubation waren bei den Selektionen mit LGS322 /pGJT9-3

unabhängig von der Inkubationstemperatur 8-16 Kolonien pro Platte zu sehen. Es

wurden jeweils sechs bzw. fünf (30°C/37°C) Kolonien untersucht und die Mutationen

identifiziert (siehe Tab. III.1.14.). Die Selektionen von Suppressormutationen aus

LGS322 /pGJT9-4 ergaben 3 Kolonien pro Platte, wobei die Kolonien erst nach sieben

Tagen Inkubation unabhängig von der Inkubationstemperatur zu sehen waren. Zwei

Kolonien aus der 30°C- und eine Kolonie aus der 37°C-Selektion wurden untersucht.

Die folgenden Tabellen III.1.14a. und III.1.14b. fassen die erhaltenen Mutationen

zusammen.

Page 82: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

74 III. Ergebnisse

Tab. III.1.14. Mutationen aus LGS322 /pGJT9-3 und LGS322 /pGJT9-4

LGS322 /pGJT9-3

Anzahl der Mutationen bei Genotyp der Mutation Phänotyp der Mutation 30°C 37°C

C766CA Pro256

T766CA Ser256

3 0

CC767A Pro256

CA767A Gln256

3 5

LGS322 /pGJT9-4

C766CA Pro256

G766CA Ala256

1 0

CC767A Pro256

CA767A Gln256

1 1

Die Tabelle gibt Ort, Art und Anzahl der Mutationen bei 30°C und 37°C wieder. Die mutierten Basen und resultierenden AS der betroffenen Tripletts sind nach Abb. III.1.4. nummeriert.

Mit dem Ansatz LGS322-/pGJT9-5 wurden keine Mutanten gefunden. Die

neuen Plasmide wurden folgendermaßen benannt:

pDSM1 = pGJT9-3 P256Q

pDSM2 = pGJT9-3 P256S

pDSM3 = pGJT9-4 E218A/L229Q/P256A

pDSM4 = pGJT9-4 E218A/L229Q/P256Q

III.1.5. Charakterisierung der Mutanten

Anhand der Selektion in den jeweiligen Stämmen wurde lediglich die Fähigkeit

des Wachstums auf D-Mannitol ohne DalD festgestellt. Die entkoppelten Mutanten

waren darauf angewiesen, freies, das heißt unphosphoryliertes D-Mannitol zu

transportieren und zu verstoffwechseln. Bei den „Supressormutanten“ dagegen

erforderte die Selektion in Abwesenheit des DalD eine Wiederherstellung des Transports

und der Phosphorylierung. Dabei war nicht auszuschließen, dass Anteile des

D-Mannitols unphosphoryliert in die Suppressor-Zelle gelangen. Um einen Vergleich

des Wachstums aller Mutanten und des WT auf D-Mannitol zu erstellen, wurden weitere

Page 83: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 75

Untersuchungen mit den Mutanten in unterschiedlichen Stamm/Plasmid-Kombinationen

durchgeführt. Dabei wurden der Transport und einzelne Komponenten des Transports

wie Phosphorylierung und Substratbindung untersucht. Weil die relevanten Phänotypen

der Mutanten aus der ortspezifischen Mutagenese und den Selektionen keine

ersichtlichen Unterschiede zeigten, wurde, wenn nicht anders beschrieben, bei allen

Tests mit Plasmiden aus der gerichteten Mutagenese gearbeitet.

III.1.5.1. Phänotypen der verschiedenen Mutanten

Der von den Mutationen vermittelte Phänotyp wurde zunächst mit Hilfe von

Plattentests und Wuchskurven untersucht. Dabei war es für die Feststellung der Ursache

und des Grades der Entkopplung erforderlich, in unterschiedlichen Stammhintergründen

und mit unterschiedlichen Plasmidkonstruktionen zu arbeiten. Vor allem der Einfluss des

F’dalD auf das Wachstum sollte Hinweise auf freies D-Mannitol in der Zelle geben. In

der Darstellung der Markertests wurde versucht, die Ergebnisse so gut wie möglich zu

gliedern bzw. zu bündeln, um den Vergleich der verschiedenen Mutanten untereinander

zu erleichtern.

Markertests und Wachstumskurven entkoppelter Mutanten in den Stämmen

LGS322 und LGS322-1

Im folgenden wurden in den Stämmen LGS322 und LGS322-1 (F’lac::dalD+) nur

Plasmide aus der gerichteten Mutagenese verwendet, womit weitere unerkannte

Mutationen ausgeschlossen werden konnten.

Unterschiede in der Fähigkeit, D-Mannitol in Abhängigkeit des Vorhandenseins

von dem F’lac::dalD zu verstoffwechseln, fielen bereits bei diesem, in der Tab. III.1.15.

dargestellten, qualitativen Test auf. Im Allgemeinen verbessert DalD das Wachstum der

Mutanten auf D-Mannitol. Eine Ausnahme stellten die Mutationskombinationen

E218A/L229Q/H256P und E218V/H256P sowie das deletierte WT-Protein dar, welche

kein Wachstum auf D-Mtl ermöglichten. Zellen mit dem WT-Plasmid pGJ9 zeigten auf

McC Mtl mit und ohne DalD einen 3+-Phänotyp. Eventuelle Wachstums-Unterschiede

sind in diesem Fall auf McC-Platten nicht ersichtlich. Auf D-Arabinitol unterdrückte DalD

bei allen Stämmen die Sensitivität und ermöglichte die Verstoffwechslung des

Zuckeralkohols.

Page 84: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

76 III. Ergebnisse

Tab. III.1.15. Markertest entkoppelnder Mutanten in LGS322 und LGS322-1

Markerplatten1,2 Stamm Plasmid relevante Austausche McC Mtl MM Mtl McCAtl

LGS322 /pGJ9∆137 w - S

LGS322-1 ” w - 2+

LGS322 /pGJ9 3+ + S

LGS322-1 ”

3+ + 2+

LGS322 /pGJT9-1∆ w - S

LGS322-1 ” + + 2+

LGS322 /pGJT9-1 2+ + S

LGS322-1 ”

E218A

3+ + 2+

LGS322 /pGJT9-2∆ w - S

LGS322-1 ” + + 2+

LGS322 /pGJT9-2 + + S

LGS322-1 ”

E218V

3+ + 2+

LGS322 /pGJT9-3∆ w - S

LGS322-1 ” + + 2+

LGS322 /pGJT9-3 w - S

LGS322-1 ”

H256P

2+ + 2+

LGS322 /pGJT9-4∆ w - S

LGS322-1 ” w - 2+

LGS322 /pGJT9-4 w - S

LGS322-1 ”

E218A/ L229Q/ H256P

w - 2+

LGS322 /pGJT9-5∆ w - S

LGS322-1 ” w - 2+

LGS322 /pGJT9-5 w - S

LGS322-1 ”

E218V/ H256P

w - 2+ 1 Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. 2Phänotyp aller Stämme auf McC Glc = 3+, McC Gut = w, LB0Str = +, LB0Cam = +.

Die AS-Austausche E218A, E218V und H256P ermöglichten im verkürzten EIIMtl

(LGS322-1 /pGJT9-1∆, /pGJT9-2∆, pGJT9-3∆) nur mit DalD Wachstum auf D-Mtl. In

diesen Mutanten fand entkoppelter Transport statt. In einem vollständigen EIIMtl ohne

DalD konnten nur die Mutanten mit den Austauschen E218A und E218V auf D-Mtl

wachsen (LGS322 /pGJT9-1, /pGJT9-2). Das Wachstum war in beiden Fällen

Page 85: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 77

schwächer als beim WT. Mit DalD zeigen die Mutanten wieder WT-Aktivität. In einem

vollständigen EIIMtl wurde das Substrat durch die Mutationen E218A und E218V nur

teilweise phosphoryliert und somit ein unterschiedlich großer Anteil an D-Mtl

unphosphoryliert transportiert. Die Mutation H256P verhinderte in einem vollständigen

EIIMtl ohne DalD das Wachstum der Zellen auf D-Mtl vollständig (LGS322 /pGJT9-3),

während mit DalD ein Mtl+-Phänotyp erreicht wurde (LGS322-1 /pGJT9-3). Mit dem

AS-Austausch H256P war der gekoppelte Transport für ein Wachstum auf MM Mtl nicht

ausreichend, es fand hauptsächlich oder nur entkoppelter Transport statt. Die

Mutations-Kombinationen E218A/L229Q/H256P und E218V/H256P verhinderten mit

und ohne DalD Wachstum auf D-Mtl. Diese Kombinationen hatten entweder eine große

Einwirkung auf Bindung und/oder Transport, oder eine funktionelle Faltung der

Translokationsdomäne wurde beeinträchtigt.

Markertest der „Suppressormutanten“ in LGS322 (∆mtlA), LGS322-1 (∆mtlA

DalD+) und LTK31-2 (∆mtlA ∆(ptsH ptsI crr)::kan DalD+ ScrK+)

In der folgenden Tabelle (Tab. III.1.16.) sind die relevanten

Markertesteigenschaften der Suppressormutanten in dem Stamm LGS322 und

LGS322-1 dargestellt. Um festzustellen, ob diese Aminosäureaustausche auch zu einer

Entkopplung führen können, wurden die Mutationen zusätzlich in einem Stamm ohne

allgemeine PTS-Komponenten getestet. Hierfür wurde der Stamm LTK31-2 eingesetzt.

Als Referenz wurden die Stämmen LTK31-2, LGS322 bzw. LGS322-1 mit den

Plasmiden pGJ9 und pGJT9-1 angeführt.

In den Stämmen LGS322 und LGS322-1 vermittelten die Plasmide pDSM1

(P256Q) und pDSM2 (P256S) wieder eine WT-Aktivität auf McC Mtl-Platten. In

LTK31-2 war mit diesen Plasmiden keine Entkoppelung mehr zu erkennen. Dagegen

zeigten die Plasmide pDSM3 (E218A/L229Q/P256A) und pDSM4

(E218A/L229Q/P256Q) in LTK31-2 entkoppelten Transport sowie einen schwächeren

Phänotyp in dem Stamm LGS322, was auf die noch vorhandene entkoppelnde

Mutation E218A zurückgeführt werden kann. Die bessere Verstoffwechselung von D-

Mannitol in dem Stamm LGS322-1 zeigte, dass auch bei diesen Mutanten entkoppelter

und gekoppelter Transport stattfindet. Allerdings führten beide Plasmide in den

Stämmen LGS322 und LGS322-1 zu schwächeren Phänotypen auf D-Mannitol als das

Page 86: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

78 III. Ergebnisse

Plasmid pGJT9-1 mit der einfachen E218A-Mutation. Dadurch wird ein weiterer Einfluss

der Mutationen L229Q und/oder P256A bzw. P256Q beim Wachstum auf D-Mannitol

deutlich. Besonders im Hinblick auf die scheinbaren WT-Aktivitäten der einfachen

Mutationen P256Q und P256S sind weitere Untersuchungen erforderlich. Grundsätzlich

fielen bei entkoppelten Mutanten die Phänotypen der D-Mannitol-Verstoffwechselung in

dem Stamm LTK31-2 schwächer aus als in dem Stamm LGS322-1. Die Ursache hierfür

ist aber eher im grundsätzlich abweichenden Stammhintergrund als in funktionellen

Unterschieden in dem Transportmechanismus zu suchen.

Tab. III.1.16. Plattentest der Stämme LGS322, LGS322-1 und LTK31-2

mit den „Suppressor-Mutationen“

Markerplatten1,2 Stamm Plasmid relevante Austausche McC Mtl MM Mtl Mc Atl

LTK31-2 /pGJ9 w - 2+

LGS322 /pGJT9-1 2+ + S

LGS322-1 ” 3+ + 2+

LTK31-2 ”

E218A

+ + 2+

LGS322 /pDSM1 3+ + S

LGS322-1 “ 3+ + 2+

LTK31-2 ”

P256Q

w - 2+

LGS322 /pDSM2 3+ + S

LGS322-1 “ 3+ + 2+

LTK31-2 ”

P256S

w - 2+

LGS322 /pDSM3 (+) (+) S

LGS322-1 “ 2+ + 2+

LTK31-2 ”

E218A/ L229Q/ P256A

+ + 2+

LGS322 /pDSM4 (+) (+) S

LGS322-1 “ 2+ + 2+

LTK31-2 ”

E218A/ L229Q/ P256Q

+ + 2+ 1,2 siehe Tabelle III.1.15.

Zellerträge und Generationszeiten mit verschiedenen mtlA-Plasmiden

Über Wuchskurven können die Wachstums-Vergleiche der unterschiedlichen

Mutanten auf D-Mannitol in quantitativer Weise bestimmt werden. Da die Ergebnisse

der Plattentests schon zeigten, dass es nach dem Transport über die veränderten

Page 87: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 79

IIC*BA-Domänen zu einer Freisetzung von teilweise und nicht phosphoryliertem D-

Mannitol kommen kann, wurden das Wachstum von Zellen mit und ohne DalD in

einem vollständigem EIIMtlC*BA verglichen.

Tab. III.1.17. Zellerträge und Generationszeiten der Stämme LGS322 und LGS322-1 mit verschiedenen mtlA-Plasmiden

Stamm

LGS322 LGS322-1 (F’lac::dalD+)

/Plasmid relevante Austausche

Gt1 [min] Zellertrag2 [∗108 B/ml]

Gt1 [min] Zellertrag2 [∗108 B/ml]

/pGJ9 83 - 88 8 - 8,5 81 - 87 7,5 - 8

/pGJ9∆HindIII k.W. k.W. k.W. k.W.

/pGJT9-1 E218A

180 - 200 4 - 4,4 110 - 125 6 – 8

/pGJT9-2 E218V

230 - 380 2,5 - 3 105 - 115 6 - 7,5

/pGJT9-3 H256P k.W. k.W. 220 - 345 3,5 – 4,3

/pGJT9-4 E218A/L229Q/H256P k.W. k.W. k.W. k.W.

/pGJT9-5 E218V/H256P

k.W. k.W. k.W. k.W.

/pDSM1 P256Q

82 - 87 7,5 - 8 86 - 88 7

/pDSM2 P256S

84 - 87 7 - 8 84 - 86 7

/pDSM3 E218A/L229Q/P256A

580 - 900 0,3 - 1 140 - 150 5,5 - 6

/pDSM4 E218A/L229Q/P256Q

330 - 360 2 - 2,5 145 - 155 5 - 5,5

Die Stämme wurden in MM Mtl/Glc Cam angeimpft und über Nacht bei 37°C in einem Roller inkubiert. Die ÜK wurden in MM+ gewaschen und in vorgewärmtes Medium (MM Mtl [0,2%] Cam) zu einer Zellzahl von 5x107 B/ml überimpft. Alle Wuchskurven wurden im Schüttelwasserbad bei 37°C mindestens dreimal unabhängig voneinander aufgenommen. 1Generationszeiten (Gt) wurden aus der Steigung der Wuchskurven in der exponentiellen Wachstumsphase berechnet. 2Zellerträge wurden aus der Differenz der anfänglichen (t0) und der maximal gemessenen OD420 in einem Zeitraum von 24h ermittelt. k.W. = kein Wachstum.

Als Kontrolle für das Wachstum unter WT-Bedingungen wurden die Messungen

mit den Stämmen LGS322/pGJ9, LGS322-1/pGJ9 durchgeführt. Die

Page 88: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

80 III. Ergebnisse

Generationszeiten für Zellen mit dem WT-MtlA (pGJ9) in einem Stamm mit und ohne

DalD (LGS322-1 bzw. LGS322) lagen bei den Messungen in beiden Fällen

reproduzierbar in einem Bereich zwischen 80 und 90 Minuten. Ein etwas geringerer

Zellertrag wurde lediglich bei den Stämmen mit dem F’-Plasmid beobachtet (ca.

0,5∗108 B/ml weniger Zellen).

Um einen pleiotropen Effekt der Mutationen auf das Wachstum ausschließen zu

können, wurden Wachstumsmessungen in MMGlc [0,2%] mit den entsprechenden

Antibiotika und Aminosäuren durchgeführt. Dadurch sollte der Einfluss des F’-Plasmids,

eines zusätzlichen Plasmids und des Chloramphenicols berücksichtigt werden. Die

Messungen wurden jeweils dreimal durchgeführt.

Der Stamm LGS322 zeigte dabei eine Generationszeit von 66.±3 min., LGS322-

1 wuchs mit 70.±3 min. etwas langsamer. Auch der Zellertrag war beim LGS322-1

etwas schwächer (9.±0,5 ∗108 B/ml) als beim LGS322 (9,5.±0,5 ∗108 B/ml). Beide

Effekte könnten auf das zusätzliche F’-Plasmid in dem Stamm LGS322-1 zurückgeführt

werden. Wuchsen die beiden Stämme mit dem Plasmid pGJ9∆HindIII, welches um den

Großteil von mtlA deletiert ist, auf Chloramphenicol, verlangsamte sich das Wachstum

in beiden Fällen um etwa 7min. (LGS322: 73.±3 min.) bzw. 5 min. (LGS322-1: 75.±3

min.) und auch der Zellertrag reduzierte sich (LGS322: 9.±0,5 ∗108 B/ml; LGS322-1:

7,5.±0,5 ∗108 B/ml). Im Vergleich zu diesen Ergebnissen wurde bei allen anderen in

der Tab. III.1.17. aufgeführten Plasmiden in dem Stamm LGS322 eine Generationszeit

von 75.±3 min (Zellertrag 7,5 ±0,5 ∗108 B/ml) und in dem Stamm LGS322-1 eine

Generationszeit von 80.±3 min (Zellertrag 7 ±0,5 ∗108 B/ml) gemessen. Lediglich bei

Stämmen mit dem Plasmid pGJT9-2 (E218V) wurde eine verlängerte Anlaufphase im

Wachstum festgestellt, die sich allerdings nicht in der Generationszeit bemerkbar

machte. Aufgrund der lediglich geringfügigen Abweichungen im Wachstum der Stämme

mit den verschiedenen mtlA-Plasmiden wurde ein pleiotroper Effekt der Mutationen in

mtlA ausgeschlossen.

Bei der Betrachtung des Wachstums von Zellen mit den unterschiedlichen MtlA-

Varianten auf D-Mannitol lassen sich die Phänotypen in einer ersten Betrachtung in vier

Gruppen unterteilen.

Dabei wird die erste Gruppe aus Mutanten mit den Mutationen P256Q, und

P256S gebildet, die mit und ohne DalD eine Generationszeit und einen Zellertrag im

Bereich des Wildtyps zeigten. Die Messungen deuten darauf hin, dass die Mutationen

Page 89: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 81

bei der untersuchten D-Mtl-Konzentration keinen großen Einfluss auf das Wachstum

haben. Ferner scheint der Anteil an freiem D-Mannitol in der Zelle in allen Fällen so

gering zu sein, dass ein Vorteil eines Wachstums mit DalD nicht zu erkennen ist.

Bei der zweiten Gruppe von Mutationen (E218A, E218V,

E218A/L229Q/P256Q) war das Wachstum auf D-Mannitol in dem Stamm LGS322

deutlich langsamer als das Wachstum des Wildtyps. Der Zellertrag reduzierte sich in

diesen Fällen entsprechend der sich verlängernden Generationszeit. Das Vorhandensein

von DalD führte dagegen zu einer deutlichen Verbesserung des Zellertrags und der

Generationszeiten. Der Zellertrag steigerte sich in allen Fällen um etwa 100%. Eine

Sonderstellung nimmt in dieser Gruppe die Mutation in dem Plasmid pDSM3

(E218A/L229Q/P256A) ein. Diese Mutation ermöglichte auch Wachstum in LGS322,

dieses war jedoch drastisch verlangsamt und auch der Zellertrag war reduziert. In dem

Stamm LGS322-1 kam es wiederum zu einer Verbesserung des Wachstums, wie es

schon bei den anderen Mutationen dieser Gruppe beobachtet wurde. Der Ertrag

steigerte sich von 0,3-1 auf 5,5-6 [∗108 B/ml]. Dies deutet auf einen sehr hohen Anteil

unphosphorylierten, dass bedeutet entkoppelt transportierten D-Mannitols hin.

Die dritte Gruppe wird durch das Plasmid pGJT9-3 (H256P) gebildet. In dem

Stamm LGS322 ermöglichte es kein Wachstum auf D-Mannitol, wogegen mit DalD

Wachstum zu sehen war. Die Mutation H256P ermöglichte lediglich Wachstum auf

freiem D-Mannitol durch entkoppelten Transport.

Die Mutationen der vierten Gruppe (E218A/H256P, E218V/P256A) schalteten

jeden Transport aus. Es war weder Wachstum im Stamm LGS322 noch im Stamm

LGS322-1 möglich.

III.1.5.2. Bindekinetik der Mutanten

Alle Daten zu den Bindekinetiken wurden Dank der freundlichen Unterstützung

von G.T. Robillard und seinen Mitarbeitern (E. Vos, J. Broos, R.H. Duurkens, G.K.

Schuurman-Wolters) in deren Laboratorien an der Reichsuniversität Groningen

selbstständig ermittelt.

Ortsspezifische Mutagenese in dem Plasmid pMaHisMtlAPr

Um eine Überexpression von mtlA mit Hilfe der Hitzeinduktion durchzuführen,

mussten die bekannten Mutationen in das über Hitze induzierbare Plasmid

Page 90: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

82 III. Ergebnisse

pMaHisMtlAPr eingeführt werden. Die Mutagenesen wurden mit dem „QuikChange™

Site-Directed Mutagenesis Kit“ der Firma Stratagene und den im Ergebnisteil erwähnten

Mutagenese-Primern (.E218A(+/-), E218V(+/-), H256P(+/-), H256A(+/-),

H256Q(+/-), H256S(+/-.)) durchgeführt. Die daraus resultierenden Derivate des

Plasmides pMaHisMtlAPr (WT) sind in der folgenden Tabelle dargestellt.

Tab. III.1.18. Mutanten aus dem Plasmid pMaHisMtlAPr

Plasmid Phänotyp (AS-Austausch in MtlA)

pRUG1 pMaHisMtlAPr mtlA E218A

pRUG2 pMaHisMtlAPr mtlA E218V

pRUG3 pMaHisMtlAPr mtlA H256P

pRUG4 pMaHisMtlAPr mtlA E218A/H256P

pRUG5 pMaHisMtlAPr mtlA E218V/H256P

pRUG6 pMaHisMtlAPr mtlA H256A

pRUG7 pMaHisMtlAPr mtlA H256Q

pRUG8 pMaHisMtlAPr mtlA H256S

Bei der weiterführenden Untersuchung der „Supressormutanten“ wurden

lediglich die Auswirkungen der AS-Austausche in dem His256 untersucht. Das bedeutet,

dass der zusätzliche Austausch E218A (sowie der unspezifische Austausch L229Q), wie

er in pDSM3 und pDSM4 kodiert vorkommt, nicht eingefügt wurde. Die Phänotypen der

Mutationen mit den neuen Konstrukten entsprachen den Phänotypen der zuvor

beschrieben pGJ9-Reihe. Dabei zeigte der Stamm LGS322./pRUG4 (E218A/H256P)

den gleichen Phänotyp auf D-Mtl wie LGS322./pGJT9-4 (E218A/L229Q/H256P). Bei

der Untersuchung der einfachen AS-Austausche H256A, H256Q und H256S mit dem

Stamm LTK31-2 wurde keine Entkopplung festgestellt.

Herstellung der Vesikel

Die Phosphorylierungstests und Bindestudien wurden mit Vesikeln durchgeführt.

Als Teststamm wurde LGS322 verwendet, der mit den oben beschriebenen Plasmiden

der Reihe pRUGx transformiert wurde. Die eingesetzten Vesikel wurden mit der „French

Press“ wie in dem Teil II.5.1. der Arbeit beschrieben hergestellt. Die Abb.III.1.6. zeigt

Page 91: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 83

ein Coomassie-gefärbtes SDS-Gel, dass mit den Vesikeln nach der Überexpression

beladen wurde.

1 2 3 4 5 6 7 8 9116 kDa

80 kDa

52,5 kDa

34,9 kDa

MtlA(His)6

Abb. III.1.6. SDS-Gel der Vesikel nach der Überexpression 10µl der Vesikel wurden in einer 1:10 Verdünnung auf ein 12,5%iges Acryl-Amid-Gel aufgetragen. Auf das Gel wurden die Vesikel der jeweiligen Mutanten aufgetragen (LGS322/pRUGx). Bahn 1= E218A (13,6); 2= E218V; 3= H256P; 4= E218A/H256P; 5= E218V/H256P; 6= LGS322; 7= H256Q; 8= H256A; 9= H256S; letzte Bahn= „BIO-RAD SDS-PAGE Standard, Low Range“. Die Größen der Standard-Banden sind neben dem Bild angegeben. Mit einem Pfeil ist die Laufhöhe des MtlA(His)6 angegeben (~60 kDa. Montfort et al., 2001).

In Bahn 6 ist das Gesamtmembranprotein aus dem Stamm LGS322 ohne

Plasmid aufgetragen und zeigt daher keine Expression von MtlA.

Die Gesamtproteinkonzentrationen der Vesikel wurden wie in Teil II.8.1.

beschrieben gemessen. Bei der Messung wurden jeweils 10µl und 30µl einer 1:50

Verdünnung der Vesikel eingesetzt. Die folgende Tabelle III.1.19. gibt die

durchschnittlich gemessenen Werte wieder.

Tab. III.1.19. Gesamtproteinkonzentrationen der Vesikel

Gesamtproteinkonzentration der Vesikel [mg/ml]

E218A E218V H256P E218A H256P

E218V H256P

H256S H256Q H256A LGS322 WT

13,6 20,5 13,7 12,5 14,1 18,4 16,7 15,7 5,1 21,9

Page 92: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

84 III. Ergebnisse

Phosphorylierungstests mit den Vesikeln

Mit den Vesikeln wurden Tests der PTS-abhängigen in vitro Phosphorylierung

durchgeführt um festzustellen, ob und wie viel aktives Protein isoliert werden konnte.

Eine Testreihe untersuchte die Phosphorylierungsaktivität bei einer D-Mtl Konzentration

von 1mM nach 220sec, 440sec, 660sec und 880sec. Jeder Ansatz von 100µl enthielt

ca. 33000cpm. Die Vesikel wurden abhängig von den eingesetzten Mutanten in

unterschiedlichen Verdünnungen eingesetzt. Als Kontrollen wurde ein Ansatz mit

Vesikeln aus dem ∆mtlA-Stamm LGS322 und ein Ansatz mit H2O getestet. Die

Kontrollen überschritten unabhängig von der Vesikelverdünnung (bei LGS322) nie den

Wert von 200cpm. Die folgende Abb. III.1.7. zeigt typische Phosphorylierungsaktivitäten

der verschiedenen MtlA-Derivate in Vesikeln nach rechnerischem Abgleich der

unterschiedlichen Verdünnungen.

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

0 200 400 600 800 1000

t [sec]

cpm

E218A

E218V

H256P

H256Q

H256A

H256S

WT

Abb. III.1.7. Phosphorylierungsaktivitäten der Vesikel mit 1mM [14C]-D-Mtl Die ursprünglichen Verdünnungen (1:4000 bei dem WT; 1:1000 bei E218A, E218V, H256Q, H256S und H256A; 1:250 bei H256P, E218A/H256P und E218V/H256P) sind rechnerisch auf 1:250 angeglichen worden. Die Kontrollen durch den ∆mtlA-Stamm LGS322 und dem Ansatz mit Wasser sind nicht dargestellt.

Page 93: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 85

Um die scheinbar nicht vorhandene Phosphorylierungsaktivität der Mutante

H256P näher zu untersuchen, wurden Phosphorylierungstests bei geringerer

Verdünnung der Vesikel (1:10) und einer Konzentration von 500µM [14C]-D-Mtl

durchgeführt. Jeder Ansatz von 100µl enthielt ca. 120000cpm. In diesem Test wurden

auch die Doppelmutanten E218A/H256P und E218V/H256P untersucht. Die folgende

Abb. III.1.8. zeigt einen beispielhaften Verlauf der Phosphorylierung.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30

t [min]

cpm

H256P

EA/HP

EV/HP

H2O

Abb. III.1.8. Phos.-Aktivitäten von H256P-Mutanten mit 500µM [14C]-D-Mtl Die Vesikel sind in dem Test in einem Verhältnis von 1:10 verdünnt worden. Zusätzlich ist der Leerwert (H2O) dargestellt, bei dem statt der Vesikel Wasser eingesetzt wurde.

Anhand der gemessenen Phosphorylierungsaktivitäten wurden die spezifischen

Aktivitäten der Mutanten bei einer Konzentration von 1mM bzw. 500µM D-Mtl

berechnet. Die spezifischen Aktivitäten beziehen sich hierbei auf die gemessenen

Gesamtproteinkonzentrationen. Die nur minimal über dem Leerwert liegenden

Aktivitäten der Doppelmutanten E218A/H256P und E218V/H256P wurden nicht als

Phosphorylierungsaktivität gewertet.

Page 94: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

86 III. Ergebnisse

Tab. III.1.20. Spezifische Phosphorylierungsaktivitäten der Vesikel

Spezifische Phosphorylierungsaktivitäten der Vesikel

⋅ einGesamtprot mg min

nmol

WT LGS322 E218A E218V H256P E218A/H256P

E218V/H256P

H256S H256Q H256A

278 0 307 32 2 0 0 339 303 253

Die Ergebnisse lassen die Mutanten hinsichtlich der Phosphorylierungsaktivität in

drei Klassen einteilen. Die Mutationen E218A, H256S, H256Q und H256A lagen in

einem Aktivitätsbereich, die dem WT-Protein entsprechen. Keine Aktivität zeigten die

Doppelmutanten E218A/H256P und E218V/H256P. Eine nur geringe Aktivität zeigten

die Mutanten E218V und H256P. Während der AS-Austausch E218V eine ca. 10%ige

WT-Aktivität zeigte, lag der AS-Austausch H256P mit <1% Aktivität nahe der Inaktivität.

Allerdings konnte in einem direkten Vergleich mit den Doppelmutanten und den

Leerwerten diese Minimalaktivität bestätigt werden. Für die weiteren Bindestudien

konnte allgemein gezeigt werden, dass mit der Methode aktives Protein in den Vesikeln

isoliert wurde. Die nicht vorhandene oder schwache Aktivität bei einzelnen Mutanten

(E218V, H256P, E218A/H256P, E218V/H256P) deckte sich mit den vorherigen

Beobachtungen (Tab. III.1.15. - III.1.17.) und ist nicht auf die Art der Vesikel-

Präparation zurückzuführen.

Bindestudien der MtlA-Derivate in Vesikeln

Bei diesen Bindestudien wurde die Bindung von D-Mtl an das jeweilige EIIMtl in

einem Konzentrationsbereich von 26nM - 524nM untersucht. Für die Vesikel mit WT-

MtlA wurde ein Kd-Wert von ~40nM ermittelt. In mehrfachen Versuchen konnte für alle

getesteten Mutanten (E218A, E218V, H256P, E218A/H256P, E218V/H256P, H256S,

H256Q, H256A) keine Bindeaktivität gemessen werden. Dieses Ergebnis war für die in

den Phosphorylierungsuntersuchungen nicht (E218A/H256P, E218V/H256P) oder nur

schwach aktiven (E218V, H256P) Mutanten mit Einschränkungen zu Erwarten gewesen.

Jedoch war eine fehlende Bindeaktivität bei den Mutanten, die bei der Phosphorylierung

im Bereich der WT-Aktivität lagen (E218A, H256S, H256Q, H256A), überraschend.

Folglich musste eine mit dieser Methode messbare Bindeaktivität in einem

Konzentrationsbereich von 26nM - 524nM für alle Mutanten ausgeschlossen werden.

Page 95: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 87

III.1.5.3. Transport-Kinetiken der Mutanten

Um weitere Aussagen über die Auswirkungen der AS-Austausche auf den

Transportprozess von D-Mtl machen zu können, wurden anhand von

Transportmessungen bei unterschiedlichen Konzentrationen (0,3µM; 0,5µM; 0,7µM;

1µM; 1,5µM; 2µM; 3µM; 5µM; 10µM) die KMapp-Werte [µM] und Vmax [nmol∗min-1∗mg

Protein-1] (in den Abbildungen = [nmol]*) ermittelt. Die Testkulturen wurden wie unter

II.4.2. beschrieben in LB0Cam angezogen. Die spezifischen Transportaktivitäten der

einzelnen Mutanten wurden für die jeweiligen Konzentrationen aus einer Kultur in

demselben Versuchsansatz gemessen. Die Messungen sind mit mindestens fünf (0,5µM;

1µM; 2µM; 5µM; 10µM) bzw. allen neun unterschiedlichen Konzentrationen

durchgeführt worden. In den folgenden Abbildungen (Abb.III.1.9-12) sind nur die

Messpunkte dargestellt, welche bei der Berechnung auch berücksichtigt wurden. Alle

Mutanten wurden mindestens dreimal unabhängig getestet. Der Plasmidhintergrund der

Mutationen war in allen Fällen pGJ9 und der Wirtsstamm LGS322. Die Mutation für

den Austausch H256A wurde mit den Primern H256A(+)/H256A(-) durch

ortsspezifische Mutagenese (pGJT9-6) konstruiert. In einzelnen, gesondert

beschriebenen Fällen wurden die KMapp-Werte zusätzlich mit anderen

Plasmidhintergründen und Stämmen gemessen. In dem Stamm LGS322 mit den

Plasmiden pGJT9-1 (E218A), pGJT9-2 (E218V), pGJT9-3 (H256P), pGJT9-4

(E218A/H256P) oder pGJT9-5 (E218V/H256P) konnte keine Transportaktivität

gemessen werden. Die anderen aus den folgenden „Lineweaver-Burk“-Diagrammen

ermittelten Werte sind im Anschluss in der Tabelle III.1.21. zusammengefasst.

Page 96: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

88 III. Ergebnisse

LGS322/pGJ9

-0.1

0.0

0.1

0.1

0.2

0.2

-0.5 0 0.5 1 1.5 2 2.51/S [µM]

1/V

[nm

ol]*

WT IWT IIWT III

Abb. III.1.9. KM

app-Wert Messungen des WT-Stamms LGS322/pGJ9 für D-Mtl Dargestellt sind drei „Lineweaver-Burk“-Diagramme unabhängiger Messungen. Zu den Messpunkten der D-Mannitol-Konzentrationen wurde eine lineare Regressiongerade ermittelt und dargestellt. Die KM

app-Werte und V wurden anschließend wie in Teil II.8.4. beschrieben berechnet.

LGS322/pGJT9-5 (H256A)

-0.1

-0.1

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

-0.5 0 0.5 1 1.5 2 2.5 3 3.51/S [µM]

1/V

[nM

]*

H256A IH256A IIH256A III

Abb. III.1.10. KM

app-Wert Messungen von LGS322/pGJT9-5 für D-Mtl siehe Abb. III.1.7.

Page 97: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 89

LGS322/pDSM1 (P256Q)

-0.1

0.0

0.1

0.1

0.2

0.2

-0.5 0 0.5 1 1.5 2 2.5 3 3.51/S [µM]

1/V

[nM

]*

P256Q IP256Q IIP256Q III

Abb. III.1.11. KM

app-Wert Messungen von LGS322/pDSM1 für D-Mtl siehe Abb. III.1.7.

LGS322/pDSM2 (P256S)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

1/S [µM]

1/V

[nM

]*

P256S IP256S IIP256S III

Abb. III.1.12. KM

app-Wert Messungen von LGS322/pDSM2 für D-Mtl siehe Abb. III.1.7.

Page 98: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

90 III. Ergebnisse

Tab. III.1.21. KMapp-Werte und V der MtlA-Mutanten für D-Mtl in LGS322

KMapp [µM]1 V [nmol∗min-1∗mg Protein-1] 1

Plasmid AS- Austausch I II III Ø2 I II III Ø2

pGJ9 - 3,9 4 4 4 ±0,1 102 92 53 82 ±26

pGJT9-6 H256A 7,4 10,9 8,2 8,2 ±1,8 78 107 100 95 ±15

pDSM1 P256Q 3,8 6,4 5,5 5,2 ±1,3 76 135 103 105 ±30

pDSM2 P256S 5,1 7 7,2 6,4 ±1,2 25 22 28 25 ±3 1 Angegeben sind die jeweiligen Werte der einzelnen Messungen (I-III). 2 Ø = Mittelwerte der drei Messungen mit Angabe der Standardabweichungen (±) wie in II.8.4. beschrieben.

Bei der Betrachtung der Daten fällt auf, dass die Werte für V innerhalb einer

Mutation voneinander abwichen. Dies ist auf verschiedene MtlA-Konzentrationen

innerhalb der Testkulturen zurückzuführen. Da die Expression von mtlA in dem

verwendeten Testsystem konstitutiv erfolgte, liegt eine variierende Plasmidkopienzahl

nahe. Bei Überprüfungen von EK getesteter Kulturen auf McMtl und LB0cam (Daten

nicht angegeben) wurde eine 30-70%ige Kurierung des Plasmides (bzw. des Mtl+-

Phänotyps) festgestellt. Die KMapp-Werte zeigten in der Tendenz, dass alle Mutationen

einen gegenüber dem WT erhöhten KMapp-Wert bewirken. Diese Werte sprechen für eine

geringfügig verringerte Affinität von D-Mtl zu der Bindestelle in MtlA, die allerdings nicht

für die in III.1.5.2. beschriebene fehlende Bindung ausschlaggebend sein kann.

Trotz der eingeschränkten Bewertungsmöglichkeiten der V-Werte, fällt der

konstant bis zu einem Faktor 6 niedrigere V der Variante P256S auf. Mit diesem Protein

wurde bei sieben Messungen immer ein V zwischen 19 und 28 [nM] und eine KMapp-

Wert zwischen 4,9 und 7,2 [µM] gemessen. Bei weiteren sieben Messungen wurden mit

dem Stamm LGS22/pDSM2 nichtlineare Kinetiken erhalten (siehe Abb. III.1.13.). In

verschiedenen Versuchsansätzen konnte nicht festgestellt werden welche Parameter

lineare und nichtlineare Kinetiken verursachen. Variierende MtlA-Konzentrationen bei

den Transportmessungen sind als Ursache auszuschließen, da diese keine Auswirkung

auf den KM-Wert haben.

Page 99: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 91

LGS322/pDSM2 (P256S)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.5 0 0.5 1 1.5 2 2.51/S [µM]

1/V

[nM

]*

Abb. III.1.13. Nichtlineare Kinetik der KM

app-Messung von LGS322/pDSM2 Die Abbildung zeigt die Messpunkte einer nichtlinear verlaufenden KM

app-Messung.

Die fehlende Transportaktivität in dem Stamm LGS322 mit den Plasmiden

pGJT9-1 (E218A) (McCMtl = 2+;) und LGS322/ pRUG1 (E218A)

(Phosphorylierungsaktivität [1mM D-Mtl] = 307 [nmol], WT= 278 [nmol]) ist aufgrund

der beschriebenen Ergebnisse unerwartet. Zudem konnte für die gleiche Mutation in

mtlA aus

K. pneumoniae Transport (KM = 2,9µM, V = 59nmol) gemessen werden (Otte, 2000).

Diese Messungen wurde allerdings in dem Stamm LGS324 und mit dem Niedrigkopien-

Vektor pHEX3 als mtlA-Plasmid durchgeführt.

Daraufhin wurde in dieser Arbeit untersucht ob der Stamm- oder

Plasmidhintergrund Auswirkung auf die Messbarkeit der Transportaktivitäten des MtlA

haben könnte. In einem Markertest wurde festgestellt wie sich der Stammhintergrund auf

den Phänotyp auswirkt. Dazu wurden die äquivalenten Plasmide pSOL300 (mtlAKAY2026)

und pSOL313 (mtlAKAY2026 E218A), bzw. pGJ9 und pGJT9-1 (E218A) in den Stämmen

LGS322 und LGS324 auf McCMtl getestet und die spezifische Transportaktivität der

entsprechenden Proteine erneut gemessen.

Page 100: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

92 III. Ergebnisse

Tab. III.1.22. Stammabhängige Phänotypen von mtlA-Mutanten

Stamm Plasmid McC Mtl1 spez.

Transportaktivität2

LGS322/ pGJ9 3+ 5,2

pGJT9-1 2+ 0

pSOL300 3+ 2,5

pSOL313 1+ 0

LGS324/ pGJ9 3+ 5,7

pGJT9-1 2+ 0

pSOL300 3+ 3,8

pSOL313 3+ 3,4 1.Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. 2.Angaben in [nmol∗min-1∗mg Protein-1], gemessen mit 10µM [14C]-D-Mtl. Die Testkulturen wurden in LB0Cam angezogen.

Aus den Tests geht hervor, dass der Stammhintergrund in dem Fall des pSOL313

(mtlAKAY2026 E218A) sowohl einen Einfluss auf den Phänotyp auf Platte (LGS322 1+,

LGS324 3+) als auch auf die messbare Transportaktivität hat. Keine stammabhängigen

Unterschiede wurden bei den beiden Wildtypen (pGJ9, pSOL300) und bei der E218A-

Mutante aus E. coli (pGJT9-1) festgestellt. Daraufhin wurde mit den Primern E218A

(+/-) durch ortspezifische Mutagenese erneut die E218A-mtlA-Mutation in das Plasmid

pMMX5 eingefügt (Um eventuelle Reversionen oder Suppressionen in pSOL313

auszuschließen, wurde zur Kontrolle die E218A auch in pSOL300 eingefügt. Die

Ergebnisse aus der Tab. III.1.22. konnten mit diesem Plasmid bestätigt werden). Das

Plasmid pMMX5 ist ein Niedrigkopieplasmid mit einem mtlA(His)6. Dadurch sollte

festgestellt werden, welchen Einfluss das Plasmid auf die Transportaktivität hat. Das

resultierende Plasmid pMMX5-EA zeigte in dem Stamm LGS324 auf McMtl einen 3+-

Phänotyp und eine spezifische Transportaktivität von 11,3 und 11,8 [nmol]. In dem

Stamm LGS322 war der Phänotyp auf McMtl unverändert 3+, allerdings konnte

wiederum keine Transportaktivität gemessen werden. Weitere Transportmessungen mit

dem Stamm LGS324 /pMMX5-EA erwiesen sich dennoch als schwierig, da die

Transportaktivität nicht regelmäßig zu messen war. Die erfolgreiche Messung einer

Transport-Kinetik ergab einen V von 25 [nmol∗min-1∗mg Protein-1] und einen KMapp von

4,9 [µM] für LGS324./pMMX5-EA. Die Mindestvoraussetzungen für eine erfolgreiche

Page 101: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 93

Transportmessung scheinen in dem beschriebenen Fall der Stamm LGS323 und ein

Niedrigkopienvektor wie der pHEX3/5 zu sein. Was die genauen Gründe für diese

Beobachtungen sein können, war im Rahmen dieser Arbeit nicht mehr zu bestimmen.

Erschwerend ist dabei der nicht genau bekannte Genotyp des Stammes LGS324 im

Vergleich zu dem Stamm LGS322 (siehe III.1.1.4.). An den Mutationen E218A und

P256S wird ersichtlich, dass sich E. coli MtlA in diesen Fällen in Grenzbereichen der

Messbarkeit bewegt. Inwiefern dies an der Konformation, Dimerisierung, oder der

Expressionsstärke liegt, lässt sich anhand der vorliegenden Daten nicht genau

bestimmen. In der Kinetik scheint die E218A-Mutation gegenüber dem WT

(LGS322/pMMX5: V 83-84 [nmol∗min-1∗mg Protein-1], KMapp 4,8-6,3.[µM]) einen

niedrigeren V (25 [nmol∗min-1∗mg Protein-1]) und einen ähnlichen KMapp (4,9 [µM]) zu

haben. In der Tabelle III.1.23. sind die wesentlichen Ergebnisse der

molekularbiologischen und biochemischen Untersuchungen an den mtlA-Mutanten

zusammengefasst.

Die Messungen zeigten, dass mit einem Selektionsprinzip (Wachstum auf D-

Mannitol mit unterbrochener Phosphorylierungskette) drei entkoppelte Mutationen

(E218A, E218V, H256P) mit unterschiedlichen biochemischen Eigenschaften isoliert

werden konnten. Alle drei Mutanten zeigten in MtlA’ (EIIC) den gleichen Phänotyp auf

McC Mtl. Die Menge des entkoppelt transportierten D-Mtl scheint gleich zu sein. Die

Mutationen E218A und E218V führten in einem vollständigem MtlA (EIICBA) zu

gleichzeitigem ge- und entkoppelten Transport. Dabei hatte E218V im Vergleich mit

E218A nur 10% Phosphorylierungsaktivität, erreichte aber mit DalD gleiche

Generationszeiten auf D-Mtl. Das weist auf einen höheren Anteil an entkoppeltem

Transport mit der Mutation E218V hin. Mit der Mutation H256P wurde die

Phosphorylierungsaktivität fast vollständig ausgeschaltet, Wachstum mit gekoppeltem

Transport fand nicht mehr statt. Es wart nur noch Wachstum mit DalD möglich, welches

aber schwächer als bei den Mutationen E218A und E218V ausfiel. Die Mutation

H256P entkoppelte den Transport von D-Mtl vollständig. Die Kombination der

Austausche (E218A/H256P und E218V/H256P) führte zu einem vollständigen Ausfall

der Phosphorylierungs- und Transportaktivitäten.

Page 102: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

94 III. Ergebnisse

Tab. III.1.23. Zusammengefasste Ergebnisse der EIIMtl-Mutanten im Stamm LGS322

IIMtl AS- Austausch

McC Mtl

Gt [min]

Tp KMapp

[µM] Tp V [nM]*

Pho [nM]*

Kd [nM]* Kopplung

I II III IV V VI VII VIII IX IICBA (WT) 3+ 83-88 4 ±0,1 82 ±26 278 40 + IICBA +DalD 3+ 81-87 + IIC w k.W. k.T. IIC +DalD

WT

w k.W.

k.T. IICBA 2+ 180-200 [4,9]1 [25]1 307 n.m. +/- IICBA +DalD 3+ 110-125 +/- IIC w - IIC +DalD

E218A

+

- IICBA + 230-380 n.m. n.m. 32 n.m. +/- IICBA +DalD 3+ 105-115 +/- IIC w - IIC +DalD

E218V

+

- IICBA w k.W. n.m. n.m. 2 n.m. - IICBA +DalD 2+ 220-345 - IIC w - IIC +DalD

H256P

+

- IICBA w k.W. n.m. n.m. 0 n.m. k.T. IICBA +DalD

E218A/ H256P w k.W. k.T.

IICBA w k.W. n.m. n.m. k.T. IICBA +DalD w k.W. k.T. IIC w k.T. IIC +DalD

E218A/ L229Q/ H256P

w

k.T. IICBA w k.W. n.m. n.m. 0 n.m. k.T. IICBA +DalD w k.W. k.T. IIC w k.T. IIC +DalD

E218V/ H256P

w

k.T. IICBA 3+ 8,2 ±1,8 95 ±15 253 n.m. + IICBA +DalD

H256A 3+

+

IICBA 3+ 82-87 5,2 ±1,3 105 ±30 303 n.m. + IICBA +DalD

P256Q 3+ 86-88 +

IICBA 3+ 84-87 6,4 ±1,2 25 ±3 339 n.m. + IICBA +DalD

P256S 3+ 84-86 +

IICBA (+) 580-900 n.m. n.m. +/- IICBA +DalD

E218A/ L229Q/ P256A

2+ 140-150

+/-

IICBA (+) 330-360 n.m. n.m. +/- IICBA +DalD

E218A/ L229Q/ P256Q

2+ 145-155

+/-

Die Tabelle fasst wesentliche Ergebnisse der Mutanten-Untersuchungen zusammen. Die Mutationen wurden in verschiedenen Plasmid-Hintergründen gemessen. Für schattierte Felder liegen keine Messungen vor. [nM]*=[nmol∗min-1∗mg Protein-1]. Spalte I: IICBA=MtlA, IIC=MtlA’. II: AS-Austausche. III: Phänotyp auf McC Mtl (siehe Tab.III.I.15. u.16.). IV: Gt=Generationszeit auf D-Mtl (s. Tab.III.I.17.). V u VI: Tp=Transport (s. Tab.III.I.21.). VII: Pho=spez. Phosphorylierungsaktivität. (s. Tab.III.I.20.). IX: Art des D-Mtl-Transports: +=gekoppelter Tp, -=entkoppelter Tp, +/-=ge- und entkoppelter Tp, k.T.=kein Tp. [ ]1 = Messung im Stamm LGS324.

Page 103: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 95

Bei der Selektion von Supressormutanten wurden nur Mutationen der AS256

gefunden. Die daraus resultierenden Derivate H256A, P256Q und P256S stellten in

den Zellen annähernd den WT-Phänotyp auf D-Mtl wieder her. Eine zusätzliche den

Transport entkoppelnde Mutation E218A, wie sie in den Kombinationen

E218A/L229Q/P256A und E218A/L229Q/P256Q untersucht wurde, bewirkt wie auch

allein ge- und entkoppelten Transport. Das Wachstum auf D-Mtl fiel allerdings in

beiden Fällen schwächer aus als mit der E218A-Mutation.

Die Selektionen und Messungen zeigen, dass die Aminosäuren E218 und H256

maßgeblich am Transport- und Phosphorylierungsprozess beteiligt sein müssen.

Mutationen wurden nur an diesen Stellen gefunden und beeinflussten den D-Mtl-

Transport auf unterschiedliche Weise.

III.2. Topologieuntersuchungen am EIIMtl

Die oben gezeigten Ergebnisse haben eine deutliche Beteiligung der

Aminosäuren E218 und H256 am eigentlichen Transportprozess von D-Mtl durch das

EIIMtl gezeigt. In dem bisherigen 2D-Modell von MtlA (Abb. I.3.) sind diese in der

vermuteten zytoplasmatischen Schleife 5 zu finden. Die in dem WT-Transporter

beobachtete Kopplung von Transport und Phosphorylierung setzt eine lokale

Nachbarschaft zwischen den an der Bindung und Phosphorylierung beteiligten

Aminosäuren voraus. Da Mutationen/Austausche der genannten AS eine Entkopplung

bewirken, ist es wahrscheinlich, dass diese in der Nähe oder in der Bindestelle liegen.

Daher war die genauere Kenntnis der Topologie der Schleife 5 des EIIMtl wichtig. Das

bisherige Modell stützt sich überwiegend auf Untersuchungen von Sugiyama et al.

(1991), in denen ausschließlich über φ(mtlA’-phoA)-Fusionen Teile des MtlA dem Zyto-

oder Periplasma zugeordnet wurden. Die Methode beruht darauf, dass PhoA im

Periplasma Aktivität zeigt, nicht aber in dem Zytoplasma. Dabei fehlten jedoch die

notwendigen φ(mtlA’-lacZ), deren Aktivitäten sich hinsichtlich der Lage genau

gegensätzlich verhalten, sowie Versuche mit sogenannten „Sandwich“-Fusionen

(φ(mtlA’-lacZ-mtl’A)) und vollständigen, korrekt gefalteten IICBAMtl-Komplexen. Solche

langen AS-Insertionen können allerdings die Faltung beeinflussen und falsch positive

sowie falsch negative Ergebnisse hervorrufen. Im Gegensatz dazu bietet das „Cystein-

Page 104: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

96 III. Ergebnisse

Scanning“ die Möglichkeit, mit einem aktiven Protein zu arbeiten, dass zudem nur in

wenigen Aminosäuren verändert ist.

III.2.1. Konstruktion der erforderlichen Plasmide und Mutanten

Die Voraussetzung für das „Cystein-Scanning“ sind MtlA-Komplexe, welche

jeweils an definierter Stelle nur ein Cystein besitzen. Die erforderliche T7-

Überexpression des Membran-Proteins wurde mit dem Niedrigkopieplasmid pHEX5 als

Klonierungs- und Überexpressionsvektor in dem Stamm JM109(λDE3) durchgeführt. Für

die Trennung der zu untersuchenden Proteine von den restlichen markierten Proteinen in

der Zelle war zudem eine effektive MtlA-Reinigung notwendig. In dieser Arbeit wurden

Proteine mit carboxyterminalem „His-Tag“ aus sechs Histidinen verwendet. Die

Reinigung erfolgte mit Hilfe von Ni-NTA-Säulen.

III.2.1.1. Konstruktion der Plasmide pMMX5 und pMMX5-1 bis

pMMX5-4 Um eventuelle Klonierungen über die HindIII-Erkennungssequenz in mtlA zu

ermöglichen, wurde zuerst die HindIII-Erkennungssequenz in pHEX5 über einen HindIII-

Verdau mit anschließender Klenow-Auffüllung und Ligation entfernt. Das resultierende

Plasmid wurde pHEX5d genannt. Mit einer PCR wurde das vollständige mtlA von dem

Plasmid pGJ9 amplifiziert. Der erste verwendete Primer MtlA-HIS1 (5‘- GGA ATT CCC

GTC GAC TGG ACA GTT AAC CGA TTC AGT G -3‘; in blau: EcoRI, in rot: SalI)

enthielt an seinem 5’-Ende die Erkennungssequenz für das Restriktionsenzym EcoRI.

Dadurch entstand hinter der natürlich vorkommenden SalI-Schnittstelle eine BamHI-

Schnittstelle. Der Primer lagert sich ca. 135bp stromaufwärts des ATG-Startcodons von

mtlA an und amplifiziert somit auch die Promotorregion von mtlA. Der zweite Primer

MtlA-HIS2 (5‘- TTG GAT CCT TAG TGG TGG TGG TGG TGG TGC TTA CGA CCT

GCC AGC AGT TCC AGC ACT TC -3‘; blau: BamHI, rot: Stopp, grün: His-Tag) hängt

hinter dem letzten Codon von mtlA sechs Codone für Histidin, ein Stopp-Codon und

eine Erkennungssequenz für das Restriktionsenzym BamHI an. Die zusätzlichen

Nukleotide an den 5’-Enden der beiden Primer sind für eine effektivere Funktion der

Restriktionsenzyme nötig. Die PCR wurde mit dem Plasmid pGJ9 als Matrize wie in

II.7.9. beschrieben durchgeführt, das PCR-Produkt mit den entsprechenden

Restriktionsenzymen geschnitten und in den ebenso geschnittenen Vektor pHEX5d

Page 105: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 97

kloniert. Die korrekte Sequenz wurde durch einzelsträngige Sequenzierung festgestellt

und das neue Ausgangsplasmid pMMX5 genannt.

Die Plasmide pMMX5-1 bis pMMX5-4 wurden durch nacheinander erfolgte

Mutagenesen der vier Kodone für die im WT vorhandenen Cysteine (C110, C320,

C384, C571) hergestellt. Das Ziel dieser Mutagenesen war ein Cystein-freies MtlA aus

dem die weiteren „Einzel-Cystein“-Mutanten abgeleitet wurden. Die Cysteine wurden

durch Serine ersetzt, lediglich das vermutlich in einer transmembranen Helix liegende

Cys320 wurde gegen ein Alanin ausgetauscht. Über ortspezifische Mutagenese (Primer

in runden Klammern) entstanden, ausgehend von pMMX5, nacheinander folgende

Plasmide (In eckigen Klammern ist zur Vereinfachung der veränderte Phänotyp

hinsichtlich der vier Cysteine angegeben):

pMMX5 WT = [CCCC]

xx pMMX5-1 (C320A (+/-)) = [CACC]

xxxx pMMX5-2 (C110S (+/-)) = [SACC]

xxxxxx pMMX5-3 (C571S (+/-)) = [SACS]

xxxxxxxx pMMX5-4 (C384S (+/-)) = [SASS]

III.2.1.2. Konstruktion der zu untersuchenden „Einzel-Cys“-Mutanten

Die zu untersuchenden „Einzel-Cystein“-Mutanten wurden auch in Kombination

mit dem Cys384 für die Aktivitätskontrolle konstruiert. Dabei wurden die

Mutageneseansätze parallel mit dem Plasmid pMMX5-3 [SACS] und dem Plasmid

pMMX5-4 [SASS] als Matrize durchgeführt. Für die gezielten Austausche zu Cystein

wurden Serine an unterschiedlichen Stellen auch außerhalb der zytoplasmatischen

Schleife 5 ausgewählt. Die Austauschstellen, benutzten Primer und neuen Konstrukte

sind in der folgenden Tabelle III.2.1. aufgelistet und wurden durch einzelsträngige

Sequenzierung des mtlA überprüft.

Die Auswahl der Untersuchungsorte stützte sich auf das 2D-Modell von

Sugiyama et al. (1991) und Lengeler et al. (1994), dargestellt in Abb.I.2. Als sichere

Innenkontrolle wurde das Plasmid pMMX5-3 [SACS] eingesetzt, da das Cystein384 in

der zytoplasmatischen Domäne EIIBMtl liegt (Stephan und Jacobson, 1986). Die

negative Kontrolle stellte das cysteinfreie MtlA (pMMX5-4 [SASS]) dar.

Page 106: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

98 III. Ergebnisse

Tab. III.2.1. Plasmide der Reihen pMMX5-3x und pMMX5-4x

Mutation verwendete Primer

postulierte Topologie der Austauschstelle 1

in pMMX5-3 [SACS]

in pMMX5-4 [SASS]

S3C S3C (+/-) zp Schleife 1 (IK) pMMX5-31 pMMX5-41

S110C S110C (+/-) zp Schleife 3 (IK) pMMX5-32 pMMX5-42

S158C S158C (+/-) pp Schleife 4 (AK) pMMX5-33 pMMX5-43

S199C S199C (+/-) zp Schleife 5 pMMX5-34 pMMX5-44

S212C S212C (+/-) zp Schleife 5 pMMX5-35 pMMX5-45

S242C S242C (+/-) zp Schleife 5 pMMX5-36 pMMX5-46

S299C S299C (+/-) pp Schleife 6 (AK) pMMX5-37 pMMX5-47

1 zp = zytoplasmatisch, pp = periplasmatisch, IK = Innenkontrolle, AK = Außenkontrolle

III.2.1.3. Untersuchung der Funktionalität der MtlA-Derivate

Da Transportaktivität eine korrekte Faltung der Proteine voraussetzt, wurden zur

Überprüfung die resultierenden Phänotypen der Plasmide im Stamm LGS322 auf McMtl

und die Transportaktivitäten mit 10µM D-Mtl untersucht (Tab. III.2.2.). MtlA-Varianten

mit dem Austausch C384S (pMMX5-4 und seine Derivate) zeigten erwartungsgemäß

keine Aktivität.

Tab. III.2.2. Aktivitäten der „Cys-Scanning“-MtlA-Derivate

Plasmid relevante

Austausche McMtl1 spezifische

Transportaktivität2

pMMX5d WT 3+ 26

pMMX5-4 Cys-frei [SASS] W 0

pMMX5-31 [SACS]+ S3C 3+ 23,6

pMMX5-32 [SACS]+ S110C 3+ 21,3

pMMX5-33 [SACS]+ S158C 3+ 30,5

pMMX5-34 [SACS]+ S199C 3+ 14,2

pMMX5-35 [SACS]+ S212C 3+ 20,6

pMMX5-36 [SACS]+ S242C 3+ 27,2

pMMX5-37 [SACS]+ S299C 3+ 15,2 1.Für Symbole und sonstige Erklärungen siehe Tab. III.1.1. 2.Werte in [nmol∗min-1∗mg Protein-1], gemessen mit 10µM [14C]-D-Mtl. Die LGS322-Testkulturen wurden in 2xTY Cam angezogen.

Page 107: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 99

Um eine stark abweichende Faltung des cysteinfreien MtlA (pMMX5-4)

auszuschließen, wurde durch ortspezifische Mutagenese mit den Primern H256P (+/-)

der entkoppelnde Austausch H256P eingefügt. Zellen des Stammes LTK31-2 mit dem

daraus resultierenden Plasmid pMMX5-4HP zeigten einen 1+-Phänotyp auf McMtl und

Wachstum auf MM Mtl Cam (Alle anderen Derivate wurden ebenfalls auf Entkopplung

getestet, diese wurde aber in keinem Fall festgestellt). Dies ist ein guter Hinweis darauf,

dass die Faltung im cysteinfreien MtlA Transport erlaubt und vermutlich der des WT

entspricht. Die Transportaktivitäten der „Cys-Scanning“-MtlA-Derivate (Tab. III.2.2.) und

der Nachweis, dass eine MtlA-Mutante mit C384S-Austausch immer noch mit hoher

Affinität (Kd = 107nM, WT Kd = 45nM) D-Mannitol bindet (Boer et al. 1995), stützen

diese Annahme.

III.2.2. Markierung der Einzel-Cystein MtlA-Derivate

Die Markierung der Cysteine erfolgte wie unter Material und Methoden

beschrieben. Dazu wurde der mit den jeweiligen „Einzel-Cystein“-Plasmiden

transformierte Stamm JM109(λDE3) in Flüssigkultur angezogen. Nach Induktion der

T7-Polymerase wurde mtlA überexprimiert und das Protein in ganzen Zellen zu einem

Teil mit Stilben und folgend mit Biotinmaleimid sowie nur mit Biotinmaleimid markiert.

Aus den markierten Zellen wurden Membranpräparationen gewonnen, die

anschließend gelöst wurden. Das MtlA(His)6 wurde aus den Lösungen gereinigt und bei

den SDS-Gelen und folgenden immunologischen Nachweisen eingesetzt. Diese beiden

Proben aus den Markierungen mit ganzen Zellen (Probe1: Stilben.+.Biotinmaleimid;

Probe 2: Biotinmaleimid) ergaben die Aussage über die Lokalisation der Cysteine.

Aus dem anderen Teil der ganzen Zellen wurde ebenfalls mittels Ultraschall

Membranpräparationen erstellt, die danach zu einem Teil mit Stilben + Biotinmaleimid

sowie nur mit Biotinmaleimid markiert wurden. Die Präparationen wurden gelöst und

das MtlA(His)6 gereinigt. Diese Proben 3 (Stilben + Biotinmaleimid) und 4

(Biotinmaleimid) überprüften die allgemeine Zugänglichkeit der Cysteine für die

Sulfhydrylreagenzien.

Page 108: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

100 III. Ergebnisse

III.2.3. Reinigung und immunologischer Nachweis des MtlA-6His

Da bei der Markierung der Cysteine auch alle anderen cysteinhaltigen Proteine

einer Zelle markiert werden, war eine Reinigung des Zielproteins notwendig. Dazu

wurde das MtlA(His)6 aus der gelösten Gesamtproteinfraktion mit Hilfe von Ni-NTA-

Säulen gereinigt. Die Abbildung III.2.1. zeigt das Coomassie-gefärbte SDS-Gel einer

Reinigung.

116 kDa

1.4 1.3 1.2 1.1 5.1 St St 5.2 5.3 5.4

80 kDa

52,5 kDa

34,9 kDa

MtlA(His)6

Abb. III.2.1. SDS-Gel einer MtlA(His)6-Reinigung Auf dem Gel sind die Proben 1-4 zu sehen wobei jeweils das gelöste Gesamtmembranprotein vor der Beladung der Säulen (Bahn: 1.1-1.4) und nach der Elution (Bahn: 5.1-5.4) aufgetragen worden sind. Bahn St.: „BIO-RAD SDS-PAGE Standard, Low Range“. Die Größen der Standard-Banden sind neben dem Bild angegeben. Mit einem Pfeil ist die Laufhöhe des MtlA(His)6 angegeben (~60 kDa, Montfort et al., 2001).

Die Laufhöhe von ca. 60 kDa des gereinigten Proteins entspricht der

beschriebenen Höhe für MtlA(His)6 in Laemmli (1970)-Gelsystemen (Montfort et al.,

2001). Im weiteren Verlauf des Versuchs wurden die Eluate der Proben 1-4 aus zwei

unterschiedlichen Markierungsansätzen auf ein SDS-Gel aufgetragen. Um die

Wirksamkeit der Bindung des MtlA(His)6 an die Ni-NTA-Säule zu testen, wurde die

Gesamtproteinfraktion nach dem ersten Säulendurchlauf mit auf das Gel aufgetragen.

Zur genauen Identifizierung und ungefähren Quantifizierung des MtlA(His)6 wurden bei

dem ersten Gel in einem Western-Blot die aminoterminalen (His)6 immunologisch

nachgewiesen (Abb.III.2.3.). Die Abb.III.2.2. zeigt das mit Coomassie-Lösung

nachgefärbte Gel im Anschluss an den Proteintransfer.

Page 109: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 101

GP GP

MtlA(His)6

1 2 3 4 1 2 3 4Ansatz 1 Ansatz 2

Abb. III.2.2. SDS-Gel nach dem Proteintransfer auf Membran Abgebildet ist das nachgefärbte SDS-Gel nach dem Proteintransfer auf die Nitrocellulose-Membran. GP: Gesamtprotein nach dem ersten Säulendurchlauf. 1-4: die jeweiligen Proben 1-4 der Markierungsansätze 1 und 2. Mit einem Pfeil ist die Laufhöhe des MtlA(His)6 angegeben (~60 kDa, Montfort et al., 2001).

Die noch deutlich zu erkennenden MtlA(His)6-Banden weisen darauf hin, dass

ein großer Teil des gereinigten Proteins nicht auf die Nitrocellulose-Membran

übertragen wurde. Allerdings ist in Abbildung III.2.3. zu sehen, dass für den Nachweis

im „Western-Blot“ ausreichend Protein auf der Membran vorhanden war.

GP GP

MtlA(His)6

Ansatz 1 Ansatz 2 1 2 3 4 1 2 3 4

Abb. III.2.3. Immunologischer Nachweis des MtlA(His)6 Abgebildet ist ein Film, der die Chemilumineszens-Reaktion nach dem Western-Blot gegen das (His)6 nachweist. GP: Gesamtprotein nach dem ersten Säulendurchlauf. 1-4: die jeweiligen Proben 1-4 der Markierungsansätze 1 und 2. Mit einem Pfeil ist die Laufhöhe des MtlA(His)6 angegeben (~60 kDa, Montfort et al., 2001).

Page 110: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

102 III. Ergebnisse

Das gereinigte Protein konnte eindeutig als das MtlA(His)6 identifiziert werden.

Unterhalb der ~60 kDa MtlA-Bande sind drei schwächere scharfe Banden zu erkennen,

die möglicherweise aus dem Abbau der zytoplasmatischen Domänen IIB und IIA

stammen. Die untere Bande entspricht dem 34 kDa-Fragment, die von Stephan und

Jacobson (1986) als carboxyterminaler, zytoplasmatischer Teil des EIIMtl identifiziert

wurde. Da das (His)6 carboxyterminal inseriert wurde, geben diese Abbauprodukte

ebenfalls ein Signal. In der Gesamtproteinfraktion wurde kein MtlA(His)6 nachgewiesen,

was für eine effiziente Bindung an die Säulenmatrix spricht.

III.2.4. Ergebnisse der Biotinmaleimid-Markierungen

Ein zweites Gel, dass die identischen Proben 1-4 des immunologischen

Nachweises von MtlA(His)6 enthielt, wurde parallel ebenfalls einem „Western-Blot“

unterzogen, und eine Biotinmaleimid-Markierung mit „Streptavidin-Meerrettich

Peroxidase Konjugat“ und anschließendem Chemilumineszens-Nachweis detektiert. Das

an die Sulfhydrylgruppe des Cysteins gebundene Biotinmaleimid zeigte so ein Signal,

wobei die Auswertung der Signale qualitativ erfolgte. In Abbildung III.2.4. sind die

Ergebnisse der Markierungen zusammengefasst. Die mehrfach durchgeführten Versuche

ergaben für die jeweiligen MtlA-Derivate vergleichbare Ergebnisse. Die Auswertungen

setzten Membraninpermeabilität des Biotinmaleimids unter den gewählten Bedingungen

voraus. Unabhängig davon wurde in den Membranvesikeln der Kontrollen zur

allgemeinen Zugänglichkeit der Sulfhydrylreagenzien immer ein negatives Signal bei der

Probe 3 und ein positives bei der Probe 4 angenommen. In jedem Fall sollte das Stilben

bei der Probe 3 nach der Vorinkubation ein weiteres Binden des Biotinmaleimids

verhindern. Ebenso sollte das Biotinmaleimid in der Probe 4 ohne Blockierung der

Cysteine durch Stilben eine Bindung und somit ein positives Signal bewirken.

Dementsprechend bedeuten die fehlenden Signale der Proben 1 und 2 bei den

Markierungen in den ganzen Zellen, dass das untersuchte Cystein im Zytoplasma liegen

muss, da das Biotinmaleimid unabhängig von einer Vorinkubation mit Stilben das

Cystein nicht erreichen und somit auch nicht daran binden kann. Kein Signal bei der

Probe 1 und eines bei der Probe 2 deuten darauf hin, dass das Cystein in dem

Periplasma liegt. In dem Fall ist es für beide Sulfhydrylreagenzien zugänglich, so dass

das gleiche Muster wie bei der allgemeinen Zugänglichkeit zu erwarten ist.

Page 111: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 103

S212CS158C

Cys-frei S110C

S199C

S3C

S242C S299C C384

1

1 1

1 1

1

1 1 1

2

2 2

2 2

2

2 2 2

3

3 3

3 3

3

3 3 3

4

4 4

4 4

4

4 4 4

A)

A)A)

A) A)A)

A)

A)A)

B)

B)B)

B) B)

B)

B) B) B)

Abb. III.2.4. Biotinmaleimid-Markierungen und Nachweise des MtlA(His)6 Die Markierungen sind einmal für die „Einzel-Cysteine“ S110C und S299C, zweimal für die Mutanten S3C, S158C, S199C, S212C und S242C und dreimal für die cysteinfreie Mutante ([SASS]) sowie die Einzel-Cys384-Mutante ([SACS]) durchgeführt worden. Abgebildet sind die Filme zu dem Nachweis der Chemilumineszens-Reaktionen. Die jeweiligen Tests sind nach den relevanten Mutationen betitelt. 1-4: Proben 1-4. Film A) Nachweis der Biotinmaleimid-Bindung. Film B) Nachweis des MtlA(His)6. Weitere Erläuterungen im Text.

Page 112: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

104 III. Ergebnisse

Die Ergebnisse aus den Biotinmaleimid-Markierungen sind in der Tabelle III.2.3.

und den folgenden Erläuterungen zusammengefasst.

Tab. III.2.3. Ergebnisse der Biotinmaleimid-Markierungen

Markierung der

ganzen Zellen Membran-

Präparationen

SB B SB B Plasmid

relevante AS (1) (2) (3) (4)

Lokalisation

pMMX5-4 Cys-frei - - - -

pMMX5-41 S3C - - - + Zytoplasma

pMMX5-42 S110C - - - - n. z.

pMMX5-43 S158C - + - + Periplasma

pMMX5-44 S199C - + - + Periplasma

pMMX5-45 S212C - + - + Periplasma

pMMX5-46 S242C - - - + Zytoplasma

pMMX5-47 S299C - - - - n. z.

pMMX5-3 C384 + + - + n. b.

In der Tabelle sind die eingesetzten Plasmide und die relevanten AS-Austausche dargestellt. Die Ergebnisse der Markierungen von ganzen Zellen und Membranpräparationen mit Stilben und Biotinmaleimid (SB) sowie nur mit Biotinmaleimid (B) sind wie die Proben 1-4 in den Versuchen geordnet (Zahlen in Klammern). + = Markierung durch Biotinmaleimid. - = keine Markierung durch Biotinmaleimid. Aus den Markierungen wurden die Lokalisationen der AS oder andere Schlussfolgerungen abgeleitet. n.z. = nicht zugänglich. n.b. = nicht bestimmbar.

1. Cys-frei (pMMX5-4): A) Erwartungsgemäß ist bei keiner Probe ein Signal zu

erkennen. Bei den Proben 3 und 4 sind lediglich sehr schwache Banden zu sehen, die

auf unspezifische Anlagerungen des Biotinmaleimid zurückzuführen sind. B) Der

Nachweis des Proteins über das (His)6 zeigt, dass ausreichend Protein vorhanden war.

Mit den gewählten Versuchsbedingungen waren keine unspezifischen Signale zu

erwarten.

2. S3C (pMMX5-41): A) Bei den Proben 1 und 2 ist kein Signal zu erkennen.

Die schwache Bande bei der Probe 1 ist als unspezifisch anzusehen, zumal bei einer

Vorinkubation mit Stilben eher schwächere Banden zu erwarten sind. Die Proben 3 und

4 zeigen eine allgemeine Zugänglichkeit für beide Reagenzien. B) Bei allen Proben war

Page 113: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

III. Ergebnisse 105

eine vergleichbare Menge Protein vorhanden. Das Cys3 wurde dem Modell

entsprechend im Zytoplasma nachgewiesen.

3. S110C (pMMX5-42): A) Keine der Proben gab ein Signal. B) Der Nachweis

des Proteins zeigt, dass ausreichend Protein vorhanden war. Daher ist davon

auszugehen, dass das Cys110 zumindest für Biotinmaleimid nicht zugänglich ist. Die

Ursache kann eine unzugängliche Faltung des Proteins oder eine Lokalisation des

Cys110 in einer transmembranen Helix sein.

4. S158C (pMMX5-43): A) In der ersten Probe ist kein und in der zweiten ist ein

Signal zu sehen. Die allgemeine Zugänglichkeit wird mit den Proben 3 und 4 bestätigt.

B) Bei allen Proben war eine vergleichbare Menge Protein vorhanden. Anhand dieser

Ergebnisse liegt das Cys158 im Periplasma.

5. S199C (pMMX5-44): A) In der ersten Probe ist kein und in der zweiten ist ein

Signal zu sehen. Die allgemeine Zugänglichkeit wird mit den Proben 3 und 4 bestätigt.

B) Bei allen Proben war eine vergleichbare Menge Protein vorhanden. Die Ergebnisse

sprechen dafür, dass das Cys199 in einer periplasmatischen Schleife liegen muss.

6. S212C (pMMX5-45): A) Eine schwache Bande ist bei Probe 1 zu sehen und

eine deutliches Signal bei der Probe 2. Ähnlich verhält es sich bei den Proben 3 und 4.

B) Die Proben 1 und 3 enthielten scheinbar mehr Protein als die Proben 2 und 4.

Dadurch lassen sich die schwachen Banden bei den Proben 1 und 3 erklären. Diese

können eindeutig als negativ bewertet werden, wodurch das Cys212 einer

periplasmatischen Schleife zugeordnet werden muss.

7. S242C (pMMX5-46): A) Die Proben 1 und 2 sind negativ, bei einer in den

Proben 3 und 4 gezeigten allgemeinen Zugänglichkeit für die Sulfhydrylreagenzien. B)

Die Probe 1 hatte deutlich weniger Protein als die anderen Proben, beeinträchtigt in

diesem Fall aber nicht das Ergebnis. Das Cys242 liegt dementsprechend im

Zytoplasma.

8. S299C (pMMX5-47): A) Keine der Proben zeigt ein Signal. B) Der Nachweis

des Proteins zeigt, dass bei allen Proben ausreichend Protein vorhanden war. Folglich

ist davon auszugehen, dass das Cys299 zumindest für Biotinmaleimid nicht zugänglich

ist. Die Ursache kann eine unzugängliche Faltung des Proteins oder eine Lokalisation

des Cys299 in einer transmembranen Helix sein.

Page 114: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

106 III. Ergebnisse

9. C384 (pMMX5-3): A) Die Proben 1 und 2 zeigen ein Signal, während die

Proben 3 und 4 die allgemeine Zugänglichkeit für Stilben und Biotinmaleimid

bestätigen. B) Bei allen Proben war eine vergleichbare Menge an Protein vorhanden.

Dieses Ergebnis wäre bei einer Membranpermeabilität von Biotinmaleimid zu erwarten.

Dies konnte jedoch in mehreren Versuchen mit den gewählten Bedingungen nicht

gezeigt werden. Eine Erklärung für diese Abweichung könnte eher in der Sonderstellung

des Cys384 liegen. Es ist Teil der Phosphorylierungskette, die dafür verantwortlich ist,

dass das Phosphat von dem PEP auf das D-Mtl übertragen wird (Pas & Robillard,

1988a und 1988b).

Page 115: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 107

IV. Diskussion

Beim substratspezifischen Transport über ein EnzymII werden der Transportschritt

und die darauf folgende Phosphorylierung als voneinander unabhängig ablaufende

Reaktionen betrachtet (Lolkema et al., 1990; Lolkema et al., 1991a; Postma et al.,

1993; Lengeler & Jahreis, 1996). Die erfolgreiche Teilung des EII in eine aktive

membrangebundene EIICMtl-Domäne und zwei aktive Phosphatüberträger EIIAMtl und

EIIBMtl zeigten, dass Transport und Phosphorylierung als zwei aufeinander folgende

Prozesse zu sehen sind, die voneinander getrennt werden können (Grisafi et al., 1989;

Lolkema et al., 1990). Unphosphorylierte EII transportieren ihr Substrat nicht in

Mengen, die Wachstum ermöglichen (Postma & Stock, 1980). Folglich müssen

Transport und Phosphorylierung gekoppelt sein. Das EIICMtl kann als isolierter

Transporter seine Substrate mit normaler Affinität binden (Grisafi et al., 1989; Briggs et

al., 1992) und einen aktiven transmembranen Transporter bilden (Lolkema et al.,

1990), aber das hochaffine D-Mannitol (KMapp 1-2µM) nicht transportieren. Dagegen

wird das niedrigaffine C5-Isomer D-Arabinitol (KMapp ≥ 500µM) in einer für das

Wachstum ausreichenden Menge durch EIICMtl transportiert (Klawitter, 1992; Otte et

al., 2003). Die Stärke der Kopplung von Transport und Phosphorylierung scheint durch

die Affinität der Bindestelle zum Substrat beeinflusst zu werden (Otte, 2000, Otte et al.

2003). In ∆ptsHI-Stämmen von Salmonella enterica serovar typhimurium und

Escherichia coli wurden Mutanten isoliert, die durch erleichterte Diffusion freie Glucose

über das EIIGlc aufnehmen konnten (Postma, 1981; Ruijter et al., 1992). Das Wachstum

konnte in diesen Mutanten mit einer ATP-abhängigen Glukokinase ermöglicht werden.

Transport und Phosphorylierung des Substrats waren demnach entkoppelt. Alle

mutierten EIIGlc zeigten eine stark verringerte Affinität für Glukose (≥100fach). Die

erfolgreiche Isolierung von diversen entkoppelten EIIGlc- und EIIMtl-Mutanten (EIIGlc:

Postma, 1981; Ruijter et al., 1990; Ruijter et al., 1992. EIIMtl: Klawitter, 1992; Scholle,

1993; Heuel, 1997; Otte, 2000; Turgut, diese Arbeit) ist ein weiterer Beweis dafür,

dass diese Kopplung nicht als strikt anzusehen ist. Ein Transport ohne gleichzeitige

Phosphorylierung ist scheinbar immer dann möglich, wenn ein geeignetes niedrigaffines

Substrat durch das EIIC transportiert werden soll, oder Mutationen die Affinität des

Page 116: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

108 IV. Diskussion

Transporters für das hochaffine Substrat verringern. Um den Mechanismus der

Entkopplung weiterführend untersuchen zu können, wurden in dieser Arbeit entkoppelte

Mutanten mit verschiedenen Systemen isoliert.

IV.1. Für Transport und Phosphorylierung relevante AS

im EIICMtl

Von 30 untersuchten entkoppelnden Mutationen zeigten 15 den Austausch

E218A, eine den Austausch E218V und 14 den Austausch H256P. Untersuchungen von

Otte (Otte, 2000; Otte et al., 2003) ergaben weitere 40 aus K. pneumoniae, die die

Austausche E218A (16 Mutanten), H256P (21 Mutanten) und H256Y (3 Mutanten)

zeigten. Dadurch ergeben sich vier Substitutionen in zwei Aminosäuren, die eine

Entkopplung hervorrufen und sowohl in dem verkürzten (EIIC) als auch dem

vollständigen (EIICBA) MtlA zusammen mit DalD ein Wachstum auf D-Mannitol

ermöglichen (Tab. III.1.23.). Im Rahmen der Untersuchungen konnten keine

Unterschiede der Mutationsarten in Abhängigkeit des Selektionssystems beobachtet

werden. Weder die Selektionstemperatur, noch die Selektion mit vollständigem oder

verkürztem mtlA ergaben abweichende Mutationen. Lediglich das seltene Auftreten des

Austausches E218V konnte festgestellt werden. Die Tatsache, dass das Vorhandensein

der Domänen EIIA und EIIB keine Auswirkungen auf die Art der Mutationen hatte,

unterstützt die Feststellung, dass EIIC die für Bindung und Transport entscheidende

Domäne ist.

IV.1.1. Vergleich der Mutationen E218A, E218V und H256P

Anhand der in der Tabelle III.1.23. zusammengefassten Daten lassen sich

folgende Beobachtungen machen. Alle drei AS-Austausche (E218A, E218V und

H256P) führen zu einer Entkopplung des Transports von D-Mtl. In einem

phosphorylierten EIIMtl (IICBA) ist jedoch der Anteil des gekoppelten Transports sehr

verschieden. Das verbesserte Wachstum in Anwesenheit von DalD ist ein Hinweis

darauf, dass unphosphoryliertes D-Mtl in die Zelle transportiert wird und erst von einer

Dehydrogenase genutzt werden kann. Dieser Anteil ist beim Derivat mit dem Austausch

E218A am geringsten. Die Generationszeit auf D-Mtl wird jedoch um ca. 40% reduziert

und die spezifische Phosphorylierungsaktivität liegt im Bereich des WT. Der KMapp

Page 117: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 109

entspricht ebenfalls WT-Werten, lediglich V ist auf etwa 25% reduziert. Die Transport-

Werte waren jedoch nicht reproduzierbar und wurden in anderen Systemen gemessen.

Die starke Abhängigkeit der Transportmessungen von Vektor und Stamm (Teil III.1.5.3.

/ Tab. III.1.22.) zeigt, dass ein exakter Vergleich der einzelnen Messungen nur in

identischen Systemen möglich ist. Für diese Arbeit wird deshalb bei EIIMtlE218A von

einem erhöhten KM-Wert außerhalb der Messbarkeit und einer

Phosphorylierungsaktivität im Bereich des WT ausgegangen. Deutlich größer ist der

Anteil an freiem D-Mtl bei E218V. Die Reduktion der Generationszeit liegt bei 52 bis

70% und die spezifische Phosphorylierungsaktivität erreicht nur noch ca. 12% des WT.

Der gekoppelte Transport ist nicht mehr messbar. Bei den Austauschen E218A und

E218V sieht man vergleichbare Effekte, die lediglich in Ihrer Intensität bei E218V stärker

sind. Bei dem Austausch H256P fällt sofort die nicht mehr zum Wachstum auf D-Mtl

ausreichende Phosphorylierung (<1% im Vergleich zum WT) auf. Ein Wachstum auf

Grund eines gekoppelten Transports ist nicht mehr möglich und auch mit DalD wird

lediglich eine Gt von 220-345min auf D-Mtl gemessen. In einem Vergleich mit den

vorher genannten MtlA-Derivaten kann man den Austausch H256P als neue Klasse für

die Entkopplung des Transports sehen oder als weitere Verstärkung der vorher

beobachteten Effekte beschreiben. Die in K.-pneumoniae charakterisierten Mutationen

der AS H256 (H256P und H256Y. Otte, 2000; Otte et al., 2003) zeigten im

Gegensatz zu der hier beschriebenen Mutante immer noch Phosphorylierungsaktivität in

einem vollständigen MtlA. Das K. pneumoniae-Derivat mit der Substitution H256P liegt

im Vergleich zum WT bei 14%, das mit dem Austausch H256Y jedoch noch bei nahezu

100%. Möglicherweise kann dies auf unterschiedliche Grade der Entkopplung

zurückgeführt werden, die durch die Messungen der Bindeaktivität nicht differenziert

werden konnten. Bei dem Vergleich von AS-Austauschen an zwei unterschiedlichen

Stellen des Proteins sollte man aber auch völlig abweichende Mechanismen der

Entkopplung in Betracht ziehen. Die Konzentration der isolierten AS-Substitutionen auf

zwei Stellen im Protein weist jedoch auf eine maßgebliche Beteiligung der AS 218 und

256 an dem Transport oder an der Substraterkennung hin. Kombiniert man die

entkoppelnden AS-Austausche der AS218 und AS256, so schaltet man jeglichen

Transport und Phosphorylierung aus. Hier besteht allerdings noch die Möglichkeit, dass

durch die Doppelmutationen das Protein nicht mehr mit der richtigen Faltung in der

Page 118: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

110 IV. Diskussion

Membran vorliegt. Dass es in der Membran zu finden ist, zeigten die

Überexpressionsgele der Vesikel (Abb.III.1.6.).

Auf der Suche nach Suppressormutationen mit den Mutanten P256 und

A218/P256 ergab die natürliche Selektion nur Mutationen kodierend für die AS256.

Dies kann ein Hinweis darauf sein, dass unter den gewählten Bedingungen keine

Suppressormutationen selektioniert werden können. Ebenfalls möglich ist, dass eine

essentielle Funktion der AS256 keine Suppressormutationen erlaubt. Wachstum mit

gekoppeltem Transport wurde bei A218/P256 durch die Austausche P256A und

P256Q wiederhergestellt. Aufgrund der noch vorhandenen Substitution E218A zeigten

Zellen mit diesen Kombinationen noch Wachstum mit entkoppeltem Transport. Jedoch

war das Wachstum sowohl mit gekoppeltem als auch entkoppeltem Transport

schwächer als bei einem alleinigem E218A-Austausch, was an dem ungewollten

zusätzlichen Austausch L229Q liegen kann oder ein Hinweis darauf ist, dass das Alanin

bzw. Glutamin an Position 256 die WT-Aktivität nicht wiederherstellt. Die einzelnen

Austausche Alanin, Glutamin sowie Serin an der AS-Position 256 führten annähernd zur

Wiederherstellung der WT-Eigenschaften. Bei der Substitution H256A wurden auch von

Weng et al. (1992) nach einem gezielten AS-Austausch keine signifikanten Unterschiede

der Transport- und Phosphorylierungsaktivitäten festgestellt. Daraufhin wurde diesem

Histidinrest keine besondere katalytische Funktion im EIIMtl zugesprochen. Ein Glutamin

an dieser Position führte ebenfalls zu keinen nennenswerten Veränderungen, bei einem

Serin fällt lediglich der niedrige V-Wert auf. Wie schon im Ergebnisteil beschrieben

(III.1.5.3.) wurden bei KM-Messungen mit MtlA*H256S auch nichtlineare Kinetiken

beobachtet. Tests mit unterschiedlichen Versuchsansätzen konnten jedoch nicht

darlegen, auf Grund welcher Parameter lineare und nichtlineare Kinetiken auftreten.

Variierende MtlA-Konzentrationen innerhalb der Testkulturen waren auszuschließen,

jedoch könnte der Grund in einer Beeinflussung der Dimerisierung von MtlA liegen

(Lolkema, pers. Mitteilung). Möglicherweise liegt so bei hohen Konzentrationen eine

erleichterte Diffusion vor, welche der grünen Gerade in der Abb.IV.1. entsprechen

würde. Eine Bindestelle für geringe Konzentrationen könnte durch eine erhöhte Affinität

die rote Gerade hervorrufen, was einem reduzierten V-Wert und KM-Wert entspräche. In

jedem Fall spiegelt sich der reduzierte V-Wert bei den linearen Messergebnissen wieder.

Sollte in Fällen linearer Messergebnisse die Dimerisierung nicht gestört sein, würde

auch eine Reduktion des KMapp-Werts durch Diffusion entfallen.

Page 119: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 111

LGS322/pDSM2 [P256S]

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.5 0 0.5 1 1.5 2 2.5

1/S [µM]

1/V [nM]P256S

Abb. IV.1. Interpretation der nichtlinearen Kinetik von LGS322/pDSM2 Die Abbildung zeigt die Messpunkte einer nichtlinear verlaufenden KM

app-Messung. Die rote und die grüne Linie deuten zwei unterschiedliche Kinetiken an, die sich zu den abgebildeten Punkten überlagern.

Folglich könnte diese Mutation sowohl die Affinität der Bindestelle, als auch die

Verbindung der Monomere beeinflussen. Diese Beobachtungen sind ein weiteres Indiz

dafür, dass es sich bei H256, wie bei E218, durchaus um katalytisch und/oder

strukturell relevante AS handelt. Die Ergebnisse der Suche nach Suppressormutanten

bestärken durch das ausschließliche Vorkommen von AS-Austauschen in der der AS256

diese Aussage. Allerdings besitzt das MtlA*H256P aus K.-pneumoniae noch genügend

Phosphorylierungsaktivität, um ein Wachstum ohne DalD zu ermöglichen (Otte, 2000).

Die Ursache für diese Abweichung kann in den unterschiedlichen Stammhintergründen

und Vektoren liegen, so wie es im Ergebnisteil für die Variante E218A beschrieben

worden ist (Teil III.1.5.3. / Tab. III.1.22.). Denkbar ist auch eine AS-

Sequenzabweichung in MtlAK.ipn. außerhalb der AS256, welche zu einem anderen

Phänotypen führt, da der Austausch H256P in E.-coli die Phosphorylierungsaktivität fast

vollständig verhindert. Im Vergleich zu dem MtlA aus E.vcoli (637AS) weist MtlA aus K.-

pneumoniae (635AS) 94% identische Aminosäuren auf. Dieser Wert steigt für die

Transportdomäne EIIC (AS 1-360) auf 96% (siehe Abb. IV.2.).

Page 120: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

112 IV. Diskussion

1 TM1 TM2 70 Ec MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAKLVGPMITYLLPLLIGYTGGK Kp MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAKLVGPMITYLLPLLIGYTGGK

Kon XSSXIKVKVQXFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAKLVGPMITYLLPLLIGYTGGK 140 Ec LVGGERGGVVGAITTMGVIVGADMPMFLGSMIAGPLGGWCIKHFDRWVDGKIKSGFEMLVNNFSAGIIGM Kp LVGGERGGVVGAITTMGVIVGADMPMFLGSMIAGPLGGYCIKKFDNWVDGKIKSGFEMLVNNFSAGIIGM

Kon LIGGERGGVVGAIATMGVIVGADIPMFLGAMIXGPLGGWLIKKFDKXVDGKIKSGFEMLVNNFSAGIIGM TM3 TM4 210 Ec ILAILAFLGIGPIVEALSKMLAAGVNFMVVHDMLPLASIFVEPAKILFLNNAINHGIFSPLGIQQSHELG Kp ILAILAFLGIGPAVEVLSKILAAGVNFMVAHDMLPLASIFVEPAKILFLNNAINHGIFSPLGIQQSHELG

Kon ILAILAFXGIGPVVXXLSKXLAAGVEXIVXXXLLPLASIFVEPAKILFLNNAINHGIFSPLGIQQXXEXG 280 Ec KSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHEIYFPYVLMNPRLILAVILGGMTG Kp KSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHEIYFPYVLMNPRLILAVILGGMTG

Kon KSIFFLIEANPGPGLGVLLAYMLFGKGSAKQSAGGAAIIHFLGGIHEIYFPYVLMNPRLILAVIAGGMTG TM5 TM6 350 Ec VFTLTILGGGLVSPASPGSILAVLAMTPKGAYFANIAGVCAAMAVSFVVSAILLKTSKVKEEDDIEAATR Kp VFTLTILNGGLVSPASPGSILAVLAMTPKGAYFANIAAIIAAMAVSFVVSAVLFKTSKVKERSDIEAATR

Kon.VFTLTILNAGLVAPASPGSIIAVLAMTPKGAYLAVLAGVXVAAAVSFVVSAIILKTSKXXEEDDIEAATR 360... Ec RMQDMKAESK... Kp RMHDMKAESK...

Kon RMXXMKAXSK

Abb. IV.2. Vergleich der EIICMtl AS-Sequenzen aus E. coli und K. pneumoniae Dargestellt sind die abgeleiteten EIIC-Aminosäuresequenzen der Gene mtlA aus Escherichia coli K12 (Ec) (Lee & Saier, 1983) und Klebsiella pneumoniae (Kp) (Otte, 2000) und die Konsensussequenz (Kon) aus einem Vergleich mit weiteren MtlA-Sequenzen (siehe Abb. IV.3.). Die identischen AS aus der Konsensussequenz sind gelb unterlegt. Vermutete transmembrane Helices (TM) sind eingerahmt und nummeriert. Abweichungen in den beiden Sequenzen sind grau oder orangefarben hervorgehoben, dabei markiert Orange die Austausche, die relevant sein könnten (weiteres siehe Text und Abb. IV.3.).

Im Bereich von EIIC gibt es 16 voneinander abweichende AS. Konservative AS-

Austausche (AS 318, 319, 332) und Austausche in Aminosäuren, die in der

Konsensussequenz verschiedener MtlA (Abb. IV.3.) keine Berücksichtigung finden (AS

156, 160, 170, 320, 353) haben mit geringerer Wahrscheinlichkeit Auswirkungen auf

Page 121: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 113

das Transportverhalten. Danach bleiben acht Aminosäuren (109, 113, 116, 153, 288,

334, 342, 343), die am ehesten für veränderte katalytische Merkmale verantwortlich

sein könnten, ohne die übrigen Aminosäuren völlig auszuschließen. Es fällt aber auf,

dass in dem hoch konservierten Bereich zwischen TM4 und TM5 keine Austausche zu

finden sind. Für eine genaue Beurteilung der unterschiedlichen Phänotypen sind weitere

Untersuchungen der Stammhintergründe, Vektoren und der hier benannten AS-

Austausche erforderlich.

IV.1.2. Die AS 218 und 256 im Translokationsmodell

Für die in dieser Arbeit näher untersuchten AS218 und AS256 lässt sich

feststellen, dass unterschiedliche Aminosäuren an diesen Stellen unterschiedliche

Einflüsse auf den gekoppelten Transport, die Phosphorylierung und Bindung haben.

Beide Aminosäuren liegen nach dem aktuellen Strukturmodell in der hochkonservierten

Schleife 5 (Abb.IV.3. und IV.5.) und sind in den MtlA-Sequenzen konserviert. Das H256

liegt zudem in dem GIHE-Motiv, welches aufgrund der sehr starken Konservierung

schon vorher als essentiell angesehen wurde (Lengeler, 1990). In einem Modell für den

katalytischen Mechanismus von EIIMtl (Lolkema et al., 1991a; 1992) wird eine Kopplung

zwischen Transport und Phosphorylierung mit einer Rate <50% festgelegt.

Untersuchungen mit Vesikelpräparationen des EIIMtl zeigten, dass freies und

phosphoryliertes D-Mannitol mit gleicher Wahrscheinlichkeit von der Bindestelle

freigesetzt werden (Lolkema et al., 1991b). Diese in vitro gemachten Beobachtungen

widersprechen den Ergebnissen aus in vivo Untersuchungen. Anhand

dünnschichtchromatographischer Versuche konnte kein freies D-Mannitol nach einem

Transport durch EIIMtl nachgewiesen werden (Otte, 2000). Das geringe Vorkommen von

freiem D-Mtl wurde auf einen schwachen Transport durch das Gut-PTS sowie der

Hydrolyse von Mtl1P zurückgeführt. Untersuchungen mit EIIMtl und EIIMtl+DalD zeigten

dementsprechend keine relevanten Unterschiede im Wachstum von Zellen auf D-Mtl

(Tab. III.1.23.). Allerdings könnte das freie D-Mtl sofort wieder an der

Membraninnenseite gebunden und phosphoryliert werden, was mit den genannten

Methoden nicht nachweisbar wäre. Ist dagegen die interne Phosphorylierung

beeinträchtigt, steigt der Anteil des freien Substrates in der Zelle. Der resultierende

Anteil unphosphorylierten Substrats ist dadurch von der Phosphorylierungsaktivität bzw.

der Affinität der intrazellulären Bindestellen des EIIMtl-Komplexes abhängig. So zeigt sich

Page 122: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

114 IV. Diskussion

bei den Mutationen dieser Arbeit, dass die am stärksten entkoppelten MtlA-Varianten

die geringste Phosphorylierungsaktivität zeigten (Tab. III.1.23.). Ähnliche Effekte wurden

auch bei den entkoppelten Derivaten aus EIIGlc beobachtet. Die entkoppelten EIIGlc-

Mutanten zeigten eine Phosphorylierungsaktivität, die 0 bis 100% des Wildtyps

entsprach (Ruijter et al., 1992). Eine direkte Beziehung zu den KM-Werten der

verschiedenen Proteine zeigte sich hier jedoch nicht.

Abb. IV.3. Vergleich der EIICMtl AS-Sequenzen verschiedener Stämme

1 70 K12 (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL O157:H7 (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL CFT073 (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL S.fle (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL S.ent (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL K.pne (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL Y.pes (1) ---------MFSPDAKVRVQNFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL V.cho (1) ---------MISSDAKVKIQNFGRFLSNMVMPNIGAFIAWGFITALFIPTGWVPNETLAS-LVGPMITYL P.mul (1) MVILSTRLTMLSANAKVKVQNFGRFLSNMVMPNIGAFIAWGFITALFIPTGWLPNETLAK-LVGPMITYL C.ace (1) METYKDSTQVSKSSLKKKIQGFGGFLSGMVMPNIGAFIAWGLITALFIKTGWLPNDNLSK-LVDPMIHYM S.mut (1) --------MERKSSLKVRVQKLGTSLSNMVMPNIGAFIAWGVAASLFIATGYLPNKALDTNVVGPMNKYV L.lac (1) --------MTDTVSLKVRVQKLGTALSNMVMPNIPVLIAWGVLTMFFIPDGFTPNKTFAA-MVSPMLPFL S.car (1) -----MSNSQQNKGIGRKVQAFGSFLSSMIMPNIGAFIAWGFIAAIFIDNGWFPNKDLAQ-LAGPMITYL B.hal (1) --------MNNQPSFRARVQKFGSFLSGMIMPNIGAFIAWGLITALFIPTGWWPNEQLAE-LVGPMITYL B.ste (1) ----MTHTSENQAGFRVKIQRFGSYLSGMIMPNIGAFIAWGIITALFIPTGWLPNETFAK-LVGPMITYL B.sub (1) ----MQQQEQQQGGMKVKVQRFGSYLSGMIMPNIGAFIAWGIITALFIPAGWFPNEQLNT-LVSPMITYL xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxTM1xxxxxxxxxxxxxxxxxxxxTM2x Kons (1) MVTYMXXXXXXSSXIKVKVQXFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAKNLVGPMITYL 71 140 K12 (60) LPLLIGYTGGKLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGWCIKHFDRW O157:H7 (60) LPLLIGYTGGKLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGWCIKHFDRW CFT073 (60) LPLLIGYTGGKLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGWCIKHFDRW S.fle (60) LPLLIGYTGGKLVGGKRGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGWCIKHFDRW S.ent (60) LPLLIGYTGGRLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGYCIKKFDSW K.pne (60) LPLLIGYTGGKLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGYCIKKFDNW Y.pes (61) LPLLIGFTGGRLVGGDRGGVVGAITTMGVIVGA------------DMPMFLGAMIVGPLGGWAIKHFDRW V.cho (61) LPLLIGYTGGKLAGGERGAVVGAITTMGVIVGT------------DIPMFMGAMIVGPMGGWAIKAFDKK P.mul (70) LPLLIGYSGGKLIAGERGAVVGAIATAGVIVGT------------DIPMFLGAMIAGPTGGWAIKRFDKW C.ace (70) LPMLIGYQGGKLVYDTRGGVVGAIATMGMIVGA------------SIPMFLGGMIIGPLGGYVIKKFDKA S.mut (63) LPLLIGYTGGYNIHKQRGGVIGAIASFGAIAGS------------TVTMFIGAMIMGPLSAWILKKFDEK L.lac (62) IPLMIGYTGGKNIYEHRGGVVGAIATFGSIIATASISVGGLNAKGNVPMILGAMILGPFGAWLIKKFDEY S.car (65) IPLLIAFSGGRLIHDLRGGIIAATATMGVIVALP-----------DTPMLLGAMIMGPLVGWLMKKTDEF B.hal (62) LPLLIGYTGGKMIYDVRGGVVGAAATMGVVVGA------------DIPMFIGAMIMGPLGGFLIKKVDQV B.ste (66) LPLLIGYTGGKMIYDVRGGVVGATATMGVIVGS------------DIPMFLGAMIMGPLGGYLIKKFDQQ B.sub (66) LPLLIAYTGGKMIYDHRGGVVGATAAIGVIVGS------------DIPMFLGAMIMGPLGGYLIKQTDKL xxxxxxxxxxxxxxxTM2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Kons (71) LPLLIGYTGGKLIGGERGGVVGAIATMGVIVGAPSISVGGLNAKGDIPMFLGAMIXGPLGGWLIKKFDKX

Page 123: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 115

141 210 K12 (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPIVEALSKMLAAGVNFMVVHDMLPLASIFVEPAKIL O157:H7 (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPIVETLSKMLAAGVNFMVVHDMLPLASIFVEPAKIL CFT073 (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPVVEALSKMLAAGVNFMVVHDMLPLASIFVEPAKIL S.fle (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPIVEALSKMLAAGVNFMVVHDMLPLASIFVEPAKIL S.ent (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPAVEVLSKILAAGVNFMVAHDMLPLASIFVEPAKIL K.pne (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPAVEVLSKILAAGVNFMVAHDMLPLASIFVEPAKIL Y.pes (119) VEGKIKSGFEMLVNNFSSGIIGMLLALLAFMAIGPLVEVLSKGLAYGVDVMVQNNLLPLASIFVEPAKIL V.cho (119) IDGKVRSGFEMLVNNFSAGIIGMLCAIIAFFLIGPFVKVLSGALAAGVNFLVTAHLLPLTSIFVEPAKIL P.mul (128) ADGKIKSGFEMLVNNFSSGIIGMILAILFFWLIGPAVKALSTMLAAGVDILVKAHLLPLTSIFVEPAKIL C.ace (128) IENKIPTGFEMLVNNFSAGILGAALAIISYVAVGPVVAGASTGLGSIALAITNQGLLPLIAVVVEPAKIL S.mut (121) VQPKIRTGFEMLVNNFSLGLIGFALMVLAFFVIGPVVAQLTEWVGIGVEAIVKVHLLPLANLIIEPAKIL L.lac (132) IQPHIKAGLEMLINNFSAGLVGFGLSLFAVKVVGPLVAWLTDVMGHGVDFLISNHLIPLANLFIEPAKIL S.car (124) VQPRTPQGFEMLFNNFSAGILGFIMTIFGFEVLAPIMKFIMHILSVGVEALVHAHLLPLVSILVEPAKIV B.hal (120) LQPKVRSGFEMLVNNFSAGILAAILAIVAFLGIGPVVVSFSNVLASGVEVIIGAGLLPLASIFIEPAKVL B.ste (124) IQGKVKQGFEMLVNNFSAGIIGGLLTLAAFKGVGPVVSAISKTLAAGVEKIVDLHLLPLANIFIEPGKVL B.sub (124) FKDKVKQGFGIRINNFTAGIVGAALTILAFYAIGPVVLTLNKLLAAGVEVIVHANLLPVASVFLEPAKVL xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxTM3xxxxxxxxxxxxxxxxxxxxxxxxxxxxTM4xxxxxxxxxxx Kons (141) VDGKIKSGFEMLVNNFSAGIIGMILAILAFXGIGPVVXXLSKXLAAGVEXIVXXXLLPLASIFVEPAKIL 211 280 K12 (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE O157:H7 (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE CFT073 (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE S.fle (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE S.ent (188) FLNNAINHGIFSPLGIQQSHEMGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE K.pne (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE Y.pes (189) FLNNAINHGIFSPLGVQQAAETGKSIFFLIEANPGPGLGVLMAYMFFGKGNAKQSAGGAAIIHFFGGIHE V.cho (189) FLNNAINHGIFSPLGIQQASETGQSIFFLIEANPGPGLGILLAYMVFGKGTARQTAGGATIIHFFGGIHE P.mul (198) FLNNAINHGIFSPLGIQQSQEFGQSIFFLIEANPGPGLGVLLAYIIFGKGTAKQTAGGATIIHFFGGIHE C.ace (198) FLNNAINHGVFSPLGIEQVQHLGKSVFFLLEADPGPGLGILLAYSLYGKGSAKNSAPGAVIIHFLGGIHE S.mut (191) FLNNALNHGIFTPLGTEQVAKVGKSVLFLLEANPGPGLGVLIAYAMFGKGSAKSSSWGAMIIHFFGGIHE L.lac (202) FLNNAINQGILSPLGIQQVSENGKSLLFLLEANPGPGLGILIAFMLFGKGSAKATAPGAILIQFVGGIHE S.car (194) FLNNAINHGVFTPLGADQAAHAGQSILYTIESNPGPGIGVLIAYMIFGKGTAKATSYGAGIIQFFGGIHE B.hal (190) FLNNAINHGILSPIGIDQAASAGKSILFLLETNPGPGLGVLLAFMVFGKGMAKQSAPGAAVIHFAGGIHE B.ste (194) FLNNAINHGILSPLGIEQAAKTGKSILFLLEPNPGPGLGILLAYWLFGKGMAKQSAPGAIIIHFLGGIHE B.sub (194) FLNNAINHGILSPIGIEQASQTGKSILFLVEANPGPGLGIFLAYMFFGKGSSKSTAPGAAIIHFFGGIHE H195 E218 GIHE Kons (211) FLNNAINHGIFSPLGIQQXXEXGKSIFFLIEANPGPGLGVLLAYMLFGKGSAKQSAGGAAIIHFLGGIHE 281 350 K12 (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILGGGLVSPASPGSILAVLAMTPK------GAYFANIAGVCA O157:H7 (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILGGGLVSPASPGSILAVLAMTPK------GAYFANIAGVCA CFT073 (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILGGGLVSPASPGSILAVLAMTPK------GAYFANIAGVCA S.fle...(258) IYFPYVLMNPRLILAVILGGMTGVFTLTILGGGLVSPASPGSILAVLAMTPK------GAYFANIAGVCA S.ent (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILNGGLVSPASPGSILAVLAMTPK------GAYFANIAAIVA K.pne (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILNGGLVSPASPGSILAVLAMTPK------GAYFANIAAIIA Y.pes (259) IYFPYVLMNPRLLLAVILGGMTGVFTLTLLNGGLVSAASPGSILAILAMTPK------GAYFANIAAVAT V.cho (259) IYFPYILMNPRLILAAIAGGMTGVFTLTVFNAGLVSPASPGSIFAVLLMTNK------GSILGVVCSIFA P.mul (268) IYFPYVLMNPRLLLAVIAGGVSGVFTLVLFNAGLVAPASPGSIIAVLLMTPQ------NAIVGVLASVAI C.ace (268) IYFPYVLMKPFLLLAVIAGGICADLTFVLLKAGLVAAASPGSIIAILAMSPK------GGQLPVLAGVAV S.mut (261) IYFPYVMMKPAMFLAVIAGGLTGTFTFQTLGAGLTAPASPGSIIAIMGMSPK----GWGPHLVVLAGVFA L.lac (272) IYFPYVMMKPALFFAVMAGGVSGTLTNNLLGSGLAAPASPGSIIAITGMASGKSAGGFANVLCVWAGIAV S.car (264) IYFPYVLMRPLLFVSVILGGMTGVATYSLLDFGFKTPASPGSIIVYAINAPK------GEFLHMLTGVVL B.hal (260) IYFPYILMKPTLILAVIAGGMSGVFTFVLFNAGLVAVPSPGSIFALLAMTPR------GEYAGVLAGVII B.ste (264) IYFPYVLMRPILILAAIAGGVSGVLTFTIFDAGLVAVPSPGSIFALLAMTPK------GNYLGVLAGVLV B.sub (264) IYFPYILMKPGPDSRSHCRRSKRTLNITIFNAGLVAAASPGSIIALMAMTPR------GGYFGVLAGVLV xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxTM5xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxTM6x Kons (281) IYFPYVLMNPRLILAVIAGGMTGVFTLTILNAGLVAPASPGSIIAVLAMTPKKSAGGWGAYLAVLAGVXV

Page 124: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

116 IV. Diskussion

351 390... K12 (322) AMAVSFVVSAILLKTSKVKE-EDDIEAATRRMQDMKAESK...(360) O157:H7 (322) AMAVSFVVSAILLKTSKVKE-EDDIEAATRRMQDMKAESK...(360) CFT073 (322) AMAVSFVVSAILLKTSKVKE-EDDIEAAARRVQEMKAESK...(360) S.fle (322) AMAVSFVVSAILLKTSKVKE-EDDIEAATRRMQDMKAESK...(360) S.ent (322) AMAVSFVVSAILLKTSKVKE-EDDIEAATRRMHDMKAESK...(360) K.pne (322) AMAVSFVVSAVLFKTSKVKE-RSDIEAATRRMHDMKAESK...(360) Y.pes (323) AFAVSFVVSAILLKSSKAKDDEEGLEGATRRMQDMKAQSK...(362) V.cho (323) AAAVSFTVAALLMKAQTSTEQDGDKDALVKATSIMQEMKA...(362) P.mul (332) AATVSFVIASFFLKIQ----KEENGHSLEKMQAASKAMKS...(367) C.ace (332) GAIVSFVVASIILKGSKE-KSKDNFEEAQNKMKEMKKESK...(370) S.mut (327) AAVASFLVASIILKSDN--SDDDSLETAQAVTQAAKAESK...(364) L.lac (342) AAIVSFLVAAFILKRDKSMIDDSAFENAKVGVATDKAVSK...(381) S.car (328) AALVSFVVSALILKFTKDP--KQDLAEATAQMEATKGKKS...(365) B.hal (324) ATVVSFVIASIILKTSKAT--AEDLTEATSKMEGLKGKES...(361) B.ste (328) ATAVSFFVASIFLKSAKNN--EEDITKATEKMQQLKGKKS...(365) B.sub (328) AAAVSFIVSAVILKSSKAS--EEDLAAATEKMQSMKGKKS...(365) xxxxxxxxxxxxxxxTM6xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Kons (351) AAAVSFVVSAIILKTSKXXEDEDDIEAATRRMXXMKAXSK

Abb. IV.3. Vergleich der EIICMtl AS-Sequenzen verschiedener Stämme Dargestellt sind die abgeleiteten EIIC-Aminosäuresequenzen der mtlA-Gene folgender Organismen: K12, Escherichia coli K12 (IICBA; Lee & Saier, 1983); OH157:H7, E. coli OH157:H7 (IICBA; Hayashi et al., 2001); CFT073, E. coli CFT073 (EIICBA; Welch et al., 2002); S.fle, Shigella flexneri (IICBA; Jin et al., 2002); S.ent, Salmonella enterica serovar typhimurium (EIICBA; McClelland et al., 2001); K.pne, Klebsiella pneumoniae (EIICBA; Otte, 2000); Y.pes, Yersinia pestis (EIICBA; Parkhill et al., 2001); V.cho, Vibrio cholerae (EIICBA; Heidelberg et al., 2000); P.mul, Pasteurella multocida (EIICBA; May et al., 2001); C.ace, Clostridium acetobutylicum (EIICB, EIIA; Behrens et al. 2001); S.mut, Streptococcus mutans (EIICB, EIIA; Honeyman & Curtiss III., 2000); L.lac., Lactococcus lactis (Mansour et al., 2001); S.car, Staphylococcus carnosus (IICB, IIA; Reiche et al., 1988; Fischer et al., 1989; Fischer & Hengstenberg, 1992); B.hal, Bacillus halodurans (IICB, IIA; Takami et al., 2000); B.ste, Bacillus stearothermophilus (IICB, IIA; Henstra et al., 1996); B.sub, Bacillus subtilis (IICBA; Akagawa et al., 1995, geändert nach Henstra et al., 1996). Die Konsensussequenz (Kons) wurde mit Hilfe des Programms „VectorNTI Suite“ ermittelt. Mit „X“ wurden Bereiche der Konsensussequenz markiert, in denen keine AS zugeordnet werden konnte. Gruppen ähnlicher AS wurden farblich hervorgehoben. Konservierte Aminosäuren sind gelb unterlegt. AS, die der Konsensussequenz entsprechen, sind in Blau, dazu konservative Austausche in Rot dargestellt. Als konservative Austausche wurden zugelassen: A G, D E, F Y, K R, N Q, S T, und Austausche innerhalb der Gruppe I L V. Bei der Gesamtanalyse wurde nur die E.coli-Sequenz von K12 berücksichtigt, um die Aussage nicht durch drei fast identische E.coli-Sequenzen zu beeinträchtigen.

Ein weiterer Punkt des Modells besagt, dass nur phosphoryliertes EIIMtl eine

erleichterte Diffusion mit hoher Rate katalysiert. Dies bedeutet, dass der Grad der

Phosphorylierung der IIBAMtl-Domänen die Aktivität der Translokator-Domäne EIICMtl

beeinflusst, indem wahrscheinlich der Translokationsvorgang durch eine drastische

Senkung der Aktivierungsenergie erreicht wird. Das entspricht der Tatsache, dass ein

WT-EIIC nicht dazu in der Lage ist, D-Mtl ausreichend für ein Wachstum zu

transportieren. Dagegen sind in den entkoppelten Mutanten weder Phosphorylierung

Page 125: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 117

noch das Vorhandensein der EIIAB-Domänen für einen ausreichenden Transport

notwendig. Der Grund hierfür könnte eine der Phosphorylierung analoge Senkung der

Aktivierungsenergie durch die AS-Austausche sein. Es ist schon länger bekannt, dass

das niedrigaffine C5-Isomer D-Arabinitol (KMapp ≥ 500µM) mit einer hohen Rate

unphosphoryliert sowohl durch das WT- als auch das entkoppelte EIICMtl transportiert

wird, unabhängig von dem Phosphorylierungszustand des EIICMtl und dem

Vorhandensein der EIIBAMtl-Domänen (Klawitter, 1992; Scholle, 1993; Otte 2000).

Dies ist vergleichbar mit anderen nicht-PTS-Substraten, welche niedrigaffine Stereo-

Isomere natürlicher PTS-Substrate sind und unphosphoryliert durch EII-Domänen

transportiert werden. Beispiele hierfür ist der Transport von D-Galaktose und Trehalose

durch EIIMan in S. enterica (Postma, 1976; Postma et al., 1986), der Transport von D-

Galaktose, D-Arabinitol, Ribitol und D-Fruktose durch EIIGlc in E. coli (Kornberg &

Riordan, 1976; Kornberg et al., 2000;; Zeppenfeld et al., 2000) und der Transport von

D-Arabinitol und Xylitol durch EIIGat (Lengeler, pers. Mitteilung). Da auch entkoppelnde

Mutationen oft die Affinität des Transporters zu seinen Hauptsubstraten verringern

(Ruijter et al., 1992; Otte, 2000; diese Arbeit), zeigt sich ein großer Einfluss der Stärke

der Substratbindung auf die Kopplung von Transport und Phosphorylierung (Lengeler et

al., 1994).

Man geht davon aus, dass im WT eine hohe Phosphorylierungsaktivität dazu

führt, dass freies intrazelluläres D-Mtl sofort wieder gebunden und phosphoryliert wird.

Effektiv ist in der Zelle nur D-Mtl-Phosphat vorhanden (Otte, 2000). Wie kann es aber

zum Transport von freiem D-Mtl in die Zelle kommen? Für ein EII-Dimer wird das

Vorhandensein zweier hochaffiner, zur periplasmatischen Seite orientierten Bindestellen

postuliert (Pas et al., 1988; Briggs et al., 1992; Lolkema et al., 1992). Durch die

Bindung eines Substrates an diese hochaffine Bindestelle könnte eine

Konformationsänderung induziert werden, die die Bindestelle in einen geschlossenen

Zustand überführt. Danach würde die Umwandlung in eine, dem Zytoplasma

zugewandte, niedrigaffine Bindestelle erfolgen. Bindestudien mit Vesikeln (Lolkema et

al., 1992) und Tryptophan Phosphoreszenz-Studien (Broos et al., 2000) lieferten

Hinweise auf solche substratbindungs- und phosphorylierungsabhängige

Strukturveränderungen im EIIMtl.

Nach dem Modell von Lolkema moduliert der Phosphorylierungszustand der

zytoplasmatischen EIIB-Domäne die Aktivität der Translokationsdomäne EIIC (Lolkema

Page 126: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

118 IV. Diskussion

et al., 1991b). In vitro Untersuchungen hatten gezeigt, dass sich die Transportrate in

Anwesenheit von Phospho-IIB drastisch erhöht (Elferink, et al., 1990; Lolkema et al.,

1991a). Demnach bewirke die Phosphorylierung von IIB eine Verringerung der

Aktivierungsenergie für den eigentlichen Translokationsschritt, also die Umlagerung der

geschlossenen in die niedrigaffine Bindestelle. Die Phosphorylierung von IIB würde

damit zu einer signifikanten Steigerung der Isomerisierungsrate der Bindestelle und

somit zum Anstieg der Transportraten führen. Nach diesem Modell wäre entkoppelter

Transport in einem nicht phosphorylierten oder isolierten EIIC nicht denkbar.

Nach dem Modell von Lengeler (Lengeler et al. 1994) gibt es im EIIMtl eine

Bindestelle mit drei Zuständen (hochaffin / geschlossen / niedrigaffin) zwischen denen

umgeschaltet werden kann. Das Substrat wird außen mit hoher Affinität gebunden und

nach einer durch die Substratbindung induzierten Konformationsänderung, die zu einer

Umlagerung der Bindestellen in einen „geschlossenen“ Zustand führt, erfolgt in einem

zweiten Schritt die Phosphorylierung des gebundenen Substrates. Die Affinität der

Bindestelle für das phosphorylierte Substrat ist so gering, dass es nun freigesetzt werden

kann. Somit würde durch die Phosphorylierung nicht die Mobilisierung der Bindestelle,

sondern das Ablösen des hochaffinen Substrates von der Bindestelle beschleunigt. Die

Ergebnisse aus in vitro Untersuchungen in Vesikeln weisen hingegen darauf hin, dass

freies und phosphoryliertes D-Mannitol mit gleicher Wahrscheinlichkeit von der

Bindestelle freigesetzt wird (Lolkema et al., 1991b). Die Durchlässigkeit von Vesikeln für

D-Mtl stellt jedoch ein Problem bei der Auswertung der Ergebnisse dar. In vivo

durchgeführte DC- und Wachstumsuntersuchungen haben gezeigt, dass nach dem

Transport von D-Mtl über EIIMtl das intrazelluläre Verhältnis von Substrat : Substrat-

Phosphat ganz auf der Seite des phosphorylierten Substrates liegt (Otte, 2000; diese

Arbeit). Für eine im Transport entkoppelte Mutante wäre in dem Lengeler-Modell

denkbar, dass die Affinität der Bindestelle durch den AS-Austausch grundsätzlich

herabgesetzt und freies D-Mtl in die Zelle abgegeben wird.

Unterschiedliche Klassen von Mutationen könnten durch zwei Faktoren

entstehen: 1. Die Stärke bzw. Schwäche der Bindestellen-Affinität und 2. Die Stärke der

internen Phosphorylierung des freien D-Mtl. Anhand der in dieser Arbeit ermittelten

Generationszeiten (Tab III.1.23.) wird deutlich, dass das Wachstum von Zellen auf D-

Mtl mit EIIMtlE218A und DalD verbessert wird, was wiederum auf intrazelluläres freies D-

Mtl hinweist. Das Transporttests mit den E218A-Derivatern nicht reproduzierbar waren,

Page 127: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 119

ist ein Hinweis darauf, dass der Austausch E218A im vollständigen EIIMtl den WT-

Phänotyp nicht wiederherstellt. Dennoch war eine hohe Phosphorylierungsrate messbar.

Bei diesem Protein ist die Entkopplung durch ein Herabsetzen der Bindestellen-Affinität

entstanden, wobei die Phosphorylierungsaktivität nicht eingeschränkt war. Ähnlich

verhält es sich bei MtlA*E218V, welches Zellen mit DalD fast eine WT-Generationszeit

auf D-Mtl vermittelt, aber nur noch 10% der Phosphorylierungsaktivität. Hier scheinen

beide Faktoren für eine Entkopplung vorzuliegen. In der Mutante H256P scheint die

Affinität der Bindestelle nicht wie bei E218A oder E218V herabgesetzt zu sein. Das

Wachstum von Zellen mit DalD ist im Vergleich mit beiden Mutanten schwächer und

eine Phosphorylierungsaktivität ist kaum mehr vorhanden. Dies weist auf eine stärkere

Entkopplung auf der Ebene der internen Phosphorylierung des freien D-Mtl hin.

In der Arbeit von Otte (2000) wurden entkoppelte Transporter aus

K.vpneumoniae und E. coli, sowie plasmidkodierte entkoppelte EIIGlc-Mutanten, die sich

bezüglich ihrer KM-Werte und der Phosphorylierungsaktivitäten unterscheiden (Ruijter et

al., 1992; Weng et al., 1992; Saraceni-Richards & Jacobson, 1997; Kessels, 1999),

beschrieben.

EIIMtlE218AK.pn., EIIMtlH195N, EIIMtlE257D, EIIGlcV206A und EIIGlcR203S

zeigen eine hohe Phosphorylierungsaktivität, der KM-Wert ist nicht deutlich erhöht und in

Anwesenheit von EIIBC~P findet kein entkoppelter Transport statt.

EIIMtlH256YKK.pn., EIIMtlH195A und EIIGlcI296N haben noch

Phosphorylierungsaktivität, einen erhöhten KM-Wert und gekoppelten sowie

entkoppelten Transport. Die in dieser Arbeit beschriebenen Mutationen EIIMtlE218AE.coli

und EIIMtlE218VE.coli zeigen entsprechende Werte und scheinen ähnliche Auswirkungen

auf den gekoppelten Transport zu haben.

Die Mutationen EIIMtlH256PxK.pn., EIIMtlE257A, EIIMtlE257Q und EIIGlcK257N

vermitteln wie die Mutation EIIMtlH256PxE.coli drastisch verringerte bzw. nicht vorhandene

Phosphorylierungsaktivitäten und erhöhte KM-Werte.

Auch bei der Selektion von Mutanten mit entkoppeltem EIIGlc aus Salmonella

typhimurium (Postma, 1981; Ruijter et al., 1991) sowie E. coli (Ruijter, 1992) wurde in

Pts--Stämmen einige gefunden, die sich durch einen erhöhten KM-Wert auszeichneten.

Die Isolierung weiterer Mutanten und die Untersuchung der Phänotypen mit den

Haupt- und Nebensubstraten sind für eine weiterführende Aufklärung des gekoppelten

Page 128: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

120 IV. Diskussion

und entkoppelten Transports notwendig. Dabei müssen weiterhin die einzelnen

Komponenten aus Transport, Bindung, KM-Wert und Phosphorylierungsaktivität in

Zusammenhang gebracht werden. Die dafür benötigten Methoden sind in dieser Arbeit

beschrieben worden und sollten durch die von Otte (2000) durchgeführten

dünnschichtchromatographischen Versuche erweitert werden. Damit ist eine weitere

Methode gegeben, relativ einfach die Verhältnisse zwischen phosphoryliertem und

unphosphoryliertem Substrat darzustellen. Auch die Klassifizierung der PTSs neben den

ionenabhängigen Sym- und Antiportern sowie den ATP-abhängigen ABC-Transportern

ist zu überdenken. Unter Berücksichtigung der beschriebenen Untersuchungen werden

im Transportvorgang immer mehr Ähnlichkeiten mit den sehr substratspezifischen,

erleichterte Diffusion vermittelnden Uniportern und sogar den ABC-Transportern

deutlich (Lengeler et al., 1994). Bei den ABC-Transportern wird die freie Energie des

ATPs dazu verwendet, die Energiebarriere des an die hochaffine Bindestelle

gebundenen Substrats zu verringern und unter Bildung von ADP und Phosphat das

Substrat in der Zelle anzuhäufen (Davidson, 2002). Die Energiebarriere eines im EII

gebundenen Substrats muss ebenfalls durch die hohe freie Energie eines His~P oder

Cys~P verringert werden, wobei hier die Phosphorylgruppe direkt auf das Substrat

übertragen wird. Dies ermöglicht eine bessere Energieausbeute und eine nahezu

irreversible Anhäufung von Substrat~P.

Die Ergebnisse dieser Arbeit bestätigen bei der Suche nach Mutanten die

Fokussierung auf konservierte Bereiche im EIIMtl, insbesondere in der im Vergleich zum

gesamten EIIC (26%x=xkonserviert, 39%x=xkonserviert +xkonservativexAustausche)

stark konservierten Schleife 5 (44%x=xkonserviert, 63%x=xkonserviert +xkonservative

Austausche; Abb. IV.3. und IV.5.). Bisher wurden alle entkoppelnden Mutationen im

EIIMtl und EIIGlc (Buhr et al., 1992; Ruijter et al., 1992) in dieser Schleife und dem GIHE-

bzw. GITE-Motiv gefunden. Fluoreszenz-Studien zeigten zudem in zwei Bereichen

Reaktionen auf die Bindung von Mannitol. Dazu gehörten das Trp30 (Dijkstraa et al.,

1996) und die Aminosäuren im Bereich der Position 196 in der Schleife 5 (Boer et al.,

1996; Broos et al., 1999). Zudem führten zahlreiche ortgerichtete Mutagenesen auf der

Suche nach transportrelevanten AS ausschließlich zu dem AS-Bereich, welcher der

Schleife 5 und deren direkte Umgebung im EIIMtl-Modell entspricht (Buhr et al., 1992;

Weng et al., 1992; Saraceni-Richards & Jacobson, 1997; Lanz & Erni, 1998).

Page 129: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 121

IV.2. Untersuchung der Sekundärstruktur des EIICMtl

Für ein umfassendes Verständnis des Translokationsmechanismus im EIIMtl ist ein

genaues Wissen um die Sekundär- bzw. Tertiärstruktur unumgänglich. Aufgrund

zahlreicher Untersuchungen geht man heute von einer dimeren aktiven Konformation

des Proteins aus (Übersicht bei Jacobson, 1992, Boer et al., 1994; Boer et al., 1996;

Koning et al., 1999; Heuberger et al., 2002), die durch nicht-kovalente, hydrophobe

Wechselwirkung der C-Domänen vermittelt wird (Lolkema et al., 1993). Ein weiterer

Einfluss der AS378-465 auf die Dimerisierung ist aber nicht auszuschließen (Briggs et

al., 1992). Die Sekundärstruktur entwickelte sich aus den Erkenntnissen der Arbeiten

von Lee & Saier (1983), Sugiyama et al. (1991), Dijkstra et al. (1996) und Lengeler

(Lengeler et al., 1994; Lengeler & Jahreis, 1996) zu einem Modell aus mindestens

sechs transmembranen Helices, drei kurzen periplasmatischen und zwei großen

zytoplasmatischen Schleifen sowie einem zytoplasmatischen N-Terminus. Für das EIIGlc

wurde mittels PhoA-Fusionsstudien ein Modell mit acht transmembranen Helices

ermittelt (Buhr & Erni, 1993), obwohl die Hydrophobizitätsmuster von EIIGlc und EIIMtl

sehr ähnlich sind. Die Strukturprojektion eines 2D-EIIMtl-Kristalls mit einer Auflösung von

5 Å gibt Hinweise auf das EIIMtl-Modell mit sechs transmembranen Helices und schließt

dabei die Assoziation einer transmembranen Helix mit extramembranen Strukturen nicht

aus (Koning et al., 1999). Bei der Betrachtung des Sekundärstrukturmodells von EIICMtl

unter Berücksichtigung der Untersuchungen entkoppelter Transporter ist dies auch zu

fordern. Wichtige an der Kopplung beteiligte Aminosäuren (H195, E218, H256) liegen

in der zytoplasmatischen Schleife 5, während das Substrat ursprünglich im Periplasma

zu finden ist. Eine Assoziation der Schleife 5 mit transmembranen Elementen, wie es im

Modell von Lengeler (Lengeler 1990; Lengeler et al. 1994) vorgeschlagen wird, ist

daher durchaus denkbar. Unter Berücksichtigung dessen, wurde in dieser Arbeit eine

strukturelle Untersuchung mit dem Schwerpunkt auf der Schleife 5 durchgeführt.

IV.2.1. Mögliche Strukturen des EIICMtl

Mit der Methode der gezielten Biotinmaleimid-Markierung von Cysteinen in dem

Protein wurde die Lokalisation der Aminosäuren S3, C110, S158, S199, S212, S242,

S299 und C384 in EIICMtl untersucht (siehe III.2.4. und Abb. III.2.4.). Als positive

Innenkontrolle wurde anfänglich das Cys384 gewählt, das als essentielle Aminosäure

Page 130: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

122 IV. Diskussion

bei der Phosphatgruppenübertragung in der EIIBMtl-Domäne fungiert (Pas & Robillard,

1988a, 1988b). Aus den Kontrollen geht hervor, dass Cys384 allgemein für Stilben

und Biotinmaleimid zugänglich ist. Unter den gewählten Bedingungen erwies sich

Biotinmaleimid jedoch in allen anderen Versuchen als membranimpermeabel und die

Kontrollmarkierungen mit einer cysteinfreien Mutante lassen unspezifische Bindungen

ausschließen. Dabei sollte in der Diskussion die Sonderstellung des Cys384 im EIIMtl

berücksichtigt werden. Man könnte zum einen eine schwächere Bindung für

Sulfhydrylreagenzien erwarten, da bei einem Wachstum in einem Medium ohne D-Mtl

das EIIMtl an der Phosphorylierungsstelle Cys384 größtenteils phosphoryliert ist.

Abb. IV.4. Bindung eines Phosphats bzw. Maleimids an ein Cystein A) Bindung einer Phosphorylgruppe (grün) an die Sulfhydrylgruppe des Cysteins (blau). B) Bildung des Thioethers durch Bindung des Maleimids (rot) an die Sulfhydrylgruppe des Cysteins (blau).

Eine Blockierung der Bindestelle für Maleimid wäre denkbar (Abb. IV.4.), zeigte

sich jedoch nicht bei den Kontrollen auf allgemeine Zugänglichkeit. Zum anderen sollte

das Cys384 in der Nähe des D-Mtl-Transports durch die Membran sein, da es das

Phosphat auf das Substrat überträgt. Dort wären Membranstrukturen denkbar, die es

Biotinmaleimid, nicht aber Stilben ermöglichen, Cys384 zu erreichen, zumal die

Membranpermeabilität bzw. -impermeabilität von Biotinmaleimid zeitabhängig ist (Loo

und Clarke, 1994). Ein nahe oder in der Membran liegendes Cys384 könnte noch von

Biotinmaleimid erreicht werden, während zytoplasmatische Cysteine innerhalb der

Inkubationszeit unmarkiert bleiben. In jedem Fall ist es als sicher anzusehen, dass

Cys384 vom Zytoplasma erreichbar sein muss. Für eine „positive Innenkontrolle“ wurde

zudem der Austausch S3C gewählt, der nach dem derzeitigen Sekundärstrukturmodell

im Zytoplasma liegen soll (Abb. IV.5.).

Page 131: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 123

Abb.IV.5. Ergebnisse aus Sequenz- und Strukturuntersuchungen im Sekundär-strukturmodell des IICMtl-Transporters aus E. coli (nach Sugiyama et al., 1991 und Lengeler et al., 1994; verändert)

Das Modell entspricht der Abb.I.2. erweitert durch den Sequenzvergleich aus Abb. IV.3. Die Aminosäuren sind wie folgt markiert: In dem Sequenzvergleich konservierte AS haben einen schwarzen Kasten, AS mit lediglich konservativen Austauschen einen schwarzen Kreis, AS mit Konsensussequenz einen leeren Kreis und AS ohne Konsensus keine Markierung. AS deren Position im Sekundärstrukturmodell in dieser Arbeit oder durch aktuelle Struktur-Untersuchungen bestätigt worden sind, sind in Grün dargestellt. Abweichende Positionen sind in Rot, unbestimmte Positionen in Blau dargestellt. Die Messungen der PhoA-Aktivitäten einzelner AS (Sugiyama et al., 1991) sind in den Farben Gelb (<20 Einheiten pro OD Einheit (= EpOD)), Orange (20-75 EpOD) und Braun (>75 EpOD) angegeben. Blaue Kreise zeigen Lücken bzw. Insertionen in den verglichenen AS-Sequenzen an. Leere Kreise stellen AS-Sequenzen unbestimmter Länge dar. Weitere Erläuterungen sind im Text zu finden.

Page 132: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

124 IV. Diskussion

Für die AS-Austausche S110C und S299C konnte keine allgemeine

Zugänglichkeit für Sulfhydrylreagenzien festgestellt werden. Im Falle des S110C sind

unzugängliche Strukturen denkbar, die durch eine Anlagerung der EIIBMtl-Domäne an

die Schleife 3 entstehen. So konnte gezeigt werden, dass zwischen zwei EIIMtl-Domänen

Disulfidbrücken durch Cys124-Cys124, Cys384-Cys384, Cys124-Cys384 sowie

innerhalb einer Domäne durch Cys124-Cys384 gebildet werden können (van Montfort

et al., 2001). Dadurch ergibt sich ein geringer Abstand der zwei Cys124 und Cys384 in

der B/C-Domäne und der Dimer-Verbindung, der mit maximal 5 Å vorgeschlagen wird.

Die Vielzahl der möglichen Disulfidkombinationen spiegelt hier die dynamischen

Prozesse der einzelnen Domänen in der Substrattranslokation wieder. Die EIIB-Domäne

muss dafür mit dem Cys384 in die Nähe der EIIA-Domäne gelangen, um die

Phosphorylgruppe vom His554 zu übernehmen und dann zur Phosphorylierung des

Substrats mit der EIIC-Domäne in Wechselwirkung treten. Des Weiteren kann die

Phosphatgruppe im Dimer zwischen den jeweiligen Monomeren von der EIIA- zur EIIB-

Domäne bzw. der EIIB-Domäne zum Substrat übertragen werden (van Weghel et al.,

1991a; Weng et al., 1992; Boer et al., 1996; Saraceni-Richards & Jacobson, 1997).

Dadurch wird deutlich, dass das aktive Zentrum der EIIB-Domäne unterschiedliche

Konformationen durchlaufen muss, die verschiedene Disulfidbrücken ermöglichen.

Der Grund für die Unzugänglichkeit des S299C-Austausches könnte eine

Lokalisation in der Membran sein. In diesem Bereich der Schleife 6 gibt es zwar drei

phoA-Fusionen, die für die Lage von I300, G310 und A311 im Periplasma sprechen

(Sugiyama et al., 1991). Hohe phoA-Aktivität kann aber auch erwartet werden, wenn

die drei AS in die Helix 6 gelegt werden würden. Für eine genaue Einordnung fehlen in

diesem Bereich weitere phoA-Fusionen. Grundsätzlich haben Deletionsfusionen den

Nachteil, dass das Protein nicht aktiv ist und carboxyterminale, für eine genaue Insertion

wichtige AS-Sequenzen deletiert sein können (Calamia & Manoil, 1990 und 1992).

Die Markierungs-Ergebnisse für die Austausche S158C, S199C und S212C

weisen deutlich auf periplasmatische Aminosäuren hin. Im Fall des Ser158 stützt dieses

Ergebnis das aktuelle Sekundärstruktur-Modell und die Messungen aus phoA-Fusionen

in diesem Bereich (Sugiyama et al., 1991), die Ser158 in die periplasmatische Schleife

4 legen. Widersprüchlich sind dagegen die Ergebnisse für S199C und S212C. Beide

Aminosäuren (Ser199 und Ser212) liegen in dem EIIMtl-Modell in der zytoplasmatischen

Schleife 5 und die Werte zahlreicher phoA-Fusionen bestätigen dies (Sugiyama et al.,

Page 133: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 125

1991). Es ist jedoch schon im ersten Teil der Arbeit auf die Besonderheit der Schleife 5

hingewiesen worden, die sich aus der relativ hohen Konservierung und den vielen

Mutationen, welche den Transport beeinflussen, ergibt. Dynamische Prozesse, die keine

Insertion von Teilen der Schleife 5 in die Membran erfordern, und Strukturen wie der

von Lengeler beschriebene hydrophile Kern vom EIICMtl (Lengeler 1990; Lengeler et al.

1994) könnten unter Umständen mit Deletionsfusionen nicht nachgewiesen werden.

Dies wäre der Fall, wenn die Schleife 5 für eine Faltung in die Membran die

Stabilisierung von weiteren, in dem jeweiligen Protein aber deletierten Strukturen

benötigte. Die nach den Markierungsversuchen periplasmatische Anordnung des

Ser199 und Ser212 ist ein starker Hinweis auf eine Faltung von Teilen der Schleife 5 in

die Membran, da die AS S242 nach Ergebnissen dieser Arbeit wiederum

zytoplasmatisch lokalisiert ist.

Das bisherige Sekundärstrukturmodell stützt sich lediglich auf die phoA-Fusionen

(Sugiyama et al., 1991) und mathematische und empirische Methoden zur Vorhersage

von Membranstrukturen in Proteinen (Kyte & Doolittle, 1982; Engelman et al., 1986;

von Heijne & Gavel, 1988; von Heijne, 1992; Lengeler et al., 1994). Weitere gezielte

Untersuchungen zur Lokalisation einzelner Aminosäuren im Protein gibt es nur wenige.

Als gesichert ist die Bestimmung des Ser124 in unmittelbarer Nähe zum Cys384

anzusehen (van Montfort et al., 2000). Ergebnisse aus Tryptophan-

Phosphoreszensstudien geben starke Hinweise auf das Vorkommen der AS Trp30 und

Trp42 in einer Membran-Helix, was der Helix 1 im Modell entsprechen sollte (Broos et

al., 2000). Die Studie gibt zudem noch gute Hinweise darauf, dass Trp109 und Trp117

im Zytoplasma liegen, so wie es im Modell vorgesehen ist.

Auf Grund der Ähnlichkeiten im Hydropathie-Muster und der Domänenstruktur,

wurden für das EIIMtl und EIIGlc ähnliche Topologien vermutet. Für EIIGlc wird allerdings in

einer Studie mit phoA- und lacZ-Deletionsfusionen ein Modell mit acht transmembranen

Helices vorgeschlagen (Buhr & Erni, 1993). Vergleicht man die Anordnung der

einzelnen Helices zwischen EIIMtl und EIIGlc (Abb. IV.6.), so sieht man annähernde

Übereinstimmungen bei den Schleifen Mtl1-Glc1, Mtl2-Glc2, Mtl3-Glc5, Mtl4-Glc6

und Mtl5-Glc8. Abweichungen gibt es durch die Schleifen Glc3, Glc4, Glc7 und Mtl6.

Glc3 und Glc4 stellen zwei Schleifen dar, die im Sekundärstrukturmodell von EIIMtl nicht

berücksichtigt werden.

Page 134: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

126 IV. Diskussion

1 70 EIIGlcxxxxxxxxxxxxxxxxIIIIIIIIIIIIIIIIIIIIIIIxxxxxxxGlc1xxxxxxxxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAxxxxGlc2x TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAxxxxxxxxxxxxxxxxxxxxxxxxxxxxBx K12 (1) ----------MSSDIKIKVQSFGRFLSNMVMPNIGAFIAWGIITALFIPTGWLPNETLAK-LVGPMITYL

TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxAxxxxxxxxxxxxxxxxxxxxxxxxxxxBx EIIMtlxxxxxxxxxxxxxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII xxxxxxxxxMtl1xxxxxxx AAAAAAAAAAA xxxxMtl2x xxxxxxxxxxxxxxxxxxxxxxxS3x xxxx xxxxxxxxxxxxxxxxxxW30xxxxxxxxxW42

71 140 EIIGlcxxxxxxxGlc2xxxxxIIxxxxxxxGlc3xxxxxxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAxxxxxxxxxGlc4xxxxxxxIIII TMHMMxxxxxxxBxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxDxxxxxxxxxxxxx

K12 (60) LPLLIGYTGGKLVGGERGGVVGAITTMGVIVGA------------DMPMFLGSMIAGPLGGWCIKHFDRW TMHMMxxxxxxxBxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxC/Dxxxxxxxxxxxxxxxxxxxxxxxxx EIIMtlxxxxxxxMtl2xxxxx IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII W109/C110 W117

141 210 EIIGlcxxxxxxIIIIIIIIIIIIIIxxxxxxxxxGlc5xxxxxxxxxAAAAAAAAAAAAAAAAAAAxxxxxxxGlc6xxxxxxxxIIIIIIIIIIIIIII TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxExxxxxxxxxxxxxxxxxxxxxxxxxxxxxFxxxxxxxxxxxxxxxxx

K12 (118) VDGKIKSGFEMLVNNFSAGIIGMILAILAFLGIGPIVEALSKMLAAGVNFMVVHDMLPLASIFVEPAKIL TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxExxxxxxxxxxxxxxxxxxxxxxxxxxxxxxFxxxxxxxxxxxxxxxx EIIMtlxxxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIII xxxxxxxxMtl3xxxxxxxx AAAAAAAAAAAAAAAAAA xxxxxxxxMtl4xxxxxxx IIIII xxxxxxxxxxxxxxxxxS124 S158

211 280 EIIGlc xxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIxxxxxxxGlc7xxxxxxAA

TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxHxx K12 (188) FLNNAINHGIFSPLGIQQSHELGKSIFFLIEANPGPGMGVLLAYMFFGRGSAKQSAGGAAIIHFLGGIHE

TMHMMxxxxxxxxxxxxxxxxxxxxxxxxxxxxxixxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxHx

EIIMtlxxxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S199 S212 S242

281 350 EIIGlcxxxxxxAAAAAAAxxxxxxxxGlc8xxxxxxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TMHMMxxxxxxxHxxxxxxxxxxxxxxxxxxxIxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxJxxxxxxxxx K12 (258) IYFPYVLMNPRLILAVILGGMTGVFTLTILGGGLVSPASPGSILAVLAMTPK------GAYFANIAGVCA

TMHMMxxxxxxxHxxxxxxxxxxxxxxxxxxxxxIxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxJx EIIMtlxxxxxxIIIIIIIIIIIIIIIIIIIIIIII xxxxxxxxMtl5xxxxxxxx AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA xxxMtl6x S158

351 390... EIIGlcxxxxxxIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TMHMMxxxxxxxJxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

K12 (322) AMAVSFVVSAILLKTSKVKE-EDDIEAATRRMQDMKAESK...(360)

TMHMMxxxxxxxJxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx EIIMtlxxxxxxxMtl6xxxxxxx IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Abb. IV.6. Vergleich der postulierten transmembranen Helices von EIICMtl und EIICGlc Die Abbildung zeigt die relative Lage postulierter Helices aus EIICGlc (Buhr & Erni, 1993) in der AS-Sequenz von EIICMtl (K12; Lee & Saier, 1983). Die Helices aus EIICGlc sind mit einem weißen Kasten versehen (Glc1 - Glc8), die Helices aus EIICMtl mit einem grauen Kasten (Mtl1 - Mtl6). AS-Bereiche im Zytoplasma sind mit grünen Is, die im Periplasma mit roten As gekennzeichnet. Die dargestellte AS-Sequenz ist aus der Abb.IV.3. mit den Markierungen übernommen worden. Transmembrane Bereiche nach der Vorhersage des Programms TMHMM (Sonnhammer et al., 1998; Abb.V.7.) sind mit blauen (EIIMtl) bzw. grünen (EIIGlc) Balken und alphabetisch markiert. Relevante AS sind hervorgehoben und nummeriert. Der Abbildung liegt ein Sequenzvergleich zwischen EIICMtl und EIICGlc zu Grunde (weiteres siehe Text).

Page 135: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 127

Die Tryptophan-Phosphoreszensstudien an W109 und W117 (Broos et al.,

2000), sowie die Cystein-Kreuzverbindungsstudien (van Montfort et al., 2000)

schränken das Vorkommen der Schleife Glc4 in EIICMtl stark ein. Damit entfällt aus

topologiesymmetrischen Gründen auch eine mögliche Schleife 3, zumal S158 in dieser

Arbeit im Periplasma lokalisiert wurde. Die Abweichungen der Schleifen Glc7 und Mtl6

erscheinen danach als eine Verschiebung der zwei aufeinander folgenden Helices in

den jeweiligen Proteinen.

Neben den experimentellen Möglichkeiten, die Topologie eines transmembranen

Proteins aufzuklären, gibt es noch zahlreiche Computerprogramme, die entsprechende

Vorhersagen berechnen. Allen Programmen ist gemein, dass die grundsätzlichen Regeln

der Ladungsverteilung und des bevorzugten Vorkommens bestimmter Aminosäuren

berücksichtigt wird (Kyte & Doolittle, 1982; Engelman et al., 1986; von Heijne &

Gavel, 1988; von Heijne, 1992). Das Programm TMHMM („transmembrane hidden

Markov model“) von Sonnhammer et al. (1998) hat in einem Vergleich mehrerer

Vorhersageprogramme am besten abgeschnitten (Möller et al., 2001). Das Prinzip von

TMHMM liegt in der dynamischen Berücksichtigung biologischer Besonderheiten bei der

Entstehung transmembraner Strukturen. So können z.B. Bereiche geringer

Hydrophobizität dennoch als transmembrane Helix beurteilt werden, wenn umliegende

topogene Strukturen dies unterstützen. Solche Helices kommen oft vor, wenn

transmembrane Helices untereinander hydrophile Wechselwirkungen ausüben.

Dennoch ist bei der Arbeit mit Vorhersage-Programmen immer zu berücksichtigen, dass

mögliche Strukturen nur vorgeschlagen werden und die angegebenen transmembranen

Bereiche variabel anzusehen sind. So wird eine Vorhersage als korrekt beurteilt, wenn

der angegebene Bereich für eine Helix mit dem der realen Helix überlappt. Daher

können die transmembranen Bereiche in variablen Größen angegeben werden.

Die Ergebnisse von TMHMM (Abb. IV.6. und IV.7.) bestätigen das

Sekundärstrukturmodell von EIIGlc in den acht postulierten transmembranen Helices,

insgesamt werden zehn mögliche Bereiche für Helices vorhergesagt. Diese zwei

zusätzlichen Helices würden in der Schleife 5 und hinter der Schleife 8 (Glc8) am Ort

der Schleife 6 (Mtl6) von EIICMtl liegen. Auch die Vorhersage für EIIMtl bestätigt das

entsprechende Sekundärstrukturmodell, obwohl die Helix 4 (Mtl4; hellblauer Balken in

Abb. IV.6.) nur bei der Berechnung für die Konsensussequenz von EIICMtl erkannt wird

(Für die Berechnung wurde die Konsensussequenz ohne Insertionen verwendet).

Page 136: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

128 IV. Diskussion

Abb. IV.7. TMHMM-Vorhersage der Topologien von EIICMtl und EIICGlc Die Abbildung zeigt die graphische Darstellung der Wahrscheinlichkeitsberechnungen des Programms TMHMM (Sonnhammer et al., 1998; Abb.V.7.) für EIICGlc und EIICMtl. Den Berechnungen für transmembrane, zytoplasmatische (innen) und periplasmatische (außen) Bereiche liegen die Konsensussequenzen für EIICMtl (Abb. IV.3.), EIICBMtl (Lee & Saier, 1983) und EIICBGlc (Erni & Zanolari, 1986) zu Grunde. Über den jeweiligen transmembranen Bereichen sind die ersten und letzten AS angegeben. Die zugehörigen Helices der aktuellen Topologiemodelle (Sugiyama et al., 1991; Buhr & Erni, 1993) sind mit römischen Ziffern gekennzeichnet. Einander im Sequenzvergleich entsprechende transmembrane Bereiche (Abb. IV.6.) sind alphabetisch gekennzeichnet (Näheres siehe Text).

Page 137: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 129

Die Ergebnisse für EIIMtl enthalten ebenfalls mehr Helices als das Modell

beinhaltet. Eine davon liegt in der Schleife 3 und zwei in der Schleife 5 des

Sekundärstrukturmodells von EIICMtl. Im Vergleich zwischen EIICGlc und EIICMtl fällt auf,

dass bei der Vorhersage, beiden Modellen entsprechend, mehr transmembrane

Bereiche für EIIGlc vorgeschlagen werden. Vieles weist darauf hin, dass EIIGlc und EIIMtl

Transporter gleichen Ursprungs sind, deren Funktion und Hydropathie-Muster ähnlicher

sind als die Topologie. Der Bereich für eine mögliche Helix in der Schleife 3 von EIIMtl

liegt dabei in einem Bereich, der im Sequenzvergleich eine Deletion bzw. Insertion

aufweist. Das kann auf eine Deletion im Bereich zweier transmembraner Helices in der

Schleife 3 von EIIMtl hinweisen. Mögliche transmembrane Bereiche in Schleife 5 von

EIICMtl weisen auf eine Membranassoziation der Schleife 5 hin. Sowohl in EIICMtl als

auch in EIICGlc gibt es auf die Schleife 5 folgend drei Bereiche für transmembrane

Helices in denen jeweils zwei Helices aus den Modellen eingeordnet werden. Die

Ergebnisse aus den zugehörigen phoA- bzw. phoA- und lacZ-Untersuchungen sprechen

für die Zuordnung wie sie in den Modellen erfolgt. Es sind allerdings bei dem Modell

für EIIMtl auf Grund weniger Daten in diesem Bereich Verschiebungen der

transmembranen Bereiche möglich. Anhand der in dieser Arbeit durchgeführten und

vorgestellten Untersuchungen sind verschiede Strukturen in EIICMtl denkbar (Abb. IV.8.).

Dabei wurden folgende Punkte gesondert berücksichtigt.

Die Maleimid-Markierungen des Ser3 bestätigt den zytoplasmatischen

Aminoterminus von EIIMtl. Die Helix 1 wird durch Tryptophan Phosphoreszensstudien

(Broos et al., 2000) gestützt. Die AS W109 und W117 in der Schleife 3 werden durch

dieselben Phosphoreszensstudien zytoplasmatisch lokalisiert. Kreuzverbindungsstudien

am S124 weisen auf eine unmittelbare Nähe zum C384 hin (van Montfort et al., 2000).

Die Maleimid-Markierungen des C110 zeigten eine Unzugänglichkeit der Aminosäure.

Ein Vergleich der postulierten Helices in EIIMtl und EIIGlc sowie die phoA-Untersuchungen

an den AS G91, A92 und D93 geben Hinweise auf deletierte Membran-Helices. Die

Helices 2 und 3 resultieren aus den vorangegangenen Ergebnissen sowie der

periplasmatische Zuordnung des Ser158 in der Schleife 4. Die Helix 4 fällt in der

TMHMM-Vorhersage schwach aus und die Bestimmung von Ser199 und Ser212 im

Periplasma spricht für eine Helix nach den AS 199 und 212. Allerdings sind die Werte

der phoA-Studien in diesem Bereich sehr gut, womit die Helix 4 beibehalten wird. Die

Daten aus den Mutantenselektionen und die Bestimmung von Ser199 und Ser212

Page 138: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

130 IV. Diskussion

sprechen für eine Faltung der Schleife 5 „in die Membran“, wie sie von Lengeler

(Lengeler 1990; Lengeler et al. 1994) vorgeschlagen wurde. Dabei sind die

dargestellten hellblauen Strukturen nicht zwingend als Helix anzusehen. Die in dieser

Arbeit nachgewiesene Relevanz von Glu218 für die Kopplung bestärkt die Verlegung

der AS in die Membran. Gleiches gilt für die AS His195 und Umgebung. Dabei wurde

die von TMHMM in der Schleife 5 vorgeschlagene Helix (AS212-234) eingebaut. Das

Ser242 liegt danach den Markierungen entsprechend im Zytoplasma. Das GIHE-Motiv

wird „nahe“ der Membran angeordnet, da seine zentrale Bedeutung in der Kopplung

von Transport und Phosphorylierung gezeigt werden konnte. Die Helices 5 und 6

werden dem ursprünglichen Modell entsprechend beibehalten.

Abb.IV.8. Mögliche 2D-Strukturen des IICMtl-Transporters aus E. coli

Die Darstellung entspricht der Abb. IV.5. Abweichend sind AS, die relevant am Transportprozess beteiligt sind rot markiert. Mögliche Membran-Strukturen sind entsprechend der Abb. IV.7. alphabetisch gekennzeichnet. Der hellblaue Bereich in der Membran stellt eine hydrophile Struktur dar, in der nicht zwingend Helices liegen.

Page 139: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

IV. Diskussion 131

Auf Grund der neuen Struktur, die eine Zurückfaltung der Schleife 5 nur im

kompletten Protein ermöglicht, lassen sich auch die PhoA-Aktivitäten der

Deletionsfusion L209 erklären, da in diesen Konstrukten die Faltung in die Membran

nicht erfolgt. Letztlich wurde in der Abbildung die nachgewiesene Nachbarschaft der AS

Ser124 aus der Schleife 3 und dem Cys384 aus EIIBMtl dargestellt.

Das abgebildete Modell (Abb. IV.8.) stellt nur mögliche Strukturen im EIICMtl dar.

Außerdem ist zu berücksichtigen, dass es sich dabei um eine von vielen möglichen

Konformationen handeln kann. Es sei aber darauf hingewiesen, dass das Modell alle

bisherigen Erkenntnisse über das EIIMtl vereinigt. Eine mögliche dreidimensionale

Anordnung der einzelnen Elemente zeigt die Abb.xIV.9. Dabei soll die Formung eines

hydrophilen Kerns wie in Abb.xI.3. dargestellt werden.

Abb.IV.9. Mögliche 3D-Strukturen des IICMtl-Transporters aus E. coli

Die Nummerierung der begrenzenden AS einer Struktur entspricht der Abb. IV.8. In rot sind wichtige am Transportprozess beteiligte AS sowie das dem C384 benachbarte S124 hervorgehoben. Das C384 wurde in der phosphorylierten Form dargestellt (C384~P).

Page 140: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

132 IV. Diskussion

Ein Dimer aus zwei solchen Anordnungen würde einen Ring aus stabilisierenden

transmembranen Helices formen, deren hydrophiler Kern das reaktive Zentrum bilden

würde. Dieses reaktive Zentrum entspricht dabei dem hochkonservierten Bereich

zwischen den AS L174 und P267 und würde nicht in der Membran, sondern in einem

Ring von transmembranen Helices liegen. In diesem Bereich befinden sich alle

Aminosäuren, die anhand der Mutantenselektion einen Einfluss auf den gekoppelten

Transport haben.

Weiterführende Untersuchungen sind erforderlich, um die vorgeschlagenen

Strukturen in dem Modell genauer bestimmen zu können. In dieser Arbeit konnte die

Methode der Biotinmaleimid Markierung in geeigneter Weise etabliert werden. Bei

folgenden Untersuchungen ist zu berücksichtigen, dass in dem aktiven Zentrum

dynamische Strukturen zu erwarten sind. Markierungen an einem phosphoryliertem EIIMtl

könnten diese aufzeigen.

Page 141: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

V. Zusammenfassung 133

V. Zusammenfassung

Die Konstruktion des Plasmids F’lac::dalD ermöglichte die Entwicklung stabiler

Systeme zur Selektion entkoppelter EIIMtl-Mutanten. Semisynthetische Stoffwechselwege

für den D-Mtl-Abbau wurden durch die Stämme LGS322-1/pGJ9∆137 und

LTK31-2/pGJ9 etabliert und erfolgreich zur Selektion von Mutanten eingesetzt. Von 30

untersuchten entkoppelnden Mutationen zeigten 15 den Austausch E218A, eine den

Austausch E218V und 14 den Austausch H256P. Die Phänotypen der Mutanten wurden

nach ortsspezifischer Mutagenese bestätigt und in unterschiedlichen

Stammhintergründen untersucht. Alle Mutationen ermöglichten im EIICMtl nur noch

entkoppelten Transport. Im vollständigen MtlA (EIICBAMtl) wurde bei dem Austausch

E218A gekoppelter und entkoppelter Transport gemessen. Mit DalD lag die

Generationszeit bei ~118min, ohne DalD bei ~190min (WT-Gt = ~85min mit und

ohne DalD). Kinetische Transportmessungen waren bei der Mutation E218A nicht

reproduzierbar und zeigten eine starke Abhängigkeit vom Plasmid- und

Stammhintergrund. Die Phosphorylierungsaktivität lag mit 307 [nM]1 im Bereich des WT

(278 [nM]1). Die Mutation E218V zeigte stärkere Auswirkungen auf den Phänotyp. Im

EIICBAMtl wurde auch gekoppelter und entkoppelter Transport festgestellt. Mit DalD lag

die Generationszeit bei ~110min, ohne bei ~305min. Transportmessungen waren

nicht möglich, die Phosphorylierungsaktivität lag bei 32 [nM]1. Mit der Mutation H256P

war im EIICBAMtl nur noch entkoppelter Transport möglich (Gt mit DalD = 283min /

ohne DalD = k.W.). Transport war nicht mehr messbar, die Phosphorylierungsaktivität

lag bei 2 [nM]1. Die Ergebnisse geben Hinweise darauf, dass die Kopplung von

Transport und Phosphorylierung durch die Affinität des EIICMtl zum Substrat beeinflusst

wird. Durch ortsspezifische Mutagenese konstruierte Doppelmutationen E218A/H256P

und E218V/H256P konnten D-Mtl in keinem Stammhintergrund verstoffwechseln. Die

Proteine mit den Doppelmutationen wurden in der Membran nachgewiesen, nicht aber

deren korrekte Faltung.

1[nM]= [nmol∗min-1∗mg Protein-1]

Page 142: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

134 V. Zusammenfassung

Die Selektion von Suppressormutanten ergab lediglich Aminosäureaustausche in

der AS256. Die Mutationen H256A, P256Q und P256S zeigten in Generationszeit,

Transport- und Phosphorylierungsmessungen annähernd WT-Werte. Besonderheiten bei

den Messungen von P256S lassen jedoch eine Beeinflussung der Dimerisierung durch

Mutationen in H256 vermuten. Aufgrund des ausschließlichen Auftretens von

entkoppelten Mutanten in E218 und H256 und des starken Selektionsdrucks, der keine

Suppressormutationen in anderen AS ermöglichte, ergibt sich eine essentielle Funktion

dieser AS in der Kopplung von Transport und Phosphorylierung.

Zur Analyse der Sekundärstruktur des EIIMtl mittels „Cystein-Scanning“ wurde ein

MtlA(His)6 in einem Überexpressionsvektor konstruiert. Nach ortsspezifischer

Mutagenese konnte die Aktivität des EIIMtl mit den Austauschen S3C, S110C, S158C,

S199C, S212C, S242C oder S299C gezeigt werden. Aus den Biotinmaleimid-

Markierungen ergab sich die Lokalisation von C3 und C242 im Zytoplasma sowie von

C158, C199 und C212 im Periplasma. Keine oder unbestimmbare Zugänglichkeiten

für Sulfhydrylreagenzien zeigten die AS C110, C299 und C384. Aus diesen

Ergebnissen ergibt sich eine Anordnung von Teilen der ursprünglichen Schleife 5 in der

Membran. Diese Schleife 5 bildet das aktive Zentrum, in der sich alle AS befinden,

deren direkte Beteiligung an Transport und Phosphorylierung nachgewiesen wurden. Es

ist nahe liegend, dass solche Strukturen in der Nähe der Substratbindung und des

Transports liegen sollten. Ein Modell, das diesen Anforderungen und den bisherigen

Ergebnissen entspricht, wurde vorgeschlagen. Es stellt aber lediglich eine Anregung für

weitere Untersuchungen dar.

Page 143: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 135

VI. Literaturverzeichnis Akagawa, E., Kurita, K., Sugawara, T., Nakamura, K., Kasahara, Y., Ogasawara, N., and Yamane, K. 1995. Detremination of a 17,484 bp nucleotid sequence around the 39 degrees region of the Bacillus subtilis chromosom and similarity analysis of the products of putative ORF’s. Microbiology 141: 3241-3245. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zahng, J., Zahng, Z., Miller, W., and Lipman, D.J. 1997. Grapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. Ames, G.F.L. 1986. Bacterial periplasmic transport systems: Structure, mechanism, and evolution. Ann. Rev. Biochem. 55: 397-425. Arber, W. 1960. Transduction of chromosomal genes and episomes in E.coli. Virologie 11: 273-288. Aulkemeyer, P., Ebner, R., Heilenmann, G., Jahreis, K., Schmid, K., Wrieden, S., and Lengeler, J.W. 1991. Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Molecular Microbiol. 5 (12): 2913-2922. Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A., and Struhl, K. (eds.) 1990. Current protocols in molecular biology. Greene Publishing and Wiley-Interscience, New York. Bachmann, B.J. 1990. Linkage map of Escherichia coli K12. Edition 8. Microbiol. Rev. 54: 130-197. Behrens, S., Mitchell, W., and Bahl, H. 2001. Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator. Microbiology 147(1): 75-86. Berlyn, M.K., Brooks Low, K., Rudd, K., and Singer, M. 1996. Linkage map of Escherichia coli K-12. In Frederick C. Neidhardt (editor in chief): Escherichia coli and Salmonella: Cellular and molecular biology - 2nd ed.. ASM Press, Washington D.C.: 1715-1902. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7: 1513. Boer, H., ten Hoeve-Duurkens, R.H., Schuurman-Wolters, G.K., Dijkstra, A., and Robillard, G.T. 1994. Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli. Kinetic evidence that the E. coli mannitol transport protein is a functional dimer. J. Biol. Chem. 269 (27): 17863-17871.

Page 144: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

136 VI. Literaturverzeichnis

Boer, H., ten Hoeve-Duurkens, R.H., Lolkema, J.S., and Robillard, G.T. 1995. Phosphorylation site mutants of the mannitol transport protein enzyme IImtl of Escherichia coli: studies on the interaction between the mannitol translocating C-domain and the phosphorylation site on the energy-coupling B-domain. Biochemistry 34 (10): 3239-3247. Boer, H., ten Hoeve-Duurkens, R.H., and Robillard, G.T. 1996. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Biochemistry 35: 12901-12908. Boyer, H.W., and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DANN in Escherichia coli. J. Mol. Biol. 41: 459-472. Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-54. Briggs, C.E., Khanderkar, S.S., and Jacobson, G.R. 1992. Structure/function relationships in the Escherichia coli mannitol permease: identification of regions important for membrane insertion, substrate binding oligomerization. Res. Microbiol. 143: 139-149. Broos, J., ter Veld, F., Robillard, G.T. 1999. Membrane protein-ligand interactions in Escherichia coli vesicles and living cells monitored via a biosynthetically incorporated tryptophan analogue. Biochemistry 38(31): 9798-803. Broos, J., Strambini, G.B., Gonnelli, M., Vos, E.P., Koolhof, M., and Robillard, G.T. 2000. Sensitive monitoring of the dynamics of a membrane-bound transport protein by tryptophan phosphorescence spectroscopy. Biochemistry 39(35): 10877-83. Budde, A. 1991. Genetische und biochemische Analyse der Pentitol- und Hexitoltransportsysteme und -stoffwechselwege in Stämmen von Escherichia coli. Diplomarbeit, Universität Osabrück. Buhr, A., Daniels, G.A., Erni, B. 1992. The glucose transporter of Escherichia coli. Mutants with impaired translocation activity that retain phosphorylation activity. J. Biol. Chem. 267(6): 3847-51. Buhr, A., and Erni, B. 1993. Membrane topology of the glucose transporter of Escherichia coli. J. Biol. Chem. 268: 11599-11603. Bullock, W.O., Fernandez, J.M., and Short, J.M. 1987. Xl1-blue: A High Efficiency Plasmid Transforming Reca Es. Biotechniques 5: 376-379. Calamia, J., and Manoil, C. 1990. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc. Natl. Acad. Sci. USA 87(13): 4937-41.

Page 145: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 137

Calamia, J., and Manoil, C. 1992. Membrane protein spanning segments as export signals. J Mol Biol 224(3): 539-43. Charnetzky, W.T., and Mortlock, R.P. 1974a. D-arabitol catabolic pathway in Klebsiella aerogenes. J. Bacteriol. 119: 170-175. Charnetzky, W.T., and Mortlock, R.P. 1974b. Close genetic linkage of the determinants of the ribitol and D-arabinitol catabolic pathways in Klebsiella aerogenes. J. Bacteriol. 119: 176-182. Davidson, A.L. 2002. Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J. Bacteriol. 184(5): 1225-33. Davis, T., Yamada, M., Elgort, M., and Saier Jr., M.H. 1988. Nucleotide sequence of the mannitol (mtl) operon in Escherichia coli. Molecular Microbiol. 2: 405-412. Davison, J., Heusterpreute, M., Chevalier, N., and Brunel, F. 1987. A ‘phase-shift’ fusion system for the regulation of foreign gene expression by lambda repressor in Gram-negative bacteria. Gene 60: 227-235. Decad, G.M., and Nikaido, H. 1976. Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J. Bacteriol. 128: 325-336. De Reuse, H., and Danchin, A. 1988. The ptsH, ptsI and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. J. Bacteriol. 170: 3827-3837. Dijkstra, D.S., Broos, J., Lolkema, J.S., Enequist, H., Minke, W., and Robillard, G.T. 1996. A fluorescence study of a singel tryptophan-containing mutans of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Biochem. 35: 6628-6634. Dotto, G.P. Enea, V., and Zinder, N.D. (1981). The Morphogenetic Signal of Bacteriophage f1. Virology 130: 252-256. Egan, J.B., and Morse, M.L. 1966. Carbohydrate transport in Staphylococcus aureus. III. Studies of the transport process. Biochim. Biophys. Acta 112: 63-73. Engelman, D.M., Steitz, T.A., Goldman, A. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15: 321-53. Erni, B., Zanolari, B. 1986. Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J. Biol. Chem. 261(35): 16398-403. Ferenci, T., and Kornberg, H.L. 1973. The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochem J. 132(2):341-7.

Page 146: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

138 VI. Literaturverzeichnis

Fischer, R., Eisermann, R., Reiche, B., and Hengstenberg, W. 1989. Cloning, sequencing and overexpression of the mannitol-specific enzyme-III-encoding gene of Staphylococcus carnosus. Gene 82:249-257. Fischer, R., and Hengstenberg, W. 1992. Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Sequence and expression in Escherichia coli and structural comparison with the enzyme II mannitol of Escherichia coli. Eur. J. Biochem. 204: 963-969. Frerman, F.E., and Bennet, W. 1973. Studies on the uptake of fatty acids by Escherichia coli. Arch. Biochem. Biophys. 159: 434-443. Furlong, C.E. 1987. Osmotic-shock sensitive transport systems. In Neidhardt, F.C., et al. (eds.): Escherichia coli and Salmonella typhimurium. ASM Press, Washington D.C.: 768-796. Giesen, U., Kleider, W., Berding, C., Geiger, A., Ørum, H., and Nielsen , P.E. 1998. A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 26 (21): 5004-5006. Griffith, J.K., Cuellar, D.H., Fordyce, C.A., Hutchings, K.G., and Mondragon, A.A. 1994. Structure and function of the class C tetracycline/H+ antiporter: Three independent groups of phenotypes are conferred by TetA(C) in Escherichia coli. Mol. Membr. Biol. 11: 271-277. Grisafi, P.L., Scholle, A., Sugiyama, J., Briggs, C., Jacobson, G.R., and Lengeler, J.W. 1989. Deletion Mutants of the Escherichia coli K-12 Mannitol Permease: Dissection of Transport-Phosphorylation, Phospho-Exchange, and Mannitol-Binding Activities. J. Bacteriol. 171: 2719-2727. Grübl, G. 1989. PTS-Chemotaxis von Escherichia coli K-12: Untersuchungen zum Mechanismus der Signaltransduktion. Diplomarbeit, Universität Osnabrück. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K.,Yokoyama, K., Han, C.-G., Ohtsubo, E., Nakayama, K., Murata, T.,Tanaka, M., Tobe, T., Iida, T., Takami, H., Honda, T., Sasakawa, C.,Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori, M. and Shinagawa, H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8(1): 11-22. Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Clayton, R.A., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Umayam, L.A., Gill, S.R., Nelson, K.E., Read, T.D., Tettelin, H., Richardson, D., Ermolaeva, M.D., Vamathevan, J., Bass, S., Qin, H., Dragoi, I., Sellers, P., McDonald, L., Utterback, T., Fleishmann, R.D., Nierman, W.C., White, O., Salzberg, S.L., Smith, H.O., Colwell, R.R., Mekalanos, J.J., Venter, J.C. and Fraser, C.M. 2000. DNA Sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477-483.

Page 147: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 139

Heller, K.B., Lin, E. C.C., and Wilson, T.H. 1980. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274-278. Henstra, S.A., Tolner, B., ten Hoeve-Duurkens, R.H., Konings, W.N., and Robillard, G.T. 1996. Cloning, expression and isolation of the mannitol transport protein from the thermophilic bacterium Bacillus stearothermophilus. J. Bacteriol. 178: 5586-5591. Heuberger, E.H., Veenhoff, L.M., Duurkens, R.H., Friesen, R.H., Poolman, B. 2002. Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation. J Mol Biol 317(4): 591-600. Heuel, H.J. 1997. Struktur und Funktion bakterieller Polyalkohol-Transportsysteme: Molekularbiologische und genetische Untersuchungen zum Transport und Stoffwechsel von D-Arabinitol, Ribitol und D-Mannitol in Enterobakterien. Dissertation, Universität Osnabrück. Heuel, H., Shakeri-Garakani, A., Turgut, Ş., and Lengeler, J.W. 1998. Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiology 144: 1631-1639. Honeyman, A.L., and Curtiss III, R. 2000. The mannitol-specific enzyme II (mtlA) gene and the mtlR gene of the PTS of Streptococcus mutans. Microbiology 146( 7):1565-1572. Jiang, W., Wu, L.-F., Tomich, J., Saier Jr., M.H., and Niehaus, W.G. 1990. Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Molecular Microbiol. 4: 2003-2006. Jin, Q., Yuan, Z., Xu, J., Wang, Y., Shen, Y., Lu, W., Wang, J., Liu, H., Yang, J., Yang, F., Zhang, X., Zhang, J., Yang, G., Wu, H., Qu, D., Dong, J., Sun, L., Xue, Y., Zhao, A., Gao, Y., Zhu, J., Kan, B., Ding, K., Chen, S., Cheng, H., Yao, Z., He, B., Chen, R., Ma, D., Qiang, B., Wen, Y., Hou, Y., Yu, J. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 30(20):4432-41. Jacobson, G.R. 1992. Interrelationships between protein phosphorylation and oligomerization in transport and chemotaxis via the Escherichia coli mannitol phosphotransferase system. Res. Microbiol. 143: 113-116. Jacobson, G.R., Tanney, L.E., Kelly, D.M., Palman, K.B., and Corn, S.B. 1983. Substrate and phospholipid specifity of the purifield mannitol permease of Escherichia coli. J. Cell. Biochem. 23: 231-240. Jacobson, G.R., Lee, C.A. and Saier, M.H., Jr. 1979. Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate:sugar phospho-transferase system. J. Biol. Chem. 254: 249-252. Kaback, H.R. 1990. Lac permease of Escherichia coli: on the path of the proton. Phil. Trans. R. Soc. Lond. B. 326: 425-436.

Page 148: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

140 VI. Literaturverzeichnis

Kessels, K. 1999. Molekulare Analyse und Selektion von Mutanten des Enzyms IIMtl in Escherichia coli K-12. Diplomarbeit, Universität Osnabrück. King, S.C., and Wilson, T.H. 1990. Identification of valine 177 as a mutation altering specifity for transport of sugars by Escherichia coli lactose carrier. J. Biol. Chem. 17: 9638-9644. Klawitter, S. 1992. Molekulare Charakterisierung und Sequenzierung von mtlA- Mutanten des Stammes E. coli K-12. Diplomarbeit, Universität Osnabrück. Klungsöyr, L. 1966. Purification of the mannitol-1-phosphate dehydrogenase of Escherichia coli. Biochim. Biophys. Acta. 128: 55-62. Koning, R.I., Keegstra, W., Oostergetel, G.T., Schuurman-Wolters, G., Robillard, G.T., Brisson, A. 1999. The 5 Å projection structure of the transmembrane domain of the mannitol transporter enzyme II. Mol. Biol. 287(5): 845-51. Kornberg, H.L., Lambourne, T.M., and Sproul, A.A. 2000. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 1808-1812. Kornberg, H.L. and Riordan, C. 1976. Uptake of galactose into Escherichia coli by facilitated diffusion. J. Gen. Microbiol. 94: 75-89. Krämer, R., 1994. Functional principles of solute transport systems: concepts and perspectives. Biochim. Biophys. Acta. 1185: 1-34. Kramer, B., Kramer, W., and Fritz, H.J. 1984. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DANN mismatch-repair system of E. coli. Cell 38: 879. Kundig, W., Gosh, S., and Roseman, S. 1964. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Natl. Acad. Sci. USA 52: 1067-1074. Kundig , W., Kundig, F.D., Anderson, B., and Roseman, S. 1966. Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system. J. Biol. Chem. 241 (13): 3243-3246. Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1): 105-32. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Lanz, R., Erni, B. 1998. The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of the invariant arginines, histidines, and domain linker. J. Biol. Chem. 273(20): 12239-43.

Page 149: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 141

Lawlis, V.B., Dennis, M.S., Chen, E.Y., Smith, D.H., and Henner, D.J. 1984. Cloning and sequencing of the xylose isomerase and xylulose kinase genes of Escherichia coli. Appl. Environ. Microbiol. 47 (1): 15-21. Lee, C.A., Jacobson, G.R., and Saier, M.H. 1981. Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 7336-7340. Lee, C.A., and Saier, M.H., Jr. 1983. Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J. Biol. Chem. 258: 10761-10767. Lengeler, J.W. 1966. Untersuchungen zum Glucoseeffekt bei der Synthese der Galaktose-Enzyme von Escherichia coli. Z. Vererbungsl. 98: 203-229. Lengeler, J.W. 1975a. Mutations affecting transport of the hexitols D-mannitol, D-glucitol and galactitol in Escherichia coli K-12: isolation and mapping. J. Bacteriol. 124: 26-38. Lengeler, J.W. 1975b. Nature and properties of hexitol transport systems in Escherichia coli. J. Bacteriol. 124: 39-47. Lengeler, J.W., and Steinberger, H. 1978. Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K-12. Mol. Gen. Genet. 164: 163-169. Lengeler, J.W. 1980. Polyhydric alcohol transport by bacteria. Meth. in Enzym. 125: 473-485. Lengeler, J.W., Mayer, R.J., Schmid, K. 1982. Phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli K-12. J. Bacteriol. 151(1): 468-471. Lengeler, J.W., and Vogler, A.P. 1989. Molecular mechanisms of bacterial chemotaxis towards PTS-carbohydrates. FEMS Microbiology Reviews 63: 81-92. Lengeler, J.W. 1990. Molecular analysis of the Enzyme II-complexes of the bacterial phosphotransferase system (PTS) as carbohydrate transport systems. Biochim. Biophys. Acta 1018: 155-159. Lengeler, J.W., Titgemeyer, F., Vogler, A.P., and Wöhrl, B.M. 1990. Structure and homologies of carbohydrate:phosphotransferase system (PTS) proteins. Phil. Trans. R. Soc. Lond. ser. B 326: 489-504. Lengeler, J.W., Jahreis, K., and Wehmeier, U.F. 1994. Enzymes II of the phosphoenolpyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim. Biophys. Acta 1188: 1-28.

Page 150: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

142 VI. Literaturverzeichnis

Lengeler, J.W., and Jahreis, K. 1996. Phosphotransferase Systems or PTSs as Carbohydrate Transport and as Signal Transduction Systems. Handbook of Biol. Phys. 2: 573-598. Lennox, E.S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1: 190-206. Lévy, S., Zeng, G.Q., and Danchin, A. 1990. Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene 86: 27-33. Lolkema, J.S., Dijkstra, D.S., ten Hoeve-Duurkens, R.H., and Robillard, G.T. 1990. The membran-bound domain of the phosphotransferase enzymeIIMtl of Escherichia coli constitutes a mannitol translocating unit. Biochemistry 29: 10659-10663. Lolkema, J.S., ten Hoeve-Duurkens, Ria H., Dijkstra, D.S., and Robillard, G.T. 1991a. Mechanistic Coupling of Transport and Phosphorylation Activity by Enzyme IImtl of the Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System. Biochem. 30: 6716-6721. Lolkema, J.S., Dijkstra, D.S., ten Hoeve-Duurkens, R.H., and Robillard, G.T. 1991b. Interaction between the cytoplasmic and membran-bound domain of enzymeIIMtl of the Escherichia coli phosphoenolpyruvat-dependet phosphotransferase system. Biochem. 30: 6721-6726. Lolkema, J.S., Dijkstra, D.S., and Robillard, G.T. 1992. Mechanics of Solute Trans-location Catalyzed by Enzyme IImtl of the Phosphoenolpyruvate-Dependent Phospho-transferase System of Escherichia coli. Biochem. 31: 5514-5521. Loo, W., and Clarke, M., 1995. Membrane Topology of a Cysteine-less Mutant of Human P-glycoprotein. J. Biol. Chem. 270 (2): 843-848. Lux, R. 1995. PTS-vermittelte Chemotaxis: Molekulare Analyse der Signaltransduktion bei Escherichia coli K-12. Dissertation, Universität Osnabrück. MacConkey, A. 1905. Lactose-fermenting bacteria in faeces. J. Hyg. 8: 333-379. Maloy, S.R., Bohlander, M., and Nunn, W.D. 1980. Elevated levels of glyoxylate shunt enzymes in Escherichia coli strains constitutive for fatty acid degradation. J. Bacteriol. 143: 720-725. Manayan, R., Tenn, G., Yee, H.B., Desai, J.D., Yamada, M., and Saier, M.H., Jr. 1988. Genetic analyses of the mannitol permease of Escherichia coli: isolation and characterization of a transport-deficient mutant which retains phosphorylating activity. J. Bacteriol. 170: 1290-1296. Mansour, N.M., Shearman, C.A. and Gasson, M.J. 2001. The mtlA gene of Lactococcus lactis MG1363. Unpublished Direct Submission (13-JUL-2001): DBSOURCE AF399759.

Page 151: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 143

May, B.J., Zhang, Q., Li, L.L., Paustian, M.L., Whittam, T.S. and Kapur, V. 2001. Complete genomic sequence of Pasteurella multocida, Pm70. Proc. Natl. Acad. Sci. U.S.A. 98(6): 3460-3465. McClelland, M., Sanderson ,K.E., Spieth, J., Clifton, S.W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du, F., Hou, S., Layman, D., Leonard, S., Nguyen, C., Scott, K., Holmes, A., Grewal, N., Mulvaney, E., Ryan, E., Sun, H., Florea, L., Miller, W., Stoneking, T., Nhan, M., Waterston, R. and Wilson, R.K 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413(6858): 852-856. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbour Laboratory, New York. Misset, O., Brouwer, M., and Robillard, G.T. 1980. Escherichia coli phosphoenolpyruvat-dependet phosphotransferase system. Evidence that the dimer is the active form of Enzyme II. Biochemistry 19: 883-890. Mitchell, P. 1963. Molecule, group and electron transfer through natural membranes. Biochem. Soc. Symp. 22: 142-169. Möller, S., Croning, M.D., Apweiler, R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics (7): 646-53. Montfort, B.A., Schuurman-Wolters, G.K., Duurkens, R.H., Mensen, M., Poolman, B., and Robillard, G.T. 2001. Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. J. Biol. Chem. 276(16): 12756-12763. Murphy, W.H. and Rosenblum, E.D. 1964 a. Mannitol catabolism by Staphylococcus aureus. Arch. Biochem. Biophys. 107: 292-297. Murphy, W.H. and Rosenblum, E.D. 1964 b. Genetic recombination by transduction between mannitol negativ mutans of Staphylococcus aureus. Proc. Soc. Exp. Biol. Med. 116: 544 -548. Neumann, B., Pospiech, A., and Schairer, H.U. 1992. Rapid isolation of genomic DNA from gram-negative bacteria. Trends in Genetics 8: 332-333. Nuoffer, C., Zanolari, B., and Erni, B. 1988. Glucose permease of Escherichia coli. The effect of cysteine to serine mutations on the function, stability, and regulation of transport and phosphorylation. J. Biol. Chem. 263:6647-6655. Otte, S. 2000. Untersuchungen zum molekularen Mechanismus der Substrattranslokation über das Enzym IIMtl und Analyse der mtl-Gene aus Klebsiella pneumoniae. Dissertation, Universität Osnabrück.

Page 152: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

144 VI. Literaturverzeichnis

Otte, S., Lengeler J.W. 2001. The mtl genes and the mannitol-1-phosphate dehydrogenase from Klebsiella pneumoniae KAY2026. FEMS Microbiol Lett 194 (2): 221-227. Otte, S., Scholle, A., Turgut, S., and Lengeler, J.W. 2003. Mutations Which Uncouple Transport and Phosphorylation in the D-Mannitol Phosphotransferase System of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14. J. Bacteriol. 185(7): 2267-2276. Overath, P., Pauli, G., and Schairer, H.U. 1969. Fatty acid degradation in Escherichia coli: induction and localization. J. Bacteriol. 132: 532-540. Parkhill, J., Wren, B.W., Thomson, N.R., Titball, R.W., Holden, M.T.G., Prentice, M.B., Sebaihia, M., James, K.D., Churcher, C., Mungall, K.L., Baker, S., Basham, D., Bentley, S.D., Brooks, K., Cerdeno-Tarraga, A.M., Chillingworth, T., Cronin, A., Davies, R.M., Davis, P., Dougan, G., Feltwell, T., Hamlin, N., Holroyd, S., Jagels, K., Leather, S., Karlyshev, A.V., Moule, S., Oyston, P.C.F., Quail, M., Rutherford, K., Simmonds, M., Skelton, J., Stevens, K., Whitehead, S. and Barrell, B.G. 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413(6855): 523-527. Pas, H.H., and Robillard, G.T. 1988 a. Enzyme IIMtl of the phosphoenolpyruvat-dependet phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier. Biochemistry 27: 5515-5519. Pas, H.H., and Robillard, G.T. 1988 b. S-phosphocysteine and phosphohistidine are the intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIImtl. Biochemistry 27: 5835-5839. Pas, H.H., Meyer, G.H., Kruizinga, W.H., Tamminga, K.S., van Weeghel, R.P., and Robillard, G.T. 1991. 31Phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J. Biol. Chem. 266: 6690-6692. Payne, J.W., and Gilvarg, C. 1968. Size restriction on peptide utilization in Escherichia coli. J. Biol. Chem. 243: 6291-6299. Pederson, P.L., and Carafoli, E. 1987. Ion motive ATPases. I. Ubiquity, properties and significance to cell function. Trends Biochem. Sci. 12: 146-150. Postma, P.W. 1976. Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium. FEBS Lett. 61:49-53. Postma, P,W., and J.B., Stock 1980. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. J. Bacteriol. 114: 476-484. Postma, P.W. 1981. Devective enzyme II-BGlc of the phosphoenolpyruvat:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J. Bacteriol. 147: 382-389.

Page 153: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 145

Postma, P.W., Keizer, H.G., and Koolwijk, P. 1986. Transport of Trehalose in Salmonella typhimurium. J. Bacteriol. 168:1107-1111. Postma, P.W., and Lengeler, J.W. 1985. Phosphoenolpyruvat:carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49 (3): 232-269. Postma, P.W., Lengeler, J.W., and Jacobson, G.R. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543-594. Postma, P.W., Lengeler, J.W., and Jacobson, G.R. 1996. Phosphoenolpyruvate: carbohydrate phosphotransferase systems. In Frederick C. Neidhardt (editor in chief): Escherichia coli and Salmonella: Cellular and molecular biology - 2nd ed.. ASM Press, Washington D.C.: 1149-1174. Reiche, B., Frank, R., Deutscher, J., Meyer, N., and Hengstenberg, W. 1988. The staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme IImtl of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme IImtl of Escherichia coli. Biochemistry 27 (17): 6512-6516. Reiner, A.M. 1977. Xylitol and D-Arabitol toxicities due to depressed fructose, galactitol, and sorbitol phosphotransferase of Escherichia coli. J. Bacteriol. 132: 166-173. Richey, D.P., and Lin, E.C.C. 1972. Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J. Bacteriol. 112: 784-790. Robillard, G.T., and Blaauw, M. 1987. Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry 26 (18): 5796-5803. Robillard, G.T., Boer. H., van Weeghel, R.P., Wolters, G., and Dijkstra, A. 1993. Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry 32: 9553-9562. Ruijter, G.J.G., Postma, P.W., and van Dam, K. 1991. Energetics of glucose uptake in Salmonella typhimurium mutants containing uncoupled enzyme IIGlc. Arch. Microbiol. 155: 234-237. Ruijter, G.J.G., van Meurs, G., Verwey, M.A., Postma, P.W., and van Dam, K. 1992. Analysis of Mutations That Uncouple Transport from Phosphorylation in Enzyme IIGlc of the Escherichia coli Phosphoenolpyruvate-Dependent Phosphotransferase System. J. Bacteriol. 174: 2843-2850.

Page 154: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

146 VI. Literaturverzeichnis

Ruijter, G.J.G., Verwey, M.A., Postma, P.W., and van Dam, K. 1992a. Characterization of uncoupled IIMan of the phosphotransferase system in Escherichia coli. Coupling of transport to phosphorylation and control of glucose metabolism. Academische proeschrift, Universiteit van Amsterdam: 73-79. Saier, M.H. Jr. 1993. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J. Cell. Biochem. 51: 62-68. Saiki, R., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Ehrlich, H.A., and Arnheim, M. 1985. Enzymatic amplification of β-globin genomic sequences and restriction sites of sickle cell anemia. Science 230: 1350-1354. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory. Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467. Sanger, F.S. 1981. Determination of nucleotid sequences in DNA. Science 214: 1205-1210. Saraceni-Richards, C.A., and Jacobson, G.R. 1997. A conserved Glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. J. Bacteriol. 179: 1135-1142. Schnetz, K., Toloczyki, C., Rak, B. 1987. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169 (6): 2579-2590. Schmid, K., Schupfner, M., and Schmitt, R. 1982. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J. Bacteriol. 151: 68-76. Schmid, K., Ebner, R., Altenbuchner, J., Schmitt, R., and Lengeler, J.W. 1988. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol. Microbiol. 2: 1-8. Schmid, K., Ebner, R., Jahreis, K., Lengeler, J.W., and Titgemeyer, F. 1991. A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol. Microbiol. 5 (4): 941-950. Schmitt, R. 1968. Analysis of melibiose mutants deficient in α-galactosidase and thiomethylgalaktosidase permease II in Escherichia coli K-12. J. Bacteriol. 69: 462-471. Scholle, A. 1993. Molekulare Analyse der Transportschritte des Mannitol-Transport-Systems von Escherichia coli K-12. Dissertation, Universität Osnabrück. Smith, M. 1985. In vitro mutagenesis. Ann. Rev. Genet. 19: 423-462.

Page 155: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 147

Solomon, E., and Lin, E.C.C. 1972. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12. J. Bacteriol. 111: 566-574. Sonnhammer, E.L., von Heijne, G., Krogh, A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. In J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen, (edts.), Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology: 175-182. Menlo Park, CA, 1998. AAAI Press. Sprenger, G.A. 1993. Two open reading frames adjacent to the Escherichia coli K-12 Transketolase (tkt) gene show high similarity to the mannitol phosphotransferase system enzymes from Escherichia coli and various gram-positive Bacteria. Biochim. Biophys. Acta 1158: 103-106. Sprenger, G.A., and Lengeler, J.W. 1984. L-sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K-12 and chemotaxis toward sorbose. J. Bacteriol. 157: 39-45. Stephan, M.M., and Jacobson, G.R. 1986. Subunit interaction of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry 25: 4046-4051. Stephan, M.M., and Jacobson, G.R. 1986. Membrane Disposition of the Escherichia coli Mannitol Permease: Identification of Membrane-Bound and Cytoplasmic Domains. Biochemistry 25: 8230-8234. Studier, F.W., and B.A. Moffat 1986. Use of the bacteriophage T7 RNA polymerase to selective high level expression of cloned genes. J. Mol. Biol. 189: 113. Sugiyama, J.E., Mahmoodian, S., and Jacobson, G.R. 1991. Membrane topology analysis of Escherichia coli mannitol permease by using a nested-deletion method to create mtlA-phoA fusions. Proc. Natl. Acad. Sci. USA 88: 9603-9607. Sutcliffe, J.G. 1978. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symposium on Quantitative Biology. 43: 77-90. Tabor, S., and Richardson, C.C. 1985. A bacteriophage T7 RNA polymerase/ promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078. Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Fuji, F., Hirama, C., Nakamura, Y., Ogasawara, N., Kuhara, S., Horikoshi, K. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28(21):4317-31. Tanaka, S., and Lin, E.C.C. 1967. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system. Proc. Natl. Acad. Sci. USA 57: 913-919.

Page 156: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

148 VI. Literaturverzeichnis

Tanaka, S., Lerner, S.A., and Lin, E.C.C. 1967. Replacement of a phosphoenol-pyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J. Bacteriol. 93: 642-648. Tchieu, J.H., Norris, V., Edwards, J.S., Saier, M.H. Jr. 2001. The complete phosphotranferase system in Escherichia coli. J. Mol. Microbiol. Biotechnol. 3 (3): 329-346. van Montfort, B.A., Schuurman-Wolters, G.K., Duurkens, R.H., Mensen, R., Poolman, B., and Robillard, G.T. 2001. Cysteine Cross-linking Defines Part of the Dimer and B/C Domain Interface of the Escherichia coli Mannitol Permease. J. Biol. Chem. 276 (16): 12756-12763. van Weeghel, R.P., G. Meyer, W. Keck, and Robillard, G.T. 1991a. Phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli: overexpression, purification, and characterisation of the enzymatically active C-terminal domain of Enzyme IIMtl equivalent to Enzyme IIIMtl. Biochem. 30: 1768-1773. van Weeghel, R.P., Meyer, G., Pas, H.H., Keck, W., and Robillard, G.T. 1991b. Cytoplasmic phosphorylating domain of the mannitol-specific transport protein of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli: overexpression, purification, and functional complementation with the mannitol binding domain. Biochem. 30: 9478-9485. van Weeghel, R.P., van der Hoek, Y.Y., Pas, H.H., Elferink, M., Keck, W., and Robillard, G.T. 1991 c. Details of mannitol transport in Escherichia coli elucidated by site-specific mutagenesis and complementation of phosphorylation site mutants of the phosphoenolpyruvate-dependent mannitol-specific phosphotransferase system. Biochem. 30: 1768-1773. Vogler, A.P., and Lengeler, J.W. 1991. Comparison of the sequences of the nagE operons from Klebsiella pneumoniae and Escherichia coli K-12: enhanced variability of the enzyme IINag in regions connecting functional domains. Mol. Gen. Genet. 230: 270-276. Vogler, A.P., Broekhuizen, C.P., Schuitema, A., Lengeler, J.W., and Postma, P.W. 1988. Suppression of IIIGlc-defects by enzymes IINag and IIBgl of the PEP:carbohydrate phosphotransferase system. Mol. Microbiol. 2 (6): 719-726. Vogler, A. P., and Lengeler, J. W. 1988. Complementation of a truncated membrane-bound Enzyme IINag from Klebsiella pneumoniae with a soluble Enzyme III in Escherichia coli K12. Mol. Gen. Genet. 213: 175-178. von Heijne, G., Gavel, Y. 1988. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174(4): 671-8. von Heijne, G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J.Mol.Biol. 225: 487-494.

Page 157: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VI. Literaturverzeichnis 149

Vos, E., Broos, J., and Poolman, B. Unveröffentlicht - Referenz siehe Van Montfort et al. (2001). Wallace, R.B., Johnson M.J., Suggs, S.V., Miyoshi, K., Bhatt, R., and Itakura, K. 1981. A set of synthetic oligodeoxyribonucleotide primers for DNA sequencing in the plasmid vector pBR322. Gene 16(1-3): 21-26. Waters, S.H., Rogowsky, P., Grinstead, J., Altenbuchner, J., and Schmitt, R. 1983. The teracycline-resistance determinants of RP1 and Tn1721: nucleotide sequence analysis. Nucleic Acid Res. 11: 6089-6105. Weigel, N., Kukuruzinska, M.A., Nakazawa, T., Waygood, E.B., and S. Roseman 1982. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by Enzyme I of Salmonella typhimurium. J. Biol. Chem. 257: 14477-14491. Welch, R.A., Burland, V., Plunkett, G. III., Redford, P., Roesch, P., Rasko, D., Buckles, E.L., Liou, S.R., Boutin, A., Hackett, J., Stroud, D., Mayhew, G.F., Rose, D.J., Zhou, S., Schwartz, D.C., Perna, N.T., Mobley, H.L., Donnenberg, M.S., Blattner, F.R. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U S A 99(26):17020-17024. Weng, Q.-P., Elder, J., and Jacobson, G.R. 1992. Site-specific Mutagenesis of Residues in the Escherichia coli Mannitol Permease That Have Been Suggested to Be Important for its Phosphorylation and Chemoreception Functions. J. Biol. Chem. 267 (27): 19529-19535. Weng, Q.-P., and Jacobson, G.R. 1993. Role of a Conserves Histidine Residue, His-195, in the Activities of the Escherichia coli Mannitol Permease. Biochem. 32: 11211-11216. West, I.C. 1970. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 41: 655-661. West, I.C., and Mitchell, P. 1972. Proton-coupled ß-galactoside translocation in non-metabolizing Escherichia coli. Bioenergetics 3: 445-462. White, D.W., and Jacobson, G.R. 1990. Molecular cloning of the C-terminal domain of Escherichia coli D-mannitol permease: expression, phosphorylation, and complementation with C-terminal permease deletion proteins. J. Bacteriol. 172: 1509-1515. Wolff, Br. J.B., and Kaplan, N.O. 1956. D-mannitol 1-phosphate dehydrogenase from Escherichia coli. J. Biol. Chem. 218: 849-869. Wood, W.A., McDohough, M.J., and Jacobs, L.B. 1961. Ribitol ans D-arabitol utilization by Aerobacter aerogenes. J. Biol. Chem. 236: 2190-2195.

Page 158: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

150 VI. Literaturverzeichnis

Yanisch-Perron, C., Vieira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp 18 and pUC19 vectors. Gene 33: 103-119. Zeppenfeld, T., Larisch, C., Lengeler, J.W., and Jahreis, K. 2000. Glucose Transporter Mutants of Escherichia coli K-12 with Changes in Substrate Recognition of IICBGlc and Induction Behavior of the ptsG Gene. J. Bacteriol. 182 (16): 4443-4452.

Page 159: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VII. Anhang 151

LEBENSLAUF UND AUSBILDUNGSGANG

Persönliche Daten

Şevket Turgut geb. 16.03.1968 in Zürich ledig seit 07.1999 deutsche Staatsangehörigkeit, davor türkische

von - bis Schulbildung

1974 - 1978 Grundschule in Bad Pyrmont

1978 - 1988 Humboldt-Gymnasium in Bad Pyrmont Abschluss: allgemeine Hochschulreife am 27.05.1988

von - bis Hochschulstudien

10.1988 - 09.1989 Studium der Chemie an der Universität Paderborn, FB Chemie

10.1989 - 07.1995

Studium der Biologie an der Universität Osnabrück, FB Biologie / Chemie Abschluss: Dipl. biol. Titel der Diplomarbeitarbeit in der AG Genetik bei Herrn Professor J.W. Lengeler: „Molekulargenetische Untersuchungen des rbt-Operons für den Ribitol-Transport und -Stoffwechsel aus dem Bakterium Klebsiella pneumoniae KAY2026“

10.1995 - 2003

Promotionsstudium in der AG Genetik an der Universität Osnabrück. Thema der Arbeit: „Molekulargenetische und biochemische Untersuchungen zur Funktion und Struktur des Enzym IIMtl aus Escherichia coli K-12“

Veröffentlichungen

1997

Heuel, H., Turgut, S., Schmid, K., and Lengeler, J.W. Substrate Recognition Domains As Revealed by Active Hybrids between the D-Arabinitol and Ribitol Transporters from Klebsiella pneumoniae. J. Bacteriol. 179: 6014-6019.

1998 Heuel, H., Shakeri-Garakani, A., Turgut, S., and Lengeler, J.W. Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiology 144: 1631-1639.

2003

Otte, S., Scholle, A., Turgut, S., and Lengeler, J.W. Mutations Which Uncouple Transport and Phosphorylation in the D-Mannitol Phosphotransferase System of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14. J. Bacteriol. 185(7): 2267-2276.

Page 160: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

152 VII. Anhang

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. Joseph W. Lengeler für die Bereitstellung der Promotionsmöglichkeit an seinem Lehrstuhl. Ohne seine überdurchschnittliche Unterstützung bei der Fertigstellung und die vielen anregenden und informativen Gespräche wäre diese Arbeit nicht möglich gewesen. Nicht zu vergessen ist die Schulung der persönlichen Kritikfähigkeit, die sich auch außerhalb der Universität als sehr hilfreich erweist. Herrn Dr. Kurt Schmid danke ich ebenfalls für die Unterstützung während dieser Arbeit und die vielen praktischen Tipps sowie unterhaltsamen und hilfreichen Gespräche. Bei Herrn Prof. Dr. Karlheinz Altendorf bedanke ich mich für die freundliche Übernahme des Koreferats. Herrn Prof. Dr. George T. Robillard danke ich für Ermöglichung der Versuche an seinem Lehrstuhl der Reichsuniversität Groningen unter der freundlichen Mithilfe von Erwin Vos. Herrn Dr. Heinrich Jung danke ich für die informativen und sehr hilfreichen Gespräche rund um das „Cystein-Scanning“ sowie seinen Einsatz in der Prüfungskomission. Allen Mitgliedern der Arbeitsgruppe danke ich für die hilfreichen Gespräche und das sehr angenehme Arbeitsklima, insbesondere der Besatzung des Nordseite Angi, Dana, Hedwig, Jens, Jörg und Knut. Bei Georg Zimmermann möchte ich mich auch im Namen der Arbeitsgruppe bedanken, da er mich jederzeit bei meiner Arbeit als Computerbeauftragter unterstützt hat und die Systeme trotz Mr. Gates am Laufen gehalten wurden. Nancy Tholema danke ich für die „Starthilfe“ beim Cystein-Scanning und das sehr gewisenhafte Korrekturlesn dre Arbeit. Ganz besonderer Dank gilt Dette, die nicht nur durch ihre Hilfe bei den Markierungsversuchen zum Gelingen dieser Arbeit beigetragen hat.

Page 161: Molekulargenetische und biochemische Untersuchungen …nbn:de:gbv:... · PEP Phosphoenolpyruvat ... Hinzu kommen die Fähigkeiten, Signale aus der Umgebung zu erkennen und weiterzuleiten,

VII. Anhang 153

Eidesstattliche Erklärung

Ich versichere, dass die vorliegende Arbeit mein erster Promotionsversuch ist und ich die

beschriebenen Arbeiten selbst durchgeführt und keine anderen als die beschriebenen

Quellen und Hilfsmittel benutzt habe.

Osnabrück, März 2003 ............................................. (Şevket Turgut)