9
This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung 4.0 Lizenz. 918 W. W. FRANKE UND B. ERMEN tion3’ n ’22 wird durch diesen Stoffwechselweg ge deckt. Die sog. Shikimisäure-Prephensäure-Sequenz ohne den Pentosephosphatzyklus-Vorspann nicht denkbar — ist Voraussetzung zur Bildung vieler aromatischer Verbindungen, die im Wundgewebe intensiv hergestellt werden 23. Auch werden Pentose- derivate in die Histidin- 24 und Tryptophan-Syn these 25 einbezogen, was u. a. für die wundbedingte IES-Synthese von Bedeutung sein könnte. Das im Pentosezyklus gebildete NADPH ist für die im Wundgewebe nachgewiesene Fettsäuresyn these erforderlich. Darüber hinaus setzt die Protein synthese des Kartoffelwundgewebes eine ausreichende Menge an Aminosäuren voraus, deren Konzentra tion während der anfänglichen Phase der Wundhei lung stark verringert wird 26. Für die Nachlieferung 22 M. J. S ampson u . G. G. L aties , Plant Physiol. 43, 1011 [1968]. 23 K. R. H anson u . M. Z ucker , J. biol. Chemistry 238, 1105 [1963]. ist die NADPH-spezifische reduktive Aminierung von a-Ketosäuren zu Glutamat von Bedeutung, zu mal sich die Aktivität der Glutamatdehydrogenase nach Derepression des Parenchyms erhöht (eigene, unveröffentlichte Ergebnisse). Der notwendige Ausschluß jeglicher Betrachtung struktureller Gegebenheiten der Zelle, wichtiger Stoffwechselbereiche wie Nucleinsäurestoffwechsel. Protein-, Fettsäure- und Steroidalkaloidsynthese. Säureumsatz und alle Änderungen in der Atmungs kette der Wundzelle erfordert dringlich weitere Untersuchungen zur Frage der Derepression in pflanzlichen Geweben. Frau M argot K rause und Fräulein R enate B erk - ner danken wir für ausgezeichnete technische Assistenz. 24 B. L. H orecker , 8. Coll. Ges. Physiol. Chem. 1958. 25 C. Y anofsky , Biochem. biophysica Acta [Amsterdam] 20. 438 [1956]. 26 J. R aths , Dissertation, Humboldt-Universität, Berlin 1958. Negative Staining of Plant Slime Cellulose: An Examination of the Elementary Fibril Concept W erner W. F ranke and B ärbel E rmen Lehrstuhl für Zellbiologie, Institut für Biologie II, Universität Freiburg i. Br. (Z. Naturforschg. 24 b, 918— 922 [1969] ; eingegangen am 13. März 1969) Die Cellulose pflanzlicher Schleime (von Quittenkernen und Senfsamen) wurde direkt, nach Aceton-Fällung und nach Alkali-Extraktion im Negativkontrastverfahren (Phosphorwolframsäure und Uranylacetat) auf hydrophilisierten Trägerfolien elektronenmikroskopisch untersucht. Die ein zeln liegenden Fibrillen besitzen Breiten von 100 Ä bis hinunter zu 10—12 Ä. Derartig dünne Fibrillen stellen die kleinsten bisher im Elektronenmikroskop nachgewiesenen Polysaccharidstruk turen dar. Darüber hinaus läßt sich feststellen, daß die für Cellulosefibrillen charakteristische band förmige Struktur auch für Fibrillen mit Abmaßen im Bereich der „Elementarfibrillen“ von Frey- Wyssling und M ü h le th a le r zutrifft. Die kleinsten noch gut meßbaren Fibrillenbänder haben Querschnitte von etwa 12 —15'30 —40 A. Die Messungen widerlegen bisher weithin akzeptierte Vorstellungen von einer Elementarfibrille mit einem Querschnitt von ca. 35-35 Ä als kleinster Struk tureinheit nativer Cellulose. Aus den gefundenen Fibrillendimensionen ergeben sich Folgerungen für die gegenwärtig zur Diskussion stehenden Cellulose-Modelle. According to a hypothesis of F rey -Wyssling and M ühlethaler 1-5 the ultimate structural unit of native cellulose is the so-called elementary fibril with a cross-section of about 35 x 35 Ä. The larger cellulose mierofibrils showing widths in the 100 to 300 Ä range are thought of as being composed 1 K. M ühlethaler , Beih. Z. Schweiz. Forstverw. 30, 55 [I960]. 2 Ä. Frey-Wyssling u. K. Mühlethaler, Makromolekulare Chem. 62, 25 [1963]. 3 A. F rey -Wyssling . K. M ühlethaler u. R .M uggli , Holz- Roh- u. Werkstoff 24, 443 [1963]. of these elementary fibrils by lateral fasciation in the direction of the 101 plane2,6. This concept of a unit elementary fibril has been accepted by many authors (e.g. I.e .7,8) and served as a basis for constructing models of the arrangement of the cel lulose molecules within the native fibril (e.g. 4 K. Mühlethaler, Ann. Rev. Plant Physiol. 18. 1 [1967] . 5 K. M ühlethaler u . R. M uggli , Papier 23, 15 [1969]. 6 A. F rey -Wyssling , Science [Washington] 119,80 [1954], 7 E. S chnepf , Planta 67. 213 [1965]. 8 A. N. J. H eyn , J. Cell Biol. 29, 181 [1966] .

Negative Staining of Plant Slime Cellulose: An Examination of the

  • Upload
    vukien

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Negative Staining of Plant Slime Cellulose: An Examination of the

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution4.0 International License.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschungin Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung derWissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht:Creative Commons Namensnennung 4.0 Lizenz.

918 W. W. FRANKE UND B. ERMEN

tion3’ n ’ 22 wird durch diesen Stoffwechselweg ge­

deckt. Die sog. Shikimisäure-Prephensäure-Sequenz

— ohne den Pentosephosphatzyklus-Vorspann nicht

denkbar — ist Voraussetzung zur Bildung vieler

aromatischer Verbindungen, die im Wundgewebe

intensiv hergestellt werden 23. Auch werden Pentose-

derivate in die Histidin- 24 und Tryptophan-Syn­

these 25 einbezogen, was u. a. für die wundbedingte

IES-Synthese von Bedeutung sein könnte.

Das im Pentosezyklus gebildete NADPH ist für

die im Wundgewebe nachgewiesene Fettsäuresyn­

these erforderlich. Darüber hinaus setzt die Protein­

synthese des Kartoffelwundgewebes eine ausreichende

Menge an Aminosäuren voraus, deren Konzentra­

tion während der anfänglichen Phase der Wundhei­

lung stark verringert wird 26. Für die Nachlieferung

22 M. J. S a m p s o n u . G. G. L a t ie s , Plant Physiol. 43, 1011[1968].

23 K. R . H a n s o n u . M. Z u c k e r , J. biol. Chemistry 238, 1105[1963].

ist die NADPH-spezifische reduktive Aminierung

von a-Ketosäuren zu Glutamat von Bedeutung, zu­

mal sich die Aktivität der Glutamatdehydrogenase

nach Derepression des Parenchyms erhöht (eigene,

unveröffentlichte Ergebnisse).

Der notwendige Ausschluß jeglicher Betrachtung

struktureller Gegebenheiten der Zelle, wichtiger

Stoffwechselbereiche wie Nucleinsäurestoffwechsel.

Protein-, Fettsäure- und Steroidalkaloidsynthese.

Säureumsatz und alle Änderungen in der Atmungs­

kette der Wundzelle erfordert dringlich weitere

Untersuchungen zur Frage der Derepression in

pflanzlichen Geweben.

Frau M a r g o t K r a u s e und Fräulein R e n a t e B e r k -

n e r danken wir für ausgezeichnete technische Assistenz.

24 B. L . H o r e c k e r , 8. Coll. Ges. Physiol. Chem. 1958.25 C. Y a n o f s k y , Biochem. biophysica Acta [Amsterdam] 20.

438 [1956].26 J. R a t h s , Dissertation, Humboldt-Universität, Berlin 1958.

Negative Staining of Plant Slime Cellulose: An Examination of the Elementary Fibril Concept

W e r n e r W . F r a n k e and Bärbel Er m e n

Lehrstuhl für Zellbiologie, Institut für Biologie II, Universität Freiburg i. Br.

(Z. Naturforschg. 24 b, 918— 922 [1969] ; eingegangen am 13. März 1969)

Die Cellulose pflanzlicher Schleime (von Quittenkernen und Senfsamen) wurde direkt, nach Aceton-Fällung und nach Alkali-Extraktion im Negativkontrastverfahren (Phosphorwolframsäure und Uranylacetat) auf hydrophilisierten Trägerfolien elektronenmikroskopisch untersucht. Die ein­zeln liegenden Fibrillen besitzen Breiten von 100 Ä bis hinunter zu 10—12 Ä. Derartig dünne Fibrillen stellen die kleinsten bisher im Elektronenmikroskop nachgewiesenen Polysaccharidstruk­turen dar. Darüber hinaus läßt sich feststellen, daß die für Cellulosefibrillen charakteristische band­förmige Struktur auch für Fibrillen mit Abmaßen im Bereich der „Elementarfibrillen“ von Frey- W y s s l in g und M ühlethaler zutrifft. Die kleinsten noch gut meßbaren Fibrillenbänder haben Querschnitte von etwa 12 —15'30 —40 A. Die Messungen widerlegen bisher weithin akzeptierte Vorstellungen von einer Elementarfibrille mit einem Querschnitt von ca. 35-35 Ä als kleinster Struk­tureinheit nativer Cellulose. Aus den gefundenen Fibrillendimensionen ergeben sich Folgerungen für die gegenwärtig zur Diskussion stehenden Cellulose-Modelle.

According to a hypothesis of F r e y -Wy s s l in g

and M ü h l e t h a l e r 1-5 the ultimate structural unit

of native cellulose is the so-called elementary fibril

with a cross-section of about 35 x 35 Ä. The larger

cellulose mierofibrils showing widths in the 100 to

300 Ä range are thought of as being composed

1 K. M ü h l e t h a l e r , Beih. Z. Schweiz. Forstverw. 30, 55 [I960].

2 Ä . F rey-W yss lin g u. K. M ü h le t h a le r , Makromolekulare Chem. 62, 25 [1963].

3 A. F r e y -Wy s s l in g . K. M ü h l e t h a l e r u. R .M u g g l i , Holz- Roh- u. Werkstoff 24, 443 [1963].

of these elementary fibrils by lateral fasciation in

the direction of the 101 plane2,6. This concept of a

unit elementary fibril has been accepted by many

authors (e.g. I .e .7,8) and served as a basis for

constructing models of the arrangement of the cel­

lulose molecules within the native fibril (e.g.

4 K. M ü h l e t h a l e r , Ann. Rev. Plant Physiol. 18. 1 [1967].5 K. M ü h l e t h a l e r u . R. M u g g l i , Papier 23, 15 [1969].

6 A. F r e y -W y s s l in g , Science [Washington] 119 ,80 [1954],

7 E . S c h n e p f , Planta 67. 213 [1965].

8 A. N . J. H e y n , J. Cell Biol. 29, 181 [1966].

Page 2: Negative Staining of Plant Slime Cellulose: An Examination of the

W. W. F r a n k e and B. E r m e n , Negative Staining of Plant Slime Cellulose: An Examination of the Elementary Fibril Concept(p . 918)

Zeitschrift fiir Naturforschung 24 b . Seite 918 a.

Page 3: Negative Staining of Plant Slime Cellulose: An Examination of the

Zeitschrift für Naturforschung 24 b. Seite 918 b.

Page 4: Negative Staining of Plant Slime Cellulose: An Examination of the

Zeitschrift für Naturforschung 24 b, Seite 918 c.

Page 5: Negative Staining of Plant Slime Cellulose: An Examination of the
Page 6: Negative Staining of Plant Slime Cellulose: An Examination of the

NEGATIVE STAINING OF PLANT SLIME CELLULOSE 919

1. c. 9 13) . One should bear in mind, however, that

the evidence for this uniformity of the 35 X 35 Ä

cross-section of the elementary fibril is based al­

most entirely on electron micrographs which ob­

viously did not allow correct measurements below

30 Ä (e. g. 1. c .1_3, 7~9) .

Thus it seemed desirable to examine the concept

of the uniformly dimensioned elementary fibril as

the smallest structural unit of cellulose using some

advancements in negative staining technique which

secure a particularly thin spreading of the staining

matter. As a material preferentially suited for this

study we chose plant slime cellulose, especially that

from the quince slime, which is known to be present

as native separate small fibrils in the elementary

fibril order of magnitude14,15 in a soluble state,

mediated by the accompanying carboxyl containing

hemicellulosic substances15. This native slime cel-

Fig. 1. Survey micrograph of a fresh preparation made from quince slime and negatively stained with phosphotungstic acid. Amorphous clumps of PTA-repellent non-cellulosic ma­terial are frequently accentuating the crossings of the cellu­lose fibrils. Broad fibrils (about 100 A. long arrow) occur as well as narrow ones. The ribbon-like shape of the fibrils is evident at many sites where a fibril turns from the broad side

to its narrow edge (short arrows). Magn. 110,000 : 1.

Fig. 2. Survey micrograph of a preparation made from ace- tone-precipitated dry slime matter, stained as in Fig. 1. Non- cellulosic material is greatly diminished while the distribu­

tion of fibril widths is not altered. Magn. 110,000 : 1.

Fig. 3. Cellulose fibrils from freshly prepared mustard seed slime, negatively stained with PTA. Fibrils showing widths

below 30 A can be discerned. Magn. 240,000 : 1.

Fig. 4. Quince slime cellulose (PTA) revealing many fibrils thinner than 30 A, the ribbon-like shape of the fibrils, and

“cracking sites” (arrow). Magn. 200,000 : 1.

Fig. 5. Cellulose fibrils from quince slime in an area of faint PTA-staining. The arrow denotes a 10—12 Ä broad fibril. Note the apparent reduction of crystalline rigidity in fibrils

that thin. Magn. 320,000 : 1.

Fig. 6. Quince slime preparation after staining with uranyl acetate (pH 4.5). Cracking sites (upper arrow) and the rib- bon-like structure (lower arrows) of fibrils thinner than 30 A are present also when this staining agent is used. Magn.

250,000 : 1.

9 R. S t . J. M a n l e y , Nature [London] 204, 1155 [1964].10 M . M a r x -Fi g i n i u. G. V. S c h u l z , Biochim. biophysica

Acta [Amsterdam] 112,81 [1966].11 M . M a r x -Fi g i n i u . G. V. S c h u l z , Naturwissenschaften 53,

466 [1966].12 H . B it t ig e r u . E. H u s e m a n n , Papier 23, 17 [1969].

lulose also has a DP in the range of 12,000 to

15,00016 as is characteristic for secondary plant

cell wall cellulose in general (e.g. 1. c .10, n>16) .

Materials and Methods

Quince slime (Cydonia vulgaris L.) was prepared either freshly from quince pips (1 g per 100 ml, purifi­cation from particulate contaminations by filtration and low speed centrifugation) or from acetone-precipitated dry slime powder. Drops of the slime solutions were transferred onto formvar coated grids which had been previously hydrophilized either by serial treatments with a 0.1 M NaCl solution and distilled water for about 30 min or by a glow discharge carbon layer (1 kv, ca. 2 mA, 10-2 torr, benzene). Negative staining was performed either with 1% or 2% phosphotungstic acid, adjusted to pH 7.5, or with 1% uranyl acetate (pH 4.5). The preparations were examined with a Sie­mens Elmiskop IA or 101. The calibration of the magnification indicators was routinely controlled using

Fig. 7. Quince slime cellulose (PTA). Fibrillar ends often seem to fray (arrows). Magn. 220,000 : 1.

Fig. 8. Same preparation as that shown in Fig. 7. Oblique, blunt ends of cellulose fibrils can occasionally be also obser­

ved. Magn. 220,000 : 1.

Fig. 9. Same preparation. Subfibrils of widths below 10 A can sometimes be revealed in a somewhat “uncoiled” configura­

tion (arrows). Magn. 270,000 : 1.

Fig. 10. Quince slime cellulose (PTA). Fibrils thinner 30 A generally show a “beaded” appearance. Magn. 250,000 : 1.

Fig. 11. Beaded appearance in PTA stained cellulose fibrils from mustard seed slime. Magn. 250,000 : 1.

Fig. 12. Quince slime cellulose after staining with uranyl acetate (pH 4.5). Fibrils showing widths in the 20 A range appear beaded in this kind of negative staining, too. Magn.

250,000 : 1.

Fig. 13. PTA-stained mixture of quince slime cellulose and tobacco mosaic virus (TMV) using the latter as a distance

marker. Magn. 220,000 : 1.

Fig. 14. Detail from Fig. 13 clearly demonstrating that the width of the cellulose fibril is at about 20 A. This is evident from comparison with the TMV width as well as with the ca.

20 A coat protein particles. Magn. 245,000 : 1.

Fig. 15. Similar PTA preparation as that shown in Fig. 13 using mustard seed slime cellulose. Magn. 220,000 : 1.

13 H . B i t t ig e r , E. H u s e m a n n u . A. K u p p e l , Cellulose Che­mistry and Technology [Bucharest], in press (1969).

14 K. M ü h l e t h a l e r , Exp. Cell Res. 1, 341 [1950].15 E. H u s e m a n n u . G. K e i l i c h , Cellulose Chemistry and Tech­

nology [Bucharest], in press (1969).16 M . M a r x -Fi g i n i , Biochim. biophysica Acta [Amsterdam],

in press (1969).

Page 7: Negative Staining of Plant Slime Cellulose: An Examination of the

920 W. W. FRANKE UND B. ERMEN

grating replicas with different lattice spacings. For staining preparations as evaluated in the present study the minimum grain size, i. e. the grain resolution of the preparation as such, was determined in close-to- focus micrographs of through-focus-series to be at 8 Ä for both staining materials, uranyl acetate (UA) and phosphotungstic acid (PTA). The average grain size, however, was 10 —12 Ä in the phosphotungstate and8 —10 A in the uranyl acetate preparations. For di­scussing the practical limit of resolution in PTA pre­parations compare also the differing remarks by Klug and F inch1' and Haydon 18. For the present publi­cation preference was given to slightly underfocus micrographs in order to produce higher contrast so that the grain size is also somewhat increased due to the phase image pattern.

Similar preparations were made using the slime of mustard seeds, Sinapis alba L.

Micrographs were taken at instrument magnifica­tions from 33,000 to 80,000. Fibrillar structures with widths below 20 A were taken in account only when recognizable in two or more different micrographs of a focus series.

For direct comparison of the structural dimensions negative staining preparations were made by using a mixture of quince or mustard slime, respectively, and tobacco mosaic virus particles (TMV) in order to have the particle widths (minimum 150 Ä in close packing, maximum of 174 Ä in the wet state), the ca. 20 A period of the helically arranged capsomeres and the core diameter (40 Ä when viewed from the end) as distance markers (reviewed e.g. 1. c. 29) . In order to elucidate whether changes in fibril widths occurred during the conventional alkaline treatment, cellulose obtained after extracting the slime with 24% KOH was routinely examined in the same way.

Results and Discussion

The general negative staining appearance of the

cellulose slimes of the quince pips as well as of the

mustard seeds resembles that one reported for the

enzymatically purified cellulose of the algae Glauco-

cystis 7 and Valonia 20. The only difference that can

be discerned between preparations made from ace­

tone-precipitated slime matter (Fig. 2) and those

made freshly from the pips or the seeds, respecti­

vely, is the predominance of the amorphous clusters

of non-cellulosic material in the latter preparations

(Fig. 1). This non-cellulosis-material seems to be

preferentially accumulated at the crossings of the

17 A. K l u g and J. T. F i n c h , J. molecular Biol. 31. 1 [1968].18 G. B. H a y d o n , J. Ultrastructure Res. 25, 349 [1968],19 R. M a r k h a m . J. H . H i t c h b o r n , G. J. H i l l s , and S. F r e y ,

Virology 22, 342 [1964].20 W. W. F r a n k e u . H . F a l k , Z. Naturforschg. 23 b. 272

[1968].

separate fibrils (e.g. Fig. 1 *). The results on the di­

mensions of the cellulose fibrils presented in the fol­

lowing refer to both quince and mustard material.

The length of the fibrils can be determined in

some instances as exceeding 6 //m. While the

majority of the fibrils reveals widths in the 30 to

50 Ä range (compare I .e .15), a great many others

can be found which are broader (up to about 100 Ä.

e.g. Figs. 1, 9) or smaller (down to values in the

10 — 15 Ä range, e.g. Figs. 3 — 6, 10—15). The

distribution of the fibril widths demonstrates clearly

that no striking preference of 35 Ä or multiples of

35 Ä exists as has been stressed by M ü h le t h a le r 1.

The smallest cellulose fibrils so far distinctly recog­

nized are at about 10 — 12 Ä broad (e.g. Fig. 5, ar­

row) . Such fibrils thinner than 20 Ä were also pre­

sent in the preparations using alkaline-purified slime

cellulose21. Since the careful study of O h a d and

D a n o n 22 the accuracy of measurements on negati­

vely stained cellulose fibrils is well established. That

a critical underestimation of the fibril widths using

this method can be excluded is also indicated by the

observation that in areas adequately stained the rela­

tive degree of staining, i. e. the thickness of the

staining material, does not markedly influence the

fibril widths. Fibrils below 20 Ä can be seen in

areas of extremely faint staning as well (e.g. Figs.

5, 6, 12). Moreover, the very same fibril extending

from a heavily stained area into a moderately stained

one does not show considerable differences in its

width in dependence on the local intensity of the

staining.

It might be noteworthy in this connection that oc­

casionally even smaller subfibrils can be encoun­

tered. These are at about 8 — 9 Ä wide and seem to

be in some sort of an “uncoiling” configuration

(Fig. 9, arrows). Since fibrils that small apparently

are in the range of the grain resolution of the

staining they cannot be interpreted as “truly re­

solved” structures but rather as structures the exi­

stence of which is barely indicated. Thus their di­

mensions will not be discussed here in more detail.

In a previous paper we have shown that the

smallest fibrils which can be encountered in

enzymatically prepared Valonia wall cellulose are

21 B. D eum ling and W. W. F ran k e , manuscript in prepara­tion.

22 J. O had and D. D anon , J. Cell Biol. 22, 302 [1964].* Figs. 1— 15 s. Table p. 918 a —d.

Page 8: Negative Staining of Plant Slime Cellulose: An Examination of the

NEGATIVE STAINING OF PLANT SLIME CELLULOSE 921

not elementary fibrils Avith a cross-section of about

35 x 35 Ä (either circular or square-shaped)

but rather ribbons with cross-sections of about

30 — 40x100 — 200 Ä 20, and we expressed the

suggestion that most of the cellulosic fibrillar

structures referred to in the literature as being

35 x 35 Ä fibrils were in reality such ribbon­

like 35 x 100 Ä ones viewed edge-on (concerning

the so-called elementary fibrils in Valonia com­

pare e.g. also Fig. 4 in 1. c. 23) . In the plant slime

cellulose the general predominance of ribbon­

like fibrils is again apparent (e.g. Figs. 1, 4, 6),

especially at sites where a fibril turns from the

broader side onto its smaller edge (e.g. Figs. 1, 6).

The smallest ribbons so far measured have cross-

sections of about 12 — 15 X 30 — 40 Ä . This agrees

best with the measurements of Ohad and Danon

on the dimensions of cellulose fibrils prepared from

corn coleoptiles and from Acetobacter xylinum 22, 24 and with the cellulose fibril model by Asunmaa 25.

As is characteristic for cellulose fibrils in general

the plant slime cellulose fibrils show also “cracking

sites” 1’ 7t 20, 26, thus indicating their highly crystal­

line nature (e.g. Figs. 1, 2, 4 — 6). The ends of the

fibrils were observed either as fraying out into smal­

ler subfibrillar constituents (e.g. Fig. 7) or as being

more blunt and oblique (Fig. 8). At least the latter

appearance seems not to be a native ending since

this particular kind of cellulose fibril end is known

to be characteristic for acid hydrolytic treatment and

cellulase attack 23.

Since B e l a v t s e v a et al. 27 have shown by com­

paring electron microscopical and X-ray data that

treatment with PTA does not affect the ordered

structure of cellulose the results obtained with this

agent can be seen as reliable. Unfortunately, cor­

responding data on treatment with UA are lacking.

A remark, however, should be made on the use of

UA in the preparations of the type described above.

With respect to fibrillar dimensions no differences

were observed when compared with PTA staining

(Figs. 6 , 1 2 ); however, immediate gel-forming pre­

cipitation takes place in the acid UA solution, most

likely caused by rapid hydrolysis of the heteropoly­

23 A . B. W a r d r o p and S. M. J u t t e , W ood Sei. Technology 2,

105 [1968].

24 J . O h a d and D . D a n o n , J . Israel Chem . Soc. 1, 194

[1963].

25 S. K . A sunm aa , Tappi 49, No. 7, 319 [1966].

26 H . R . H o h l and R . P . G e o rg e , J . Cell B io l. 27, 4 3 A — 44A

[1965].

saccharides of the slime (compare I.e .15). This ef­

fects an increased number of aggregated fibrils and

renders the entire staining procedure more difficult.

Therefore, when working with cellulose containing

slimes, PTA which can be kept in neutral solution

seems to be the staining material of choice.

Fibrillar structures in the 10 — 30 Ä range often

reveal a somewhat “beaded” appearance (Figs. 10,

11). This phenomenon, however, should not be

interpreted as being caused by true structural de­

tails of the fibril structure 9. Since the grain size of

the usual negative staining substances cannot be re­

duced remarkably below 7 — 8 A every linear struc­

ture with widths in this order of magnitude must

necessarily appear more or less “beaded” . Fibrils

in the 10 A range are the smallest polysaccharide

structures hitherto observed with the electron micro­

scope. Therefore it seemed valuable to ensure these

widths by calibration with a marker particle. In the

negatively stained mixtures of the slime celluloses

and TMV particles it is apparent that the fibril

widths are frequently at about one tenth the width

of the virus particle or even less (Figs. 13 — 15).

Taken together the results of our width measure­

ments and some corresponding data reported by

O h a d and D a n o n 22,24 (compare also a remark

1. c. 28) the conclusion seems to be justified that the

concept of an elementary fibril with a cross-section

of about 35 x 35 A is the ultimate structural unit of

native cellulose cannot be further sustained. Fibril

widths ob about 15 A were also calculated by

G ü n th e r 29 for the smallest fibrils of germinating

spores of Funaria hygrometrica after shadow

casting with metal. One rather gains the impression

that the polyglucan chains are arranged into fibrillar

structures (be they straight or folded) so that all

width values from 10 A to the 100 —200 A of the

microfibrils are possible (see also 1. c. 30) . The mere

fact that cellulose can exist in fibrils 10 — 25 A

broad leads to some restrictions concerning the cel­

lulose models recently proposed (reviews e. g.

1. c. 4> 12,13) . At least some of the models which as­

sume glucose chains folded more or less perpendicu­

larly to the fibrillar axis seem hardly to comply

27 M. B e l a v t s e v a , M. P e t r o v , and D . T s v a n k in , Vysoko-mol. soyed. 6, 684 [1964].

28 H. D o l m e t s c h u . H. D o l m e t s c h , Papier 22, 1 [1968].29 J. G ü n t h e r , J. Ultrastruct. Res. 4, 304 [I960].30 P . A. R o e l o f s e n , Advances botan. Res. 2, 69 [1966].

Page 9: Negative Staining of Plant Slime Cellulose: An Examination of the

922 H. WAGNER, W. ZOFCSIK UND I. HENG

with the requirement to explain widths that small.

Furthermore, again in agreement with an earlier re­

mark of O h a d and D a n o n 22, it is evident from our

observations that the ribbon-like shape of cellulose

fibrils is not limited to microfibrils or fibrils broader

than 35 Ä, but is likely a characteristic of cellulose

chain associations in general. From the fibrillar di­

mensions mentioned above one should expect X-ray

data referring to microcrystallite diameters in the

10 — 20 Ä range. However, at present there exists

a total lack of any X-ray work on native plant slime

cellulose. X-ray determined microcrystallite dia­

meters of other kinds of cellulose range from

13 — 17 Ä up to values higher than 100 A (reviews

e.g. 1. c. 8) . It would be worthwhile to undertake

X-ray studies on native cellulose in search of the ca.

10 Ä microcrystallite diameters predictable from the

present electron microscopical measurements.

The authors wish to thank Drs. E. H u s e m a n n , P. S it t e and G. K e il ic h for helpful discussions as well as Miss M. W in t e r for skilful technical assistance. The work was partially supported by the Deutsche F orschungsgemeinschaf t.

Sphingolipide und Glykolipide von Pilzen und höheren Pflanzen

V. Mitt.1: Über die Struktur des Phytoglykolipids aus A rachis hypogaea L.

H. W a g n e r , W . Z o fc s ik und I. H eng

Institut für pharmazeutische Arzneimittellehre der Universität München

(Z. Naturforsdig. 24 b, 922—927 [1969] ; eingegangen am 19. März 1969)

Aus der Phosphatidfraktion der Erdnuß (Arachis hypogaea L.) wurde ein phosphorhaltiges Sphingoglykolipid isoliert, das in der qualitativen und quantitativen Zusammensetzung seiner Sphingosinbasen, Fettsäuren und Zuckerbausteine mit dem Phytoglykolipid (PhGL) aus Soja und Mais große Ähnlichkeit aufweist. Nach dem Ergebnis der Mol.-Gew.-Bestimmungen ist für das Erd- nuß-PhGL eine Polymerstruktur wahrscheinlich.

1953 isolierten M a l k in und P o o l e 2 aus der Ge-

samtphosphatidfraktion der Erdnuß ein Glykolipid,

bei dem es sich um das ./V-Glykosyl-Derivat eines mit

Äthanolamin veresterten Phosphatidylinositphospha-

tes handeln sollte. Später isolierten C a r t e r und Mit­

arbb. 3 aus dem gleichen Material ein Glykolipid,

das sich in einigen Kennzahlen wie die Sphingosin­

haltigen Phytoglykolipide aus Sojabohne, Mais,

Flachs, Baumwollsamen, Sonnenblumenkernen und

Weizen verhielt. Eine Analyse und Strukturaufklä­

rung wurde von den Autoren nicht durchgeführt. Da

aus den zwei Arbeiten nicht hervorgeht, ob es sich

bei beiden Lipiden um dieselbe Substanz unter­

schiedlicher Reinheit oder um zwei verschiedene Ver­

bindungen gehandelt hat, unterzogen wir die Ino-

sitidfraktion der Erdnußphosphatide einer erneuten

Analyse.

1 IV. M it t . : H . W a g n e r , P. P o h l u . A. M u n z in g , Z. N a tu r­

forschg. 24 b, 360 [1969].2 T. M a lk in u . A. G. P o o le , J. chem. Soc. [London] 1953.

3470.

A. Isolierung, chromatographisches und chemisch-

physikalisches Verhalten des Erdnußphytoglykolipids

Wir verglichen einen Rohphosphatidextrakt aus

Erdnußsamen chromatographisch mit einem Phyto-

glykolipid-haltigen Extrakt aus Sojabohnen. Auf

Formaldehydpapier 4 erhielten wir in Butanol — Eis­

essig—Wasser (4:1:5) das typische Chromato­

grammbild eines pflanzlichen Phosphatidextraktes.

Neben Lecithin, Colaminkephalin und Monophos-

phoinositid (MPI) fanden wir im / /̂-Bereich 0,15

bis 0,25 mehrere mit Rhodamin B, Nilblau oder

Ammoniummolybdat-Perchlorsäure anfärbbare Flek-

ken, die mit gereinigtem Sojaphytoglykolipid auf

gleicher Höhe lagen (s. Abb. 1). Damit war es erst­

mals gelungen, auch so komplex zusammengesetzte

Inositide wie das PhGL chromatographisch darzu-

3 H . E. C a r t e r , W . D. C e lm e r , D. S. G a la n o s . R. H. G igg .

W . E. L a n d s , J. H . L a w , K . L. M u e l l e r . T. N a k a y a m a ,

H. H. T om izaw a u . E. W eber , J. Amer. Oil Chemists’ Soc.35, 225 [1958].

4 L . H ö rh a m m e r , H . W a g n e r u . R . R i c h t e r , Biochem. Z.

331, 155 [1959].