33
Hinweis Bei dieser Datei handelt es sich um ein Protokoll, das einen Vortrag im Rahmen des Chemielehramtsstudiums an der Uni Marburg referiert. Zur besseren Durchsuchbarkeit wurde zudem eine Texterkennung durchgeführt und hinter das eingescannte Bild gelegt, so dass Copy & Paste möglich ist – aber Vorsicht, die Texterkennung wurde nicht korrigiert und ist gerade bei schlecht leserlichen Dateien mit Fehlern behaftet. Alle mehr als 700 Protokolle (Anfang 2007) können auf der Seite http://www.chids.de/veranstaltungen/uebungen_experimentalvortrag.html eingesehen und heruntergeladen werden. Zudem stehen auf der Seite www.chids.de weitere Versuche, Lernzirkel und Staatsexamensarbeiten bereit. Dr. Ph. Reiß, im Juli 2007

pdf-Protokoll (Scan)

Embed Size (px)

Citation preview

Page 1: pdf-Protokoll (Scan)

HinweisBei dieser Datei handelt es sich um ein Protokoll, das einen Vortrag im Rahmendes Chemielehramtsstudiums an der Uni Marburg referiert. Zur besserenDurchsuchbarkeit wurde zudem eine Texterkennung durchgeführt und hinter daseingescannte Bild gelegt, so dass Copy & Paste möglich ist – aber Vorsicht, dieTexterkennung wurde nicht korrigiert und ist gerade bei schlecht leserlichenDateien mit Fehlern behaftet.

Alle mehr als 700 Protokolle (Anfang 2007) können auf der Seitehttp://www.chids.de/veranstaltungen/uebungen_experimentalvortrag.htmleingesehen und heruntergeladen werden.Zudem stehen auf der Seite www.chids.de weitere Versuche, Lernzirkel undStaatsexamensarbeiten bereit.

Dr. Ph. Reiß, im Juli 2007

Page 2: pdf-Protokoll (Scan)

Kohlenstoff

Anorganische Aspekteeines organischen Tausendsassas

Protokoll zum Experimentalvortrag am 13. Februar 2003

Christian BärmannBarfüßerstr. 5535037 Marburg

06421/[email protected]

Chemie in der Schule: www.chids.de

Page 3: pdf-Protokoll (Scan)

Kohlen stoff

Inhaltsübersicht

1. Kapitel: Einführung

Inh altsübersicht Christian Bärmann

Warum "anorganischer" Kohlenstoff? - Aufbau des Vortrags

2. Kapitel: Das Element

"Technische Daten" - Verteilung des irdischen Kohlenstoffs - Der erste

Kontakt - Vl: Boyle-Versuch - V2: Verbrennungsenthalpie

3. Kapitel: Der Elementare Zustand

Modifikation - Zustandsdiagramm - Umwandlungsbedingungen - Der

Diamant: Eigenschaften, Vorkommen, Verwendung - Der Graphit: Eigen­

schaften, Vorkommen, Verwendung - V3: Leitfähigkeit Graphit - Die Ful­

lerene: Bauprinzip, Eigenschaften, Darstellung, Verwendung - Spezial­

Kohlenstoffe - Aktivkohle - Adsorption - V4: Entfärbung von Rotwein

4. Kapitel: Die chemischen Eigenschaften

Charakterisierung des Elements - V5: Hochofenprozess - Sauerstoffverbin­

dungen - Boudouard-Gleichgewicht - V6: Kohlenmonoxid: Darstellung

und Eigenschaften

5. Kapitel: Schlussakkord

Zusammenfassung - Das Thema im Unterricht - Einsatzmöglichkeiten

6. Kapitel: Anhang

Arbeitsvorschriften - Literaturverzeichnis - Sicherheitshinweis

- 2-Chemie in der Schule: www.chids.de

Page 4: pdf-Protokoll (Scan)

Kohlenstoff

1. Kapitel: Einführung

1. Kapitel: Einführung Christian Bärmann

Kohlenstoff erscheint als Thema eines Experimentalvortrages auf dem Gebiet der anorga­

nischen Chemie nicht sehr lohnenswert. Bei näherer Betrachtung jedoch ergeben sich neue

Möglichkeiten, wichtige Phänomene anhand des Kohlenstoffs zu demonstrieren. Aus die­

ser Überlegung heraus resultieren auch die drei Leitfragen mit denen der "anorganische"

Kohlenstoff bearbeitet werden soll:

1. Wie kann die experimentelle und theoretische Vorbereitung des Vortrags später in der

Schule genutzt werden?

Im Zentrum dieser Frage sollen Ansatzpunkte ermittelt werden, die für den späteren

Unterricht als Grundlage dienen können. Eine didaktische Analyse muss aber ausblei­

ben, da ein Protokoll im Wesentlichen die praktische Umsetzung von Versuchen er­

möglichen soll. Dennoch soll es Wege aufzeigen, die eine weitere Beschäftigung verein­

fachen können.

2. Welche Möglichkeiten zur Demonstration wichtiger Eigenschaften des Kohlenstoffs

und allgemeiner chemischer Phänomene beinhaltet dieses Thema?

Die Begrenzung auf den Kohlenstoff soll nicht zur Einengung auf eine Elementehernie

führen. Während der Vorbereitung wurden auch die experimentelle Demonstration

chemischer Prozesse immer mehr bedeutsam. Als Beispiel sei hier nur die Adsorption

an Aktivkohle genannt, die gleichermaßen eine Stoffeigenschaften des Kohlenstoffs

und ein physikalischer wichtiger Prozess ist.

3. Gibt es neben den oft verwendeten Versuchen zu Kohlendioxid weitere, die als typisch

für den Kohlenstoff gelten können?

Mit dem ersten Herangehen an den möglichen Themenhorizont wurde schnell deut­

lich, dass eine ganze Reihe von Versuchen zum Kohlendioxid ausgearbeitet und teil­

weise schon präsentiert vorlagen. Die Überlegung, neue, zumindest aber andere Ver­

suche in einem Vortrag zu demonstrieren, spielt eine entscheidende Rolle bei der

Auswahl der Versuche.

- 3-Chemie in der Schule: www.chids.de

Page 5: pdf-Protokoll (Scan)

Kohlenstoff 1. Kapitel: Einführung Christian Bärmann

Die Festlegung auf die "anorganische Seite" des Kohlenstoffs kann nur partiell als feste

Grenze bestehen bleiben, da die einzelnen Aspekte nur mehr oder weniger gut in organi­

sche oder anorganische Chemie eingeordnet werden können. Während sich die ersten As­

pekte Diamant und Graphit noch gut der Anorganik zuordnen lassen, zeigen bereits die

Fullerene "organische" Eigenschaften, die sich auch im Bereich der Spezial-Kohlenstoffe

finden lassen. Sie sind fast durchgängig aus organischen Materialien darstellbar, so dass

eine prinzipielle Festlegung im Vortrag unzweckmäßig erscheint. Der Hinweis, dass es

sich bei der Trennung in anorganische und organische Aspekte hauptsächlich um eine

Abgrenzung von Arbeitsfelder handelt, wird auch im letzten Teil des Vortrags deutlich.

Dort werden auf anorganischem Weg Stoffe wie Kohlendioxid und Kohlenmonoxid dar­

gestellt (bzw. sie fallen als Nebenprodukt an), die auch in der Biosphäre produziert wer­

den.

- 4-Chemie in der Schule: www.chids.de

Page 6: pdf-Protokoll (Scan)

Kohlenstoff 2. Kapitel: Das Element Christian Bärmann

2. Das Element

Kohlenstoff besitzt die Elektronenkonfiguration 1s2 2s2 2p2, hat also sechs Elektronen, von

denen vier als Valenzelektronen zur Bindung zur Verfügung stehen. Seine molare Masse

beträgt 12,011 g. Es existieren drei Isotope des Kohlenstoffs: 12C macht mit 98,89% den

Hauptanteil aller Kohlenstoffatome aus. Mit 1,10% hat 13e zwar den geringeren Anteil, ist

aber trotzdem für die chemische Analyse bedeutend. Er wird als NMR-aktive Atomsorte

insbesondere zur Strukturaufklärung in der organischen Chemie eingesetzt. Das dritte

Isotop J4C ist radioaktiv und ein W-Strahler. Es hat eine Halbwertszeit von 5730 Jahren

und kann dadurch für Altersbestimmungen

eingesetzt werden. In lebenden Organismen

1,11%98,89%

steht der J4C - Gehalt im Gleichgewicht mit der

Umgebung. Stirbt der Organismus sinkt der

Gehalt, da ein Austausch mit der Umgebung

nicht mehr erfolgt. Anhand des Abbaugrades

kann man den Todeszeitpunkt und damit das Alter bestimmen. In der Natur entsteht das

radioaktive Isotop, wenn kosmische Strahlung auf die Stickstoffatome der Atmosphäre

trifft und ein Kernproton abgespalten wird. In der Medizin kann es zur Markierung von

Kohlenstoffatomen eingesetzt werden.

Betrachtet man die Verteilung des Kohlenstoffs auf der Erde, stellt man fest, wie unter­

schiedlich die Mengen verteilt sind. Kohlenstoff ist in jedem der vier differenzierten Erd­

bereiche zu finden: In der Lithosphäre kommt er insbesondere in der Form der Carbonate,

aber auch elementar als Graphit und Diamant vor. In ihr ist die größte Menge mit 2,9 x

1016 Tonnen an Kohlenstoff vorhanden. In der Hydrosphäre (2,7 x 1013 t) und Atmosphäre

(6,7 x 1011 t) kommt Kohlenstoff vorwiegend als Kohlendioxid vor. Sie machen zusammen

nur etwa ein Tausendstel der in der Lithosphäre vorhandenen Menge an Kohlenstoff aus.

Die Menge, die in der belebten Welt, der Biosphäre gebunden ist, ist gegenüber der Li-

- 5 -Chemie in der Schule: www.chids.de

Page 7: pdf-Protokoll (Scan)

Kohlenstoff 2. Kapitel: Das Element Christian Bärmann

thosphäre noch geringer (2,7 x 10t). Das Verhältnis von "anorganisch" zu "organisch" ge­

bundenen Kohlenstoff ist 100.000 zu 1. Nur ein Hunderttausendstel allen irdischen Koh-

lenstoffs ist in lebenden Organismen gebunden.

Wie man auf der Karte sieht, ist die Kohlenstoff-Konzentration von den Vegetationsberei­

chen auf der Erde abhängig. Je dunkler die Grüntöne sind, desto größer ist der Anteil ge-

Kreisläufe transformieren den

bundenen Kohlenstoffs. Auch

einzelnen Sphäre der Erde na­

türliche Übergänge gibt. Die

hier muss darauf hingewiesen

werden, dass es zwischen den

und wieder zurück.

anorganische gebundenen Koh­

lenstoff in organisch nutzbaren

\.

J

J

.' ;

t•Die Bedeutung des Kohlenstoffs vor der Chemie reicht bis in die Vorgeschichte des Men­

schen zurück. In dem Moment, in dem das Feuer in das Leben der Menschen getreten war,

gehörte auch der Kohlenstoff in seinen vielfältigen Erscheinungsformen zur menschlichen

Existenz. Natürlich war es hier zunächst der organisch gebundene Kohlenstoff, der das

Leben hell und warm machte. Die Menschen damals wussten nicht, dass das Leuchten

einer Flamme bei der Verbrennung von Holz auf unverbrannten Kohlenstoff zurückzu­

führen ist, der in der Verbrennungshitze zu glühen beginnt. Dieses Phänomen soll im ers­

ten Versuch demonstriert werden. Genauso wichtig wie das Licht ist aber die Wärme. Die

Erfahrung der Menschen, dass die Reste eines Feuers nach dem Erlöschen der Flamme

noch weiter glühen und dabei Wärme abgeben, steht im Mittelpunkt des zweiten Ver­

suchs.

- 6 -Chemie in der Schule: www.chids.de

Page 8: pdf-Protokoll (Scan)

Kohlenstoff 2. Kapitel : Das Element Christian Bärmann

CO2 (g)+c (s)

Der BOYLE-Versuch ist eine sehr anschauliche Art, Kohlenstoff

zu verbrennen. Dazu wird ein mit Sauerstoff gespülter Rund­

kolben benutzt, in dem sich am Boden reiner Kohlenstoff be­

findet. Am besten eignet sich hier gekörnte Aktivkohle, die mit

Hilfe eines Bunsenbrenners bzw. einer Heißluftpistole erhitzt

wird. Sobald die ersten Körner zu glühen beginnen, schüttelt

man den Rundkolben ohne weiter zu erhitzen. Die restlichen

Kohlenstoffpartikel glühen heftig auf und verbrennen in der

Sauerstoffatmosphäre. Da bei den ablaufenden Reaktionen Gase entstehen, wird zum

Druckausgleich ein Absaugstück mit Luftballon aufgesetzt.

Bei dem Versuch laufen folgende Reaktionen ab: Der Kohlenstoff wird mit dem elementa­

ren Sauerstoff umgesetzt. Die Reaktion ist aufgrund der niedrigen Temperatur begünstigt.

~

Daneben laufen partiell noch die beiden folgenden Reaktionen ab: Kohlenstoff wird nicht

vollständig verbrannt und reagiert mit dem Sauerstoff nur zu Kohlenmonoxid. Dieses

wird mit weiterem Sauerstoff zu Kohlendioxid oxidiert.

2 C (5) +

2 CO (5)+

2 CO (g)

2 CO2 (g)

Im zweiten Versuch wird der Wärmeaspekt des Kohlenstoffs quantitativ betrachtet. Dafür

wird in einern vereinfachten Kalorimeter ein Stück vorher ausgeglühte Holzkohle in ei­

nern kontinuierlichen Sauerstoffstrom verbrannt. Das Kalorimeter besteht aus drei Teilen,

die ineinander angeordnet sind. Die Brennkammer im Zentrum ermöglicht eine elektri­

sche Zündung der Holzkohle. Die Verbrennung im Schälchen aus Quarzglas wird hier

durch den durchstreifenden Sauerstoffstrom unterhalten. Das Kupferrohr, die spiralför­

mig um die Brennkammer geführt wird, dient zum Wärmeaustausch. Die heißen Verbren­

nungsgase werden durch die Kupferspirale abgeführt und geben so ihre Wärme an das

Kalorimeterwasser ab, das sich im isolierten Becherglas befindet.

-7-Chemie in der Schule: www.chids.de

Page 9: pdf-Protokoll (Scan)

Kohlenstoff 2. Kapitel: Das Element Christian Bärmann

Nach dem Start der

Verbrennung wird alle

30 Sekunden die Was-

sertemperatu r aufge­

zeichnet. Die Auswer-

tung, die im Vortrag

einige Minuten später

Berechnung der molaren Verbrennungsenthalpie

1. Messwerte - Ermittlung der maximalen Temperaturdifferenz

b.T = Tmax - TStart

2. Berechnung der Wärmekapazität des Kalorimeters

3. Berechnung der molaren Verbrennungsenthalpie

LlHmOI = - LlT . CKalorimeter . Mmol(Kohlenstoff) . mverbrannterStOff-l

Das Ergebnis des Versuchs mit -378,2 kj/mol liegt mit einer Abweichung von nur - 3,9%

über den Erwartungen, da sich in der Vorbereitung Abweichung von 5-10% eingestellt

hatten. Die gesamte Rechnung ist im Anhang zu finden.

- 8-Chemie in der Schule: www.chids.de

Page 10: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

3. Der elementare Zustand

Kohlenstoff kommt in fünf Modifikationen vor, von denen vier in der Natur nachgewiesen

sind. Der Elementcharakter ist

anhand des Graphits 1779 erst­

mals durch Lavoisier festgestellt

worden. Nur siebzehn Jahre spä­

ter, 1796, konnte Tennant den

Diamanten als weitere reine Form des Kohlenstoffs identifizieren.

1985 wurde eine weitere Modifikation von Kroto, Smalley und Curl entdeckt. Die Fullere-

ne, die die reinste Form des Kohlenstoffs darstellen, sind genau

genommen nur der Überbegriff für eine Vielzahl weiterer Modifi-

~c-c~/ c c ""-

c c!II ~c C

fj

C cffi fc 2

\ /'c c~ &-

c----.c=c- ...... c

kationen. Die Entdeckung war eher zufäl­

lig. Während der Suche nach einem Syn­

theseweg für die vierte Kohlenstoffmodi­

fikation wurden die Fullerene entdeckt.

Erst 1991 konnte die gewünschte vierte Modifikation synthetisiert

werden. Es handelt sich dabei um Verbindungen, die sich durch konjugierte Dreifachbin-

dungen auszeichnen und ringförmig vorliegen. Die fünfte Modifikation des Kohlenstoffs

wurde 1968 in Baden-WürUemberg bei einer Bohrung im Nördlinger Ries entdeckt. Dort

fand man ein weißes Mineral, das aus reinem Kohlenstoff besteht. Der Chaoit, über seine

Struktur ist bisher nichts bekannt, soll bei einem Meteroiteneinschlag entstanden sein, der

auf graphithaltiges Gestein einwirkte.

Das Zustandsdiagramm des Kohlenstoffs, ein Druck-Temperatur-Diagramm, zeigt, dass

Graphit die bei Normaldruck stabile Modifikation ist. Bei einer Temperatur von 3750 °C

und einem Druck von 127 bar geht er in die flüssige Form über. Der Dampfdruck ist hier

bereits erheblich, so dass nur am unteren Rand der Druckskala gasförmiger Kohlenstoff

bei Temperaturerhöhung existent ist. Diamant ist die Hochdruckmodifikation des Kohlen­

stoffs. Der Mindestdruck für eine Umwandlung von Graphit in Diamant liegt bei 40 kbar.

- 9-Chemie in der Schule: www.chids.de

Page 11: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

Der Tripelpunkt, an dem Diamant, Graphit und Schmelze nebeneinander vorliegen, be­

findet sich bei 130 kbar und 3800 "C. Die Umwandlungstemperatur von Diamant zu flüs­

sigem Kohlenstoff sinkt bei steigendem Druck. Graphit und Diamant bleiben jenseits der

Gleichgewichtslinie metastabil erhalten, so dass Diamanten auch unter Normalbedingun­

gen praktisch unbegrenzt erhalten bleiben. Die Umwandlungsbedingungen für Labor und

Technik resultieren daraus.

flüssiger Kohlenstoff

500

'i:'co~ 300x:Ü:::l'-o

100

Graphit Temperatur [0 C]

6000gasförmigerKohlenstoff

Für die Transformation von Diamant und Fullerenen in Graphit erfolgt bei gleichen Be­

dingungen von etwa 1500 "C unter Normaldruck. Der Rückweg zum Diamanten erfordert

höhere Temperaturen von etwa 1700 "C und ein Vielfaches an Druck von 53-100 kbar.

Technisch realisiert man die Diamantbildung in sogenannten Hochdruck­

Hochtemperatur-Pressen, in denen Kohlenstoff in flüssigen Metall gelöst wird und in ei­

ner Matrize aus Wolframcarbid unter Druck gesetzt wird.

Ganz im Gegenteil dazu werden die Fullerene in einer Unterdruck-Atmosphäre erzeugt,

die aber deutlich heißer wird als bei der Diamantsynthese. Die direkte Umwandlung der

Fullerene in Diamanten scheint in Zukunft ein weiterer Weg zur Diamantsynthese zu

werden. Anstatt der hohen Temperaturen bei der Graphit-Diamant-Umwandlung kann

diese Umwandlung schon bei Raumtemperatur unter höherem Druck erfolgen. Die Dar­

stellung der Fullerene aus Diamanten wurde bisher nicht beobachtet.

- 10-Chemie in der Schule: www.chids.de

Page 12: pdf-Protokoll (Scan)

1800°C (53 -100 kbar) I Graphit I

Kohlenstoff

IDiamant I

3. Kapitel: Der Elementare Zustand

1500°C (1 bar) ..

Christian Bärmann

?

20°C(150 kbar)

2700°C(150 rnban

1500°C(1 bar)

I Fulleren 1

Im Diamant, die Hochdruck-Modifikation des Kohlenstoffs, sind alle C-

Atome sp3-hybridisiert. Das bedeutet, dass jedes Atom von vier weiteren

tetraedrisch umgeben ist. Die Bindungslänge

beträgt 154 pm, das entspricht einer C-C­

Einfachbindung. Die Schichtfolge ist ABC mit einem Schichtab­

stand von 205 pm. In diesem Koordinationsgitter sind die ge­

wellten Schichten, die eine Sesselform besitzen, kovalent ver-

knüpft. Es handelt sich um ein dreidimensionales Raumnetz ohne feste Schichtfestlegung.

Die Eigenschaften des Diamanten sind bemerkenswert. In seiner kristallinen Form ist er

mit einer MOHs-Härte von 10 das härteste Mineral, das auf der Erde vorkommt. Dennoch

ist er leicht spaltbar, was man sich auch bei der Produktion von Schmuckdiamanten nutz­

bar macht. In reiner Form, d.h. wenn das Kohlenstoff-Gitter keine Fehlstellen hat, ist der

Diamant klar und farblos. Werden Kohlenstoff-Atome durch Stickstoff-Atome ersetzt, er-

scheint der Diamant gelblich. Bei Bor oder Aluminium erscheint er blau. Die starke Licht­

brechung resultiert genau wie die hohe Wärmeleitfähigkeit aus der sehr gleichmäßigen

- 11 -Chemie in der Schule: www.chids.de

Page 13: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel : Der Elementare Zustand Christian Bärmann

Struktur, wodurch der Diamant in der technischen Anwendung besonders interessant

wird. Die thermische Leitfähigkeit beträgt ein Vielfaches der des Kupfers. Anders als im

metallischen Zustand, wo frei bewegliche Elektronen für den Wärmetransport sorgen,

sind beim Diamant mechanische Schwingungen des Gitters dafür verantwortlich.

Bereits im Altertum kannte man Diamant-Lagerstätten in Indien, aus denen bis zum Be­

ginn des 18. Jahrhunderts der Weltbedarf gedeckt werden konnte. Die Entdeckung neuer

Vorkommen in Brasilien sicherte die Diamantenversorgung bis zur zweiten Hälfte des 19.

Jahrhunderts. In beiden Fällen handelte es sich um Sekundärlagerstätten, die sich durch

Bereiche auszeichnen, in denen sich sogenannte Diamantseifen gebildet haben. Sie ent­

standen aus diamanthaitigen Gesteinen, die durch Erosion abgetragen wurden und sich

an anderen Orten abgelagert hatten.

Als die indischen und brasilianischen Minen erschöpft waren, suchte man bereits neue

Vorkommen. In Südafrika gelang es 1869, Diamanten an ihrem Entste­

hungsort, den Primärlagerstätten, zu finden. Nach dem Entdeckungsort

Kimberley in Südafrika wurde das ultrabasische Gestein Kimberlit ge­

nannt, das in sogenannten Durchschusskaminen erloschener Vulkane

vorkommt. In ihnen erstarrten gashaltige Magmen, aus denen zuerst der Diamant und

dann der Kimberlit auskristallisierte.

Die Erkenntnis, das Diamant mit Kimberlit vergesellschaftet vorkommt, ermöglichte die

systematische Erschließung weiterer Primärlagerstätten.

So entdeckte man neue Vorkommen in Namibia, Russ­

land und Australien. Dort in einem dem Kimbert ähnli­

chen Gestein, dem Lamproit, der sich durch einen höhe­

ren Magnesiumanteil auszeichnet. Die Diamant­

Konzentration ist in beiden Gesteinen äußerst gering: Für 25 Karat Diamanten muss eine

Tonne Gestein abgebaut werden, wovon nur durchschnittlich zwanzig Prozent Schmuck­

qualität haben.

Die Masseneinheit Karat ist historisch überliefert. Es handelt sich um eine antike Handels­

einheit zur Gewichtsbestimmung von Gold und Edelsteinen. Sie leitet sich vom arabischen

-12 -Chemie in der Schule: www.chids.de

Page 14: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

"qirat" ab, das den Samen des Johannisbrotbaums bezeichnet. Er zeichnet sich durch sein

konstantes Samengewicht aus. Im Jahr 1907 wurde international vereinbart, das zukünftig

ein Karat der Masse von 0,2 g entsprechen soll.

Der größte bisher gefundene Diamant war ein indischer Diamant mit einem Rohgewicht

von 3106 Karat (oder 621,2 g), der nach seinem Entdecker als CULLINAN benannt wurde. Er

wurde zu den größten Schmuckdiamanten der Welt

verarbeitet. Der größte dieser Diamanten ziert heute das

Zepter der englischen Königin mit 590 Karat. Wie in

diesem Fall verdankt der Diamant seine Verwendung

als Schmuckstein aus der hervorstechenden Ei-

genschaft, Licht zu brechen und zu dispergieren. Das

Feuer eines Diamant, so der Ausdruck für die Brillanz, wird durch einen entsprechenden

Schliff unterstützt, der auch in die Bewertung der Diamanten einfließt. Sie werden nach

den vier "C" beurteilt: "Cut" (Schliff), "Clarity" (Reinheit), "Colour" (Farbe) und "Carat"

(Gewicht).

Der weitaus größte Teil der geförderten Diamanten wird aber als Industriediamanten

verwendet und genau wie die synthetisch erzeugten Diamanten insbesondere für Anwen­

dungen eingesetzt, in denen die große Härte ausgenutzt wird. Für Schleif- und Bohrgerä­

te, Trennscheiben für harte Materialien und auch als Achslager für Präzisionsgeräte. Bei

Bohrköpfen mit Diamantbesatz macht man sich neben der Härte auch die hervorragende

Wärmeleitfähigkeit zunutze, da der Diamant die Reibungshitze schnell ableiten kann.

Im Graphit sind im Gegensatz zum Diamant die Kohlenstoffatome Sp2­

hybridisiert, was eine trigonal-planare Umgebung zur Folge hat. Der

Abstand zu den drei nächsten Nachbarn von 142 pm liegt zwischen einer

Einfach- und einer Doppelbindung. Die einzelnen ebenen Schichten fol­

gen im AB-Muster aufeinander mit einem Entfernung von 335 pm. Sie sind durch schwa­

che VAN-DER-WAALs-Kräfte in einem Schichtengitter verknüpft. Die Schichten lassen sich

leicht gegeneinander verschieben.

- 13-Chemie in der Schule: www.chids.de

Page 15: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel : Der Elementare Zustand

B---'

Christian Bärmann

Im Vergleich zum Diamant mit 3,54 g/cm3 ist der Graphit mit 2,26 g/ cm3 weniger dicht und

sehr weich (Mons-Härte 1). Er glänzt in reiner Form metallartig und berührt man ihn,

wirkt er fettig. Neben der guten Wärmeleitfähigkeit, die für seine Verwendung wichtig ist,

spielt seine elektrische Leitfähigkeit eine große Rolle. Die Besonderheit beim Graphit ist

die Anisotropie der Leitfähigkeit. Er ist ein zweidimensionaler Leiter aufgrund der vier­

ten, delokalisierten Valenzelektronen der C-Atome.

Die Demonstration der Leitfähigkeit erfolgt mit einern einfachen

Verbraucherstromkreis, in dessen Mitte ein Stück Kabel durch einen

handelsüblichen Bleistift ersetzt ist. Entlang der Schichten besitzt

Graphit eine Leitfähigkeit von 30.000 s/cm. Das ist ungefähr 1/20 der

Leitfähigkeit von Silber und etwa 1h der von Eisen. Senkrecht zu

den Graphit-Schichten ist er mit 5 s/cm praktisch ein Isolator.

Graphit kommt besonders in Gebieten starker Gesteinsmetamorphosen vor, in denen Er­

starrungsgesteine auf Schichtgesteine treffen. Wahrscheinlich wurden Kohleflöze in den

Schichtgesteine sehr stark unter Luftabschluss erhitzt und dabei in Graphit überführt. Bei

der Umwandlung der Kohle, die in einern Bereich von 65-90% reinen Kohlenstoff enthält,

werden aus diesen kohlenstoffreichen Verbindungen des Kohlenstoffs mit Sauerstoff,

Wasserstoff, Stickstoff und Schwefel die Fremdelernente in Form von Gasen ausgetrieben.

Elementarer Kohlenstoff bleibt zurück.

Die größten Graphitlager befinden sich in Russland, Kanada, Sri Lanka und Madagaskar.

In Deutschland kommt er in der Nähe von Passau in der Grube Kropfmühl vor, die seit

-14 -Chemie in der Schule: www.chids.de

Page 16: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

mehr als hundert Jahren Graphit fördert. Inzwischen kann in einem Besucherbergwerk die

Graphitaufbereitung beobachtet werden. Die graphithaltigen Gesteine werden gemahlen

und mit verschiedenen Ölen versetzt, die den Graphit binden. Nach

Abtrennung der Gesteinsreste und der Flotationsöle wird der Gra­

phit mit einer Sodaschmelze versetzt, um alle restlichen Fremdstoffe

aus dem Graphit zu entfernen. Es entsteht ein schwarzes, metallisch

glänzendes Pulver.

Graphit findet aufgrund seiner guten elektrischen und thermischen Leitfähigkeit Verwen­

dung als Elektrodenmaterial, das bei Elektrolysen aller Art eingesetzt wird. Daneben be­

nutzt man ihn in Lichtbogenöfen. Hitzebeständige Bauteile, wie die

Auskleidung der Schmelzöfen zur Silicium-Einkristall-Herstellung,

gehören ebenso zur Verwendung wie korrosionsbeständige Werkstü­

cke. Die leichte Verschiebbarkeit der Graphit-Schichten wird beim

Einsatz als Schmiermittel und im Bleistift genutzt.

Die dritte Modifikation des Kohlenstoffs, die Fullerene, ähneln in ihrer Erscheinungsweise

eher dem Graphit als dem Diamant. Auch in den Fullerenen ist der Kohlenstoff Sp2­

hybridisiert, aber die Umgebung der Kohlenstoffatome ist nicht

planar, sondern trigonal verzerrt. Die Bindungslänge liegt bei

etwa 145 pm.

Der Prototyp aller höheren Fullerene, das C60, lagert sich im ele­

mentaren Zustand zu hexagonalen Schichten des AB-Musters

zusammen. Zwischen den Cso-Molekülen wirken in ihrem Kristallgitter nur schwache

VAN-DER-WAALs-Kräfte, wobei die einzelnen Moleküle nicht starr fixiert sind, sondern

chaotisch über 100 Millionen Mall pro Sekunde rotieren.

Benannt nach dem Architekten Buckminster Fuller, der durch seine geosphärischen Dome

bekannt wurde, zeichnet die Fullerene insbesondere ihre Kugelform. Das Bauprinzip lässt

sich auf den Austausch von Sechsecken durch Fünfecke anschaulich machen. Ersetzt man

12 der Graphit-Sechsecke, so wölbt sich die Schicht zur Kugel. Die C-Atome ändern dabei

-15 -Chemie in der Schule: www.chids.de

Page 17: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

nicht ihre Hybridisierung, sondern werden nach innen verzerrt. Beim Aufbau höherer Ful­

lerene wächst das Molekül mit der Anzahl der Sechsecke, die Anzahl der Fünfecke bleibt

gleich.

Die Fullerene sind im elementaren Zustand gelbbraune bis schwarzbraune Kristalle, die

weich wie der Graphit, aber noch weniger dicht sind (1,65 g/cm3) . Sie sub­

limieren bereits ab ca. 625 °C und sind nur in organischen Lösungsmittel

löslich. Die Farbigkeit der Lösungen beruht auf Il -7n*-Übergängen und

zeigt eine breite Spanne von purpurrot bis goldgelb. Chemisch zeigen sie

den Olefinen ähnliche Eigenschaften, so sind Additionen an den Doppel­

bindungen der Fullerene möglich.

Die Darstellung erfolgt durch Sublimation von Graphit in einer Helium- oder Neon­

Atmosphäre bei 2700 °C und Unterdruck. An den Wänden des Reaktionsraumes setzt sich

ein fullerenhaltiger Ruß ab, aus dem die Fullerene mit Hilfe von organischen Lösungsmit­

teln extrahiert werden können.

Über die Verwendung der Fullerene sind bisher nur wenige Aussagen zu machen. Als

Stichworte seien hier nur wenige Forschungsfelder genannt: 1. HIV-Bekämpfung - Deak­

tivierung des Virus durch in der Größe ähnliche Cso-Derivate im aktiven

Teil des HI-Virus; 2. Schmiermittel- Die Entwicklung eines Teflonballs,

in dem alle Kohlenstoffatome fluoriert sind (C6oF6o); 3. Diamantenzucht ­

Erleichterung der Darstellungsbedingungen durch die sogenannte Fulle­

renzwiebel; 4. Supraleiter - Durch Dotierung des Buckminster-Fullerens mit Alkaliemetal­

len (A3C60, A= K, Rb, Cs) können Supraleiter entstehen, die in alle Raumrichtungen lei­

tend sind; 5. Fasern aus Nanotubes - Es werden gleiche Eigenschaften wie die normalen

-16 -Chemie in der Schule: www.chids.de

Page 18: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

Carbonfasern vermutet, wobei aber von einer höheren Zugfestigkeit und Elastizität, sowie

einer geringeren Bruchgefahr ausgegangen wird. Bauteile aus Nanotubes verteilen die

mechanisch wirkenden Kräfte auf wesentlich mehr Fasern als die Kohlefasern, da im glei­

chen Volumen wesentlich mehr winzige Nanotube-Fasem vorkommen. Nach weiteren

Anwendung wird gesucht.

Im nächsten Abschnitt über die Spezial-Kohlenstoffe verwischt die Grenze zwischen an­

organischer und organischer weiter. Nach der kurzen Vorstellung der verschiedenen

Einsatzgebiete und Darstellungsweisen wird in der experimentellen Umsetzung der As­

pekte der großen Oberfläche und ihrer Adsorptionswirkung betrachtet. Das Gebiet der

Spezial-Kohlenstoffe ist weit gefächert, so dass hier nur die wesentlichen Produktgruppen

besprochen werden.

Beim Koks handelt es sich um 98%-igen Kohlenstoff, der durch starkes Erhitzen von

Steinkohle auf mehr als 1500 °C entsteht. Er zumeist für Feuerungszwecke eingesetzt. Der

Elektrographit besteht ebenfalls aus reinem Kohlenstoff, der aus Pyrolysen von Kohlen­

stoffverbindungen gewonnen wird. Die Produkte der Pyrolyse werden anschließend bei

2600-3000 °C im elektrischen Ofen graphitiert. Hauptmaterial zur Herstellung von Elekt­

rographit ist der Petrolkoks, der durch Verkokung der Rückstände bei der Erdöldestillati­

on gewonnen wird. Hauptsächliche Verwendung sind Elektroden und Hitzeschutzver­

kleidungen (z.B. in Hochöfen).

Pyrokohlenstoff ist eine Art des Kohlenstoffs, die durch Zersetzung von Kohlenwasser­

stoffen erhalten wird, indem das Ausgangsmaterial bei niedrigem Druck (70 mbar) und

oberhalb 700 °C behandelt wird. Die Produkte der Spaltung werden an glatten Oberflä­

chen niedergeschlagen und graphitiert, wodurch eine besondere Parallelität der Schichten

ermöglicht wird. Die dadurch im Vergleich zu Naturgraphit höhere Wärmeleitfähigkeit

wird in der Raumfahrt in Hitzeschilden eingesetzt, aber aufgrund seiner guten Biokompa­

tibiIität findet er auch in der Medizin (für Herzklappen und Prothesen) Verwendung.

Die Herstellung von Ruß erfolgt durch Verbrennung von Erdöl bei ungenügender Luftzu­

fuhr. Dabei entstehen lockere Aggregat mit kugelähnlicher Gestalt mit Durchmessern von

-17 -Chemie in der Schule: www.chids.de

Page 19: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel : Der Elementare Zustand Christian Bärmann

AbsorptionAdsorption

0,5 bis 10 nm. Verwendung findet der Ruß mit etwa 95% in der Gummiindustrie als Füll­

stoff für stark beanspruchte Produkte: Reifen, Förderbänder etc. Weiterhin wird er noch

immer als Farbpigment eingesetzt.

Kohlenstoff-Fasern entstehen durch kontrollierte Pyrolyse von organischen Fasern und

Polymeren (z.B. Polyacrylnitril). Sie zeichnen sich durch hohe Zugfestigkeit und hohe E­

lastizität aus. Verwendung finden sie im Flugzeug- und Fahrzeugbau, sowie in der Pro­

duktion von Sportgeräten.

Der letzte der hier behandelten Spezial-Kohlenstoffe, die Aktivkohle, wird in zahlreichen

Bereichen eingesetzt. Die Anwendung in Filtern jeder Art beruht im Wesentlichen auf der

großen Oberfläche an den Fremdstoffe gut adsorbiert werden können. Grundsätzlich stellt

Adsorption die Konzentrationsänderung ei­

nes Stoffes an der Oberfläche eines zweiten

dar. Dabei reagieren beide Stoffe nicht mit­

einander. Um Verwechslung mit der Absorp­

tion vorzubeugen, sollen folgende Abbildun­

gen den grundlegenden Unterschied ver­

deutlichen.

Zur experimentellen Demonstration der Adsorptionswirkung soll Rotwein entfärbt wer­

den. Dazu werden sechs Erlenmeyerkolben mit unterschiedlichen Mengen Aktivkohle

gefüllt (0 mg, 100 mg, 200 mg, 300 mg , 500 mg,

1000 mg) und anschließend mit einer definierten

Menge Rotwein versetzt (20 ml). Nach 10 - 15

Minuten werden die schwarzen Gemische durch

Faltenfilter in Schnelllauftrichtern filtriert. Dabei

bleibt die Aktivkohle mit den daran adsorbierten Bestand teilen des Rotweins (insbesonde­

re der Farbstoff) zurück. Das Ergebnis hängt von der verwendeten Menge Aktivkohle ab

und geht von farblos bis unverändert.

Bei der Betrachtung der Vorgänge an der Oberfläche der Aktivkohle wird schnell deutlich,

warum die Aktivkohle nur eine definierte Kapazität zur Aufnahme von Stoffen hat. An

- 18-Chemie in der Schule: www.chids.de

Page 20: pdf-Protokoll (Scan)

Kohlenstoff 3. Kapitel: Der Elementare Zustand Christian Bärmann

der Oberfläche werden die färbenden Anteile des Rotweins adsorbiert. Es bildet sich eine

/rate ist eine visuelle Umsetzung einer

dünne Schicht von Farbstoffmolekülen, die durch VAN-DER-WAALs-Kräfte gehalten wird.

Die unterschiedliche Färbung der Filt-

sogenannten Adsorptionsisotherme.

Mit steigender Menge an Aktivkohle

reduziert sich im Verhältnis zum im-

mer gleichen Volumen des Rotweins

dessen Konzentration. Bei der kleins-

Konzentration cPartialdruck p

ten Menge Aktivkohle übersteigt das

eingesetzte Volumen die Kapazität der

Aktivkohle. Je mehr von ihr eingesetzt wird, desto mehr kann sie Rotwein adsorbieren, so

dass am Ende der Reihe der gesamte Farbstoff gebunden werden kann.

Bei näherer Betrachtung des Adsorbens Aktivkohle fällt sofort die mikrokristalline Form

auf. Sie besitzt eine große innere Oberfläche, die je nach Porengröße 500 - 1000 m 2/g be-

trägt, und durch den Beitrag jeder Pore zur Gesamtadsorption bedingt ist. Hergestellt

wird sie meist durch gelindes Erhitzen organischer Stoffe wie Holz, Torf, Kokosschalen

bei 200-250 "C unter Luftabschluss. Nach der anschließenden Aktivierung bei 700-900 "C

durch Oxidation mit Wasserdampf, Luft oder Kohlendioxid, die zur Porenbildung führt,

ist die Aktivkohle einsatzbereit.

-19 -Chemie in der Schule: www.chids.de

Page 21: pdf-Protokoll (Scan)

Kohlenstoff 4. Kapitel: Die chemischen Eigenschaften Christian Bärmann

4. Die chemischen Eigenschaften

Kohlenstoff ist ein reaktionsträges Element, das große Aktivierungsenergien für Reaktio­

nen benötigt. Er ist inert gegenüber nicht oxidierenden Säuren und Basen. Die Reaktivität

der Modifikationen sinkt strukturbedingt in der Reihe Graphit, Fulleren, Diamant. Er

nimmt eine Mittelstellung in der 2. Periode ein. Seine Affinität zu den elektropositiveren

Elementen ist ähnlich der zu elektronegativeren. Das Spektrum der Oxidationszahlen

reicht daher von +4 im Kohlendioxid bis zu - 4 im Aluminiummethanid.

Eine wichtige Eigenschaft des Kohlenstoffs macht man sich seit Jahrtausenden zunutze.

Die Reduktion von Erzen zur Eisengewinnung. Im Modellversuch zum Hochofenprozess

wird diese nachgestellt. Aufgrund der hohen Temperaturen muss die Versuchsanordnung

aus Quarzglas hergestellt werden. Sie besteht aus einer Quarzpfeife

und einem Reaktionsturm, der an einem Ende konisch ist und in die

Quarzpfeife ragt. Am unteren Ende des Turm wird ein Sperrschicht

Quarzglaswolle eingeführt, die das sofortige Nachrutschen der dar­

über liegenden Schichten nach Reaktionsstart verhindern soll. Über

dieser Quarzglaswolle sind abwechselnd Schichten aus Eisen(III)­

oxid und gekörnter Aktivkohle gelagert. Durch die Quarzpfeife

L

wird elementarer Sauerstoff geleitet, der hier mit Hilfe von zwei bis drei Bunsenbrenner

aufgeheizt wird. Die Reaktion wird gestartet, indem die unterste Schicht Aktivkohle, die

direkt über der Glaswolle liegt, zum Glühen gebracht wird.

Betrachtet man die Reaktion, so findet ein mehrstufiger Prozess statt. Zunächst wird nach

dem Start der Reaktion der glühende Kohlenstoff mit heißem Sauerstoff zu Kohlenmono­

xid umgesetzt.

2 C (5) + O2 (g) 2 CO (g)

Dieses reduziert das Eisen(III)-oxid zu einem Eisen(II,III)-oxid.

+2

CO (g)

- 20-

+2 +3

2 FeO· Fe203 (5) ++4

CO2 (g)

Chemie in der Schule: www.chids.de

Page 22: pdf-Protokoll (Scan)

Kohlenstoff 4. Kapitel: Die chemischen Eigenschaften Christian Bärmann

Das gebildete Mischoxid wird dann mit weiterem Kohlenmonoxid zu reinem Eisen(II)-

oxid reduziert.

+2 +3 +2

FeO . Fe20 3 (5) + CO (g)---

+2 +4

3 FeO (5) + CO2 (g)

Erst in der letzten Stufen entsteht in einer weiteren Reduktion das elementare Eisen. In

allen drei Reaktionsstufen wird das eingesetzte Kohlenmonoxid zu Kohlendioxid oxidiert.

+2 +2

FeO (5) + CO (g)

o +4

Fe (5) + CO2 (g)

Um die Vorgänge im Hochofen einschätzen zu können, müssen sie in Beziehung zum

Boudouard-Gleichgewicht gebracht werden, das Aussagen über die Gleichgewichtskon-

stante der Reaktion C (s) + C02 (g) ~,=:=:::::::!:" 2 CO (g) macht.

100 ~400

I Vol-% co2 1 0

I Fe

100

2

I

I FeO II

FeO· Fe203

I 01 Vol-% CO I1000

)

I Temperatur [0 C] I

Kurve 1 zeigt die Gleichgewichtsreaktion zwischen elementarem Kohlenstoff und Koh­

lendioxid links zu Kohlenmonoxid rechts. Je größer die Temperatur wird, desto höher

wird die Konzentration an Kohlenmonoxid. Kurve 2 und Kurve 3 spiegeln die Reduktion

im Hochofen wieder. Die Schnittpunkte dieser Kurven mit dem Boudouard-Gleichgewicht

- 21-Chemie in der Schule: www.chids.de

Page 23: pdf-Protokoll (Scan)

Kohlenstoff 4. Kapitel: Die chemischen Eigenschaften Christian Bärmann

geben die Mindesttemperatur wieder, bei denen die Reduktionen in Anwesenheit von

Kohlendioxid ablaufen. Die abgegrenzten Bereiche stellen die vorkommenden Formen des

Eisens dar- Unterhalb der Kurve 3 liegt der Magnetit (Fe304), zwischen Kurve 2 und 3 der

Wüstit (FeO) und oberhalb davon metallisches Eisen vor.

Die beiden wichtigsten Oxide des Kohlenstoffs, das Kohlendioxid und das Kohlenmono­

xid, bilden den Abschluss des Vortrags. Betrachtet man die Eigenschaften der beiden ge­

genüberstellend, so ergeben sich grundsätzlich Unterschiede.

Kohlendioxid hat einen Sublimationspunkt bei - 78,S "C, wogegen Kohlenmonoxid sehr

tiefe Schmelz- und Siedepunkte, die mit - 205,1 "C und -191,5 "C nur knapp oberhalb der

entsprechenden Werte des elementaren Stickstoffs liegen, zu dem es isoelektronisch ist.

Beide Kohlenoxide sind linear gebaut. Die Verwendung beider Gase steht im starken Ge­

gensatz zueinander. Während das weitgehend inerte Kohlendioxid als Schutzgas und

Löschmittel eingesetzt wird, benutzt man das giftige Kohlenmonoxid als Brenngas, zur

Wasserstoffgewinnung, zur Erzreduktion und für organische Synthesen.

Der letzte Versuch widmet sich daher der Brennbarkeit als auch den reduzierenden Eigen­

schaften von Kohlenmonoxid. In einem Gasentwickler wird daher Kohlenmonoxid durch

Dehydratisierung von Ameisensäure durch Schwefelsäure dargestellt. Die Ameisensäure

wird dazu in die auf 40 "C temperierte Schwefelsäure getropft, wo sich unter heftigem

Aufschäumen das Gas bildet. Zunächst wurde das Gas in eine Silbernitrat-Lösung geleitet,

um die reduzierenden Eigenschaften zu beobachten, und dann in ein pneumatische Wan­

ne mit Seifenlösung, um dort die Brennbarkeit zu demonstrieren.

- 22-Chemie in der Schule: www.chids.de

Page 24: pdf-Protokoll (Scan)

Kohlenstoff 4. Kapitel: Die chemischen Eigenschaften Christian Bärm ann

Darstellung: - H -. :;;::::0/H., ......-:0/' C/" C+ H+ .. 1+ ..

1 :-., .Q - H20H/~U H H

IC- ot +

Reduktion: 2 Ag+ (aq) + CO (g) + 3H20

Verbrennung: 2 CO(g) + O 2 (g)

- 23-

2 CO2 (g)

Chemie in der Schule: www.chids.de

Page 25: pdf-Protokoll (Scan)

Kohlenstoff

5. Schlussakkord

5. Kapitel: Schlussakkord Christian Bärmann

Das Thema Kohlenstoff eignet sich zur Demonstration einiger wichtiger Phänomene. An­

hand des Hochofenprozess, der selbst einen der bedeutendsten großtechnische Prozesse

darstellt, und der CO-Darstellung kann die Reduktionswirkung demonstriert werden.

Beide Versuche eignen sich für die Einführung der Redox-Reaktionen,

Mit Hilfe des Boyle-Versuch und der Verbrennungsenthalpie können qualitative und

quantitative Aussagen zum Einsatz des Kohlenstoffs gemacht werden. Sie eignen sich

auch als Anknüpfungspunkte für fächerübergreifenden Unterricht, an dem historische

Aspekte der menschlichen Entwicklung gezeigt werden können.

Die Leitfähigkeit des Graphits kann mit Hilfe eines Bleistifts demonstriert werden. Hier

kann man bei der Verwendung des Graphits Verbindungen zum technischen Einsatz se­

hen und in den Unterricht einbringen. Die Adsorptionswirkung der Aktivkohle spielt in

zahlreichen Bereiche eine Rolle. Aktuelle Bezüge sind naheliegend.

Allen Versuchen ist gemeinsam, dass sie mit einfachen Mitteln komplexe Vorgänge de­

monstrieren und sich so für den Chemieunterricht eignen. Sie vermitteln darüber hinaus

einen weitergehenden Blick auf den Kohlenstoff, der mehr Versuche zu bieten hat als die

bekannten Experimente zum Kohlendioxid.

- 24-Chemie in der Schule: www.chids.de

Page 26: pdf-Protokoll (Scan)

Kohlenstoff

6. Anhang

Literaturverzeichnis:

6. Kapitel: Anhang Chri stian Bärmann

BIey, Lars; Friedrich, Jens et al.: Die Masse des "Nichts" - der Boyle-Versuch im

neuen Lichte. In: CHEMKON 8, 2001, S. 156 f.

Keune, Hans: Chemische Schulexperimente: eine Anleitung für Lehrer in 5 Bänden.

Thun u.a., 197X

Holleman, Arnold F.; Wiberg, Nils: Lehrbuch der anorganischen Chemie. Berlin

u .a.,1995.

Jansen,W.; Melle.L: Einfaches Kalorimeter zur Bestimmung der Verbrennung­

senthalpie von Kohlenstoff. In: PdN-Ch 2, 1993,20-22.

Riedel, Erwin: Anorganische Chemie. Berlin u .a., 1999.

Römpp, Hermann; Falbe, Jürgen: Römpp-Lexikon Chemie. 10. Aufl., Version 2.0.

Stuttgart,1999.

Fluck, Ekkehard; Mahr, Carl: Anorganisches Grundpraktikum für Chemiker und

Studierende der 6.Aufl., Weinheim u.a., 1985.

- 25-Chemie in der Schule: www.chids.de

Page 27: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel : Anhang - Arbeitsvorschriften Christian Bärmann

Arbeitsvorschrift 1: BOYLE-Versuch

Quelle:

Geräte:

Bley, Lars; Friedrich, Jens et aI.: Die Masse des "Nichts" - der Boyle-Versuch

im neuen Lichte. In: CHEMKON 8, 2001, S. 156 f.

Rundkolben (1 L) mit Schliff, Einleitungsrohr einer Gaswaschflasche (mit

passendem Schliff), Absaugstück mit Hahn (mit passendem Schliff), Luftbal­

lon, Korkring, Schlauchschellen, PVC- oder Gummischlauch, Sauerstofffla­

sche mit Druckminderer, Heißluftpistole (Bunsenbrenner), Stativ-Klammer,

Waage

Chemikalien: Aktivkohle (gekörnt), Sauerstoff

Vorgehen: 100-200 mg gekörnte Aktivkohle werden in der

Rundkolben gegeben. Mit Hilfe eines Einleitungs­

rohr für Gaswaschflaschen, an dem die Sauer­

stoffflasche angeschlossen ist, wird der Rundkol­

ben etwa 10 Minuten mit elementarem Sauerstoff

gespült. Danach wird relativ schnell das Absaug­

stück mit Hahn im geschlossenen Zustand aufge­

setzt, damit der Sauerstoff nicht entweicht. Am

Absaugstück befindet sich ein Luftballon für den

Druckausgleich bei der Verbrennung.

Nun wird der Rundkolben mit der Aktivkohle und dem Sauerstoff gleich­

mäßig mit der Heißluftpistole erhitzt bis einzelne Aktivkohle-Teilchen zu

Glühen beginnen, zuvor wurde eine Stativ-Klammer am Hals befestigt. Jetzt

schwenkt man den Rundkolben stark um, so dass alle Partikel der Aktivkoh­

le zu glühen beginnen und ein"Wunderkerzeneffekt" zu sehen ist.

- 26-Chemie in der Schule: www.chids.de

Page 28: pdf-Protokoll (Scan)

Kohlen stoff 6. Kapitel: Anhang - Arbeitsvorschriften Christian Bärmann

Arbeitsvorschrift 2: Verbrennungsenthalpie von Holzkohle

Quelle: Jansen,W.; Melle,I.: Einfaches Kalorimeter zur Bestimmung der Verbrennung­

senthalpie von Kohlenstoff. In: PdN-Ch 2, 1993, 20-22.

Geräte: Verbrennungskalorimeter (selbst gebaut nach obiger Vorschrift, Materialien s. dort),

Sauerstoffflasche mit Druckminderer, Pinzette, Gummischlauch, Magnetrührer, Di­

gitalthermometer, Zünddraht, Gleichspannungsquelle, Kabel, Krokodilklemmen,

Gaswaschflasche (nachgeschaltet als Blasenzähler mit Wasser), Waage

Chemikalien: Sauerstoff, Holzkohle,

Wasser

Vorgehen: Zur Bestimmung der

Verbrennungsenthalpie

muss die eingesetzte

Holzkohle vor dem

Versuch getrocknet

werden. Dies kann im

Trockenschrank oder

IBrennkammer!im kleinen Maßstab im . .

IKupferspirale I

D

Kalorimeter

Reagenzglas über dem Bunsenbrenner geschehen, ohne die Kohle zu verbrennen.

Eine Probe von 300-500 mg wird in das Quarzglasschälchen des Kalorimeters ge­

bracht. Anschließend wird die Apparatur zusammengesetzt und mit Wasser gefüllt.

Dabei ist darauf zu achten, dass der Zünddraht in möglichst langer Linie die Holz­

kohle berührt. Zur Vorbereitung der Verbrennung wird der Gasraum des Kalorime­

ters etwa 10 Minuten mit Sauerstoff gespült. Dabei sollte es sich um einen langsa­

men, aber gleichmäßig Sauerstoffstrom handeln, der auch die Verbrennung gut un­

terhalten kann. Je langsamer der Sauerstoff durchströmt, desto genauer sind die an­

schließenden Messwerte.

Zur Zündung wird eine Gleichspannungsnetzteil benutzt, an dem man die Span­

nung solange steigert, bis der Verbrennungsvorgang sichtbar begonnen hat, dann

schaltet man die Spannungsquelle wieder aus.

Für die Messwert-Aufnahme verwendet man eine Digitalthermometer, mit dem alle

30 Sekunden die Temperatur des Kalorimeter-Wasser gemessen wird. Die Auswer­

tung erfolgt nach dem folgenden Schema.

- 27-Chemie in der Schule: www.chids.de

Page 29: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel: Anhang - Arbeitsvorschrift en Chri stian Bärmann

Bestimmung der Verbrennungsenthalpie von Holzkohle

1. Einwaage Holzkohle: g

2. Messwerte:

t 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5[min]

T[0C]

5,0 5,5 6,0

t 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 10,5 11,0 11,5 12,0[min]

T[0 C]

Maximale Temperaturdifferenz: ~T = _

3. Wärmekapazität des Kalorimeters:

CKalorimeter = mGlas . Cp(Glas) + mcu· cp(cu) + mWasser' Cp(H20 )

- J

4. Verbrennungsenthalpie

~Hmol = - ~T . CKalorimeter . Mmol(Kohlenstoff) . mVerbrannter Stoff-1

____ J . 12,011 g/ mo,· g-1

_____ J/mol = 10/mol

Literaturwert: -393,8 kJ/mol

Abweichung: %

- 28-Chemie in der Schule: www.chids.de

Page 30: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel: Anhang - Arbeitsvorschr iften Christian Bärmann

Arbeitsvorschrift 3: Leitfähigkeit von Graphit

Geräte:

Vorgehen:

Gleichspannungsnetzgerät, Krokodilklemmen, Lämpchen, Demonstrations­

motor, Kabel, Bleistift, Demonstrationsvielfachinstrumente für Stromstärke

und Spannung

Es wird ein einfacher Verbraucherstromkreis aufgebaut, in dem ein Stück

Kupferleitung durch einen Bleistift ausgetauscht wird. Der Bleistift ist auf

beiden Seiten angespitzt und wird mit den Krokodilklemmen im Stromkreis

integriert.

- 29-Chemie in der Schule: www.chids.de

Page 31: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel: Anhang - Arbeitsvorschriften Christian Bärmann

Arbeitsvorschrift 4: Adsorption von Rotwein an Aktivkohle

Geräte: Schnelllauftrichter (6x), Bechergläser (6x SOml), Erlenmeyer (6x SOml), Sta­

tivmaterial (Filtrierringe, Doppel- und Hakenmuffen, Stativstangen, Stativ­

platten), Faltenfilter, Waage, Uhrgläser

Chemikalien: Aktivkohle, Rotwein

Vorgehen: In den sauberen und trockenen Bechergläser werden unterschiedliche Mas­

sen (0, 100, 200, 300, 500, 1000 mg)von gepulverter Aktivkohle mit der glei­

chen Menge Rotwein (20 ml) versetzt. Nachdem die Bechergläser mit Uhr­

gläsern abgedeckt wurden, wartet man ca. 10-20 Minuten bis sich ein

Gleichgewicht zwischen Rotwein und Aktivkohle einstellt. Während der Zeit

schwenkt man ein paar Mal die Bechergläser um.

Nach der Wartezeit werden die Mischung jeweils durch einen eigenen Fal­

tenfilter in separate Erlenmeyer-Kolben filtriert. Es entsteht eine Reihe, in der

es zu Farbabstufungen kommt.

- 30-Chemie in der Schule: www.chids.de

Page 32: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel: Anhang - Arbeitsvorschriften Christian Bärmann

Arbeitsvorschrift 5: Hochofenprozess

Quelle:

Geräte:

Schneider, Oliver: Protokoll zum Experimentalvortrag "Simulation einiger

großtechnischer Prozesse der anorganischen Chemie". Marburg 1993.

Hochofenapparatur aus Quarzglas (Quarzpfeife und Reaktionsturrn), Quarz­

glaswolle, Gummischlauch, Sauerstoffflasche mit Druckminderer, Bunsen­

brenner (3-4), Drahtnetz, Stativmaterial (Klammer, Muffen, Stangen,

Stativplatten)

Chemikalien: Eisen(III)-oxid, Aktivkohle (gekörnt), Wasser

LVorgehen: Vor dem Versuch wird das Eisenoxid mit Was-

ser vermischt. Die getrocknete Masse wird in

grobe Stücke zerteilt und anschließend abwech­

selnd mit der Aktivkohle auf einen Glaswolle-

bausch im Reaktionsturm des Hochofens ge­

schichtet.

Für die Reaktion wird eine kontinuierliche Zu­

fuhr von Sauerstoff benötigt, der durch die

Bunsenbrenner unter der Quarzpfeife vorge­

heizt wird. Der Start der Reaktion erfolgt, in­

dem die erste Schicht Aktivkohle zur Glut gebracht wird. Die Reaktion wird

durch die Sauerstoffzufuhr kontrolliert.

- 31 -Chemie in der Schule: www.chids.de

Page 33: pdf-Protokoll (Scan)

Kohlenstoff 6. Kapitel: Anhang - Arbeitsvorschriften Christian Bärmann

Arbeitsvorschrift 6: Darstellung von Kohlenmonoxid

Geräte: Dreihalskolben, Tropftrichter mit Druckausgleich, Stopfen, Absaugstück mit

Hahn, Gaswaschflaschen, Dreiwegehahn, pneumatische Wanne, Glasrohre,

Schlauchschellen, Magnetrührer mit Rührfisch und Thermometer, Bunsen­

brenner, Wasserbad, ABZUG

Chemikalien: Schwefelsäure (konz.), Methansäure, Wasser, Palladiumchlorid-Lösung,

Spülmittel

Vorgehen: In einer Gasentwicklerapparatur wird durch Zu tropfen von Ameisensäure

zu konzentrierter Schwefelsäure Kohlenmonoxid entwickelt. Dabei ist die

Schwefelsäure auf etwa 40°C temperiert und wird durch einen Rührfisch in

Bewegung gehalten.

Im ersten Teilversuch, bei dem die Brennbarkeit

nachgewiesen werden soll, wird das entstehende

Kohlenmonoxid in eine Seifenlösung eingeleitet.

Die sich bildenden Blasen bilden mit dem Luftsau-

erstoff leicht entzündlich Blasen, die mit blauer

Flamme abbrennen. Je länger die Blasen an der Luft

sind, desto heftiger wird die Verbrennung.

Im zweiten Teilversuch, der die Reduktionswir­

kung demonstrieren soll und auch zur Entsorgung

~ des Kohlenmonoxids dienen kann, wird das Gas in

eine konzentrierte Palladiumchlorid-Lösung eingeleitet. Eine schnelle Trü­

bung tritt ein durch ausfallendes elementares Palladium.

~lf-~~.x..<.>

- 32-Chemie in der Schule: www.chids.de