30
Quantum Toroidal Superalgebras Luan Bezerra Joint work with Evgeny Mukhin IUPUI 2019 Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 1 / 14

Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebras

Luan BezerraJoint work with Evgeny Mukhin

IUPUI

2019

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 1 / 14

Page 2: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

1 Definition.

2 Vertex Representations.

3 Evaluation Homomorphism.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 2 / 14

Page 3: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

1 Definition.

2 Vertex Representations.

3 Evaluation Homomorphism.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 3 / 14

Page 4: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

1 Definition.

2 Vertex Representations.

3 Evaluation Homomorphism.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 4 / 14

Page 5: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

It is an affinization of Uq glm|n with m, n ≥ 1 and m 6= n;

Generators: Ei (z),Fi (z),K±i (z),C , i ∈ I ;

m + n − 1 m + 2 m + 1

m − 121

0 m

Depends on two complex parameters: q1q2q3 = 1, q2 = q2;

It has a vertical subalgebra Uverq slm|n ∼= Uq slm|n given in new Drinfeld

realization,

and a horizontal subalgebra Uhorq slm|n ∼= Uq slm|n given in

Drinfeld-Jimbo realization.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 5 / 14

Page 6: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

It is an affinization of Uq glm|n with m, n ≥ 1 and m 6= n;

Generators: Ei (z),Fi (z),K±i (z),C , i ∈ I ;

m + n − 1 m + 2 m + 1

m − 121

0 m

Depends on two complex parameters: q1q2q3 = 1, q2 = q2;

It has a vertical subalgebra Uverq slm|n ∼= Uq slm|n given in new Drinfeld

realization,

and a horizontal subalgebra Uhorq slm|n ∼= Uq slm|n given in

Drinfeld-Jimbo realization.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 5 / 14

Page 7: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

It is an affinization of Uq glm|n with m, n ≥ 1 and m 6= n;

Generators: Ei (z),Fi (z),K±i (z),C , i ∈ I ;

m + n − 1 m + 2 m + 1

m − 121

0 m

Depends on two complex parameters: q1q2q3 = 1, q2 = q2;

It has a vertical subalgebra Uverq slm|n ∼= Uq slm|n given in new Drinfeld

realization,

and a horizontal subalgebra Uhorq slm|n ∼= Uq slm|n given in

Drinfeld-Jimbo realization.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 5 / 14

Page 8: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

It is an affinization of Uq glm|n with m, n ≥ 1 and m 6= n;

Generators: Ei (z),Fi (z),K±i (z),C , i ∈ I ;

m + n − 1 m + 2 m + 1

m − 121

0 m

Depends on two complex parameters: q1q2q3 = 1, q2 = q2;

It has a vertical subalgebra Uverq slm|n ∼= Uq slm|n given in new Drinfeld

realization,

and a horizontal subalgebra Uhorq slm|n ∼= Uq slm|n given in

Drinfeld-Jimbo realization.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 5 / 14

Page 9: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Quantum Toroidal Superalgebra Em|n(q1, q2, q3).

It is an affinization of Uq glm|n with m, n ≥ 1 and m 6= n;

Generators: Ei (z),Fi (z),K±i (z),C , i ∈ I ;

m + n − 1 m + 2 m + 1

m − 121

0 m

Depends on two complex parameters: q1q2q3 = 1, q2 = q2;

It has a vertical subalgebra Uverq slm|n ∼= Uq slm|n given in new Drinfeld

realization,

and a horizontal subalgebra Uhorq slm|n ∼= Uq slm|n given in

Drinfeld-Jimbo realization.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 5 / 14

Page 10: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Relations

KiKj = KjKi , KiEj(z)K−1i = qAi,jEj(z) , K±i (z)K±j (w) = K±j (w)K±i (z) ,

K±i (z)K±j (w) = K±j (w)K±i (z) ,

dMi,jC−1z − qAi,jw

dMi,jCz − qAi,jwK−i (z)K+

j (w) =dMi,jqAi,jC−1z − w

dMi,jqAi,jCz − wK+j (w)K−i (z) ,

(dMi,j z − qAi,jw)K±i (C−1±12 z)Ej(w) = (dMi,jqAi,j z − w)Ej(w)K±i (C−

1±12 z) ,

[Ei (z),Fj(w)] =δi ,j

q − q−1(δ(Cw

z

)K+i (w)− δ

(C

z

w

)K−i (z)) ,

[Ei (z),Ej(w)] = 0 , [Fi (z),Fj(w)] = 0 (Ai,j=0),

(dMi,j z − qAi,jw)Ei (z)Ej(w) = (−1)|i ||j |(dMi,jqAi,j z − w)Ej(w)Ei (z) (Ai,j 6=0),

+ Serre relations.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 6 / 14

Page 11: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Diagram isomorphism

σ : Em|n(q1, q2, q3)→ Em|n(q3, q2, q1), σ(Ei (z)) = Em−i (z);

change of parity isomorphism

τ : Em|n(q1, q2, q3)→ En|m(q−13 , q−12 , q−11 ), τ(Ei (z)) = E−i (z);

it has a topological Hopf superalgebra structure:

∆Ei (z) = Ei (z)⊗ 1 + K−i (z)⊗ Ei (C ⊗ z);

it has a two dimensional center.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 7 / 14

Page 12: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Diagram isomorphism

σ : Em|n(q1, q2, q3)→ Em|n(q3, q2, q1), σ(Ei (z)) = Em−i (z);

change of parity isomorphism

τ : Em|n(q1, q2, q3)→ En|m(q−13 , q−12 , q−11 ), τ(Ei (z)) = E−i (z);

it has a topological Hopf superalgebra structure:

∆Ei (z) = Ei (z)⊗ 1 + K−i (z)⊗ Ei (C ⊗ z);

it has a two dimensional center.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 7 / 14

Page 13: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Diagram isomorphism

σ : Em|n(q1, q2, q3)→ Em|n(q3, q2, q1), σ(Ei (z)) = Em−i (z);

change of parity isomorphism

τ : Em|n(q1, q2, q3)→ En|m(q−13 , q−12 , q−11 ), τ(Ei (z)) = E−i (z);

it has a topological Hopf superalgebra structure:

∆Ei (z) = Ei (z)⊗ 1 + K−i (z)⊗ Ei (C ⊗ z);

it has a two dimensional center.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 7 / 14

Page 14: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Diagram isomorphism

σ : Em|n(q1, q2, q3)→ Em|n(q3, q2, q1), σ(Ei (z)) = Em−i (z);

change of parity isomorphism

τ : Em|n(q1, q2, q3)→ En|m(q−13 , q−12 , q−11 ), τ(Ei (z)) = E−i (z);

it has a topological Hopf superalgebra structure:

∆Ei (z) = Ei (z)⊗ 1 + K−i (z)⊗ Ei (C ⊗ z);

it has a two dimensional center.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 7 / 14

Page 15: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Different parity choices yield isomorphic superalgebras;

Miki automorphism: interchanges the vertical and horizontalsubalgebras.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 8 / 14

Page 16: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Properties

Different parity choices yield isomorphic superalgebras;

Miki automorphism: interchanges the vertical and horizontalsubalgebras.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 8 / 14

Page 17: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Level 1 Modules - Vertex Operators

The Frenkel-Kac construction of Uq gln-modules was extended to thequantum toroidal (purely even) case [S]. We use the same techniqueto extend the construction of level 1 Uq glm|n-modules [KSU] toEm|n-modules.

As in the affine case, the modules obtained are not irreducible.

It is conjectured the irreducible modules are the kernel (or cokernel)of some screening operators.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 9 / 14

Page 18: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Level 1 Modules - Vertex Operators

The Frenkel-Kac construction of Uq gln-modules was extended to thequantum toroidal (purely even) case [S]. We use the same techniqueto extend the construction of level 1 Uq glm|n-modules [KSU] toEm|n-modules.

As in the affine case, the modules obtained are not irreducible.

It is conjectured the irreducible modules are the kernel (or cokernel)of some screening operators.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 9 / 14

Page 19: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Level 1 Modules - Vertex Operators

The Frenkel-Kac construction of Uq gln-modules was extended to thequantum toroidal (purely even) case [S]. We use the same techniqueto extend the construction of level 1 Uq glm|n-modules [KSU] toEm|n-modules.

As in the affine case, the modules obtained are not irreducible.

It is conjectured the irreducible modules are the kernel (or cokernel)of some screening operators.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 9 / 14

Page 20: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

Theorem

Fix u ∈ C×. We have a surjective homomorphism of superalgebrasevu : Em|n → Uq glm|n with c2 = qm−n3 . In particular, any admissible

Uqglm|n-module on which the central element c acts as an arbitrary scalar

α can be lifted to an Em|n-module choosing q3 satisfying α2 = qm−n3 .

Generators with index i ∈ I (Uverq slm|n) are mapped to generators;

Generators corresponding to the node 0 are mapped to “dressed”currents:

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 10 / 14

Page 21: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

Theorem

Fix u ∈ C×. We have a surjective homomorphism of superalgebrasevu : Em|n → Uq glm|n with c2 = qm−n3 . In particular, any admissible

Uqglm|n-module on which the central element c acts as an arbitrary scalar

α can be lifted to an Em|n-module choosing q3 satisfying α2 = qm−n3 .

Generators with index i ∈ I (Uverq slm|n) are mapped to generators;

Generators corresponding to the node 0 are mapped to “dressed”currents:

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 10 / 14

Page 22: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

Theorem

Fix u ∈ C×. We have a surjective homomorphism of superalgebrasevu : Em|n → Uq glm|n with c2 = qm−n3 . In particular, any admissible

Uqglm|n-module on which the central element c acts as an arbitrary scalar

α can be lifted to an Em|n-module choosing q3 satisfying α2 = qm−n3 .

Generators with index i ∈ I (Uverq slm|n) are mapped to generators;

Generators corresponding to the node 0 are mapped to “dressed”currents:

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 10 / 14

Page 23: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

E0(z) 7→ u−1

exp(A−(z)

)X−(z)exp

(A+(z)

)K

,

K is in the weight lattice of Uqglm|n,

A±(z) =∑

r>0 A±rz∓r ,

Ar = − q−q−1

c r−c−r

(h0,r +

∑mi=1(c2qi )rhi ,r +

∑m+n−1j=m+1 (c2q2m−j)rhj ,r

),

X−(z) =

[∏m+n−2i=1

(1− zi+1

zi

)]x−1 (q−1c−1z1) · · · x−m (q−mc−1zm)×

× · · · x−m+i (q−m+ic−1zm+i ) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣z1=···=zm+n−1=z

,

x−i (z) are current generators of Uqglm|n.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 11 / 14

Page 24: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

E0(z) 7→ u−1

exp(A−(z)

)

X−(z)

exp(A+(z)

)K

,

K is in the weight lattice of Uqglm|n,

A±(z) =∑

r>0 A±rz∓r ,

Ar = − q−q−1

c r−c−r

(h0,r +

∑mi=1(c2qi )rhi ,r +

∑m+n−1j=m+1 (c2q2m−j)rhj ,r

),

X−(z) =

[∏m+n−2i=1

(1− zi+1

zi

)]x−1 (q−1c−1z1) · · · x−m (q−mc−1zm)×

× · · · x−m+i (q−m+ic−1zm+i ) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣z1=···=zm+n−1=z

,

x−i (z) are current generators of Uqglm|n.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 11 / 14

Page 25: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

E0(z) 7→ u−1

exp(A−(z)

)

X−(z)

exp(A+(z)

)

K,

K is in the weight lattice of Uqglm|n,

A±(z) =∑

r>0 A±rz∓r ,

Ar = − q−q−1

c r−c−r

(h0,r +

∑mi=1(c2qi )rhi ,r +

∑m+n−1j=m+1 (c2q2m−j)rhj ,r

),

X−(z) =

[∏m+n−2i=1

(1− zi+1

zi

)]x−1 (q−1c−1z1) · · · x−m (q−mc−1zm)×

× · · · x−m+i (q−m+ic−1zm+i ) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣z1=···=zm+n−1=z

,

x−i (z) are current generators of Uqglm|n.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 11 / 14

Page 26: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

E0(z) 7→ u−1exp(A−(z)

)X−(z)exp

(A+(z)

)K,

K is in the weight lattice of Uqglm|n,

A±(z) =∑

r>0 A±rz∓r ,

Ar = − q−q−1

c r−c−r

(h0,r +

∑mi=1(c2qi )rhi ,r +

∑m+n−1j=m+1 (c2q2m−j)rhj ,r

),

X−(z) =

[∏m+n−2i=1

(1− zi+1

zi

)]x−1 (q−1c−1z1) · · · x−m (q−mc−1zm)×

× · · · x−m+i (q−m+ic−1zm+i ) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣z1=···=zm+n−1=z

,

x−i (z) are current generators of Uqglm|n.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 11 / 14

Page 27: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Evaluation Map

E0(z) 7→ u−1exp(A−(z)

)X−(z)exp

(A+(z)

)K,

K is in the weight lattice of Uqglm|n,

A±(z) =∑

r>0 A±rz∓r ,

Ar = − q−q−1

c r−c−r

(h0,r +

∑mi=1(c2qi )rhi ,r +

∑m+n−1j=m+1 (c2q2m−j)rhj ,r

),

X−(z) =

[∏m+n−2i=1

(1− zi+1

zi

)]x−1 (q−1c−1z1) · · · x−m (q−mc−1zm)×

× · · · x−m+i (q−m+ic−1zm+i ) · · · x−m+n−1(q−m+n−1c−1zm+n−1)

∣∣∣z1=···=zm+n−1=z

,

x−i (z) are current generators of Uqglm|n.

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 11 / 14

Page 28: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

References

K. Kimura, J. Shiraishi, and J. Uchiyama, A level-one representation

of the quantum affine superalgebra Uq(sl(M + 1|N + 1)), Comm.Math. Phys. 188 (1997), no. 2, 367—378

K. Miki, Toroidal braid group action and an automorphism of toroidalalgebra Uq

(sln+1,tor

)(n ≥ 2), Lett. Math. Phys. 47 (1999), no. 4,

365–378

Y. Saito, Quantum toroidal algebras and their vertex representations,Publ. Res. Inst. Math. Sci. 34 (1998), no. 2, 155—177

H. Yamane, On defining relations of affine Lie superalgebras and affinequantized universal enveloping superalgebras, Publ. RIMS, KyotoUniv. 35 (1999), 321-–390

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 12 / 14

Page 29: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Thank you!

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 13 / 14

Page 30: Quantum Toroidal Superalgebrasrtis2019.math.iupui.edu/wp-content/uploads/2019/08/Bezerra.pdf · Quantum Toroidal Superalgebra E mjn(q 1;q 2;q 3). 1 De nition. 2 Vertex Representations

Happy Birthday,Prof. Tarasov and Prof. Varchenko!

Luan Bezerra (IUPUI) Quantum Toroidal Superalgebras 2019 14 / 14