41
Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Embed Size (px)

Citation preview

Page 1: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

© Prof. Dr. Remo Ianniello

Röntgenstrahlen II

Röntgen II 1

Page 2: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

In diesem Abschnitt geht es um:

© Copyright: Der Inhalt dieser Folien darf - mit Quellenangabe - kopiert und

weiter gegeben werden.

Inhalt der Vorlesung

© Prof. Dr. Remo Ianniello Folie 2Röntgen II

Absorptions-Gesetz

Absorptions-Arten

Filter

§

© Prof. Dr. Remo Ianniello

Page 3: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Röntgen II © Prof. Dr. Remo Ianniello Folie 3

Absorptions-Gesetz

© Prof. Dr. Remo Ianniello

Page 4: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 4

Röntgenstrahlen können Materie durchdringen. Dabei verlieren sie Energie: Röntgenstrahlung wird „absorbiert“.Beispiel Medizin:Knochen absorbieren mehr Röntgenstrahlung als Weichteile

Um kontrastreiche Bilder zu erhalten, untersucht man …• Knochen mit „harter“ Strahlung

= Energie reiche Strahlung (hohe Frequenzen, kurze Wellenlängen)

• Weichteile (Organe, Gefäße) mit „weicher“ Strahlung (niedrige Frequenzen, große Wellenlängen).

© Prof. Dr. Remo Ianniello

§

Warum?Weiche Strahlen werden vom Gewebe absorbiert,

harte dagegen nicht. Harte Strahlung kann

keine Weichteile zeigen.

Röntgenbild einer 450 kg

schweren Person

Page 5: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 5

§

© Prof. Dr. Remo Ianniello

Röntgenstrahlen gehören zu den ionisierenden Strahlen:Sie schlagen Elektronen aus den Target-Atomen heraus und erzeugen so Ionen.

Dadurch verlieren die Strahlen Energie. Wenn sie ganz verschwinden, sind sie absorbiert worden.

Page 6: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 6

Einfluss Ordnungszahl ZDer Absorptionsgrad wird durch die Atome bestimmt, aus denen das Material besteht.

Klären wir zunächst einige Begriffe:Anzahl der Protonen Z im Kern = OrdnungszahlEnergie reich (Röntgenstrahlung) = harte (Röntgenstrahlung)Herausfiltern weicher Röntgenstrahlung = Aufhärtung der Röntgenstrahlung

Auf dieser Grundlage funktionieren Filter in der Röntgendiagnostik.

§

© Prof. Dr. Remo Ianniello

Fazit: Je größer die Ordnungszahl Z ist, desto mehr Energie arme Strahlen werden absorbiert.

Ordnungszahl Z = Protonenzahl

Page 7: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 7

Welcher „Absorber“ ist effektiver?

Z = Kernladungszahl (Ordnungszahl)

I0 = Intensität der einfallenden Röntgenstrahlung

© Prof. Dr. Remo Ianniello

Page 8: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 8

Welches Bild gehört zu welcher Eigenschaft? §

Pb Al

„Röntgenstrahlen größerer Energie werden weniger absorbiert“.

„Eine dicke Betonwand kann genau so gut vor Röntgenstrahlung schützen wie eine dünne Blei-Decke“.

© Prof. Dr. Remo Ianniello

Page 9: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Halbwertsdicke

Röntgen II © Prof. Dr. Remo Ianniello Folie 9

§Strahlung:

eintretend  Intensität I0 ,

austretend   Intensität Id.

Hat das Target die sog.„Halbwertsdicke“ d1/2 ,

wird die halbe Röntgenstrahlung absorbiert.Die Intensität der austretenden Strahlen ist dann nur noch

Id/2 = I0 / 2

Je nach Material ist die Halbwertsdicke verschieden.

© Prof. Dr. Remo Ianniello

Page 10: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Halbwertsdicke

Röntgen II © Prof. Dr. Remo Ianniello Folie 10

1. Die Halbwertsdicke nimmt mit steigender Kernladungszahl Z ab.

Beispiel für 100 keVMit d1/2 = 41,5 mm Wasser reduziert man die Strahlung auf die Hälfte, dagegen braucht man dafür nur d1/2 = 0,12 mm Blei.

2. Die Halbwertsdicke wird mit zunehmender Gamma-Energie größer.

§

© Prof. Dr. Remo Ianniello

Page 11: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Halbwertsdicke

Röntgen II © Prof. Dr. Remo Ianniello Folie 11

Setzt man dahinter einen zweiten Körper der gleichen Dicke d1/2 , hat die austretende Strahlung die Intensität A) Null, B) I0/4, C) I0/8der Eingangsintensität.Die Intensität sinkt A) linear, B) exponentiell, C) quadratischmit zunehmender Laufstrecke.

§Bringt man Materie mit der Halbwertsdicke in einen Röntgenstrahl der Intensität I0, so ist die verbleibende Intensität ½ I0.

© Prof. Dr. Remo Ianniello

Page 12: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Absorptions-Gesetz

Röntgen II © Prof. Dr. Remo Ianniello Folie 12

Für monochromatische Röntgenstrahlung vermindert sich in homogenen Ma-terialien die Strahlenintensität I0 exponentiell mit zunehmender Schichtdicke d des Absorbers nach folgender Beziehung:

𝐼𝑑=𝐼 0 ∙𝑒−µ𝑑

Intensität der austretenden

Strahlung

Intensität der eintretenden

Strahlung

Absorptions-Koeffizitent

Materialdicke

µ berücksichtigt Material und Strahlungsenergie. Der Kehrwert von µ ist die Dicke, bei der die Intensität der Strahlung auf 1/e abnimmt.

§

© Prof. Dr. Remo Ianniello

Page 13: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Auf

gabe

Auf

gabe

Absorptions-Gesetz

Röntgen II Folie 13

Menschliches Gewebea) Wie groß ist der Absorptionskoeffizient, wenn der Röntgenstrahl durch

eine 0,14 mm dicke Bleichschicht zur Hälfte geschwächt wird?b) Wie viele Halbwertsdicken sind erforderlich, um

die Strahlungsintensität auf 1% zu reduzieren?c) Menschliches Körpergewebe schwächt 50-keV-Strahlung mit µ = 20 m-1 .

Wieviel Prozent der Strahlung durchdringen einen 30 cm dicken Körper?

© Prof. Dr. Remo Ianniello

[Physik Aufgabensammlung: Für Ingenieure und Naturwissenschaftlervon Bernhard Frenzel,Jürgen Eichler,Bernd ]

Page 14: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Auf

gabe

Auf

gabe

Absorptions-Gesetz

Röntgen II Folie 14

Wie viel Aluminium braucht man um die Intensität eines 200 keV Gammastrahls auf 10% seiner ursprünglichen Intensität zu reduzieren. Die Halbwertsdicke von 200 keV Gammastrahlung in Al sei 2,14 cm.

© Prof. Dr. Remo Ianniello

Also beträgt die Dicke des Aluminiums, das man braucht, um diese Gamma-Strahlung um einen Faktor 10 zu reduzieren, etwa 7 cm. Diese relativ hohe Dicke ist der Grund dafür, dass Aluminium im allgemeinen nicht zur Abschirmung von Strahlung verwendet wird - seine Massenzahl ist nicht groß genug, um Gammastrahlung effizient schwächen zu können.Man mag diese Frage vielleicht mit Blei als Absorber ausprobieren wollen - Die Antwort auf Frage nach der Halbwertsdicke von Blei für Gammastrahlung einer Energie von 200 keV möge der Leser selber herausfinden.Als Hinweis möchten wir jedoch die oben aufgeführten Tabellen angeben. Weiterhin geben wir die Lösung der Aufgabe zur Kontrolle an: 2,2 mm. In anderen Worten wird nur eine relativ dünne Bleischicht benötigt um den selben Effekt wie eine 7 cm dicke Aluminiumschicht zu erreichen.

Page 15: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Schwächungskoeffizient

Röntgen II Folie 15

Der Absorptions- oder linearer Schwächungskoeffizient µ, ist ein Maß für die Verringerung der Intensität von Röntgenstrahlung beim Durchstrahlen eines Materials.[µ] = 1/Länge, die übliche Einheit 1/cm.Der lineare Schwächungkoeffizient µ steigt mit der• Strahlungs-Energie E = h·, • Dichte des Materials,• Kernladungszahl Z des Materials.

© Prof. Dr. Remo Ianniello

𝜇=𝜇 ′ ∙𝜌Für praktische Zwecke wird oft der Massenschwächungskoeffizient µ‘ bevorzugt:

Page 16: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Schwächungskoeffizient

Röntgen II © Prof. Dr. Remo Ianniello Folie 16

Absorption von Röntgenstrahlen µ ≈ 5∙1026 ּ ּZ³ ּ³ steigt• mit der 3. Potenz der Ordnungszahl Z des durchstrahlten Stoffes. • mit der 3. Potenz der Wellenlänge der Röntgenstrahlung. • mit der Dichte des durchstrahlten Stoffes.• exponentiell mit der Dicke d des durchstrahlten Stoffes (s. Abb.)

§

© Prof. Dr. Remo Ianniello

Page 17: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Auf

gabe

Auf

gabe

Schwächungskoeffizient

Röntgen II © Prof. Dr. Remo Ianniello Folie 17

3-cm-ProbeBestimmen Sie den linearen Schwächungskoeffizienten µ, wenn bei einer Probe von 3 cm Dicke die gemessene Transmission T = Id/I0 der Röntgenstrahlung 0,9 beträgt.

§

Der Einfluss des linearen Schwächungskoeffizienten µ: Alle drei Kurven verlaufen exponentiell, nur die linearen

Schwächungskoeffizienten sind verschieden. Die Kurve fällt bei einem kleinen µ langsam

und bei einem großen µ schnell ab.

© Prof. Dr. Remo Ianniello

Page 18: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Aufhärtung

Röntgen II © Prof. Dr. Remo Ianniello Folie 18

Weiche Strahlung • leistet keinen Beitrag zur

Bilderzeugung leistet• belastet den Patienten

gesundheitlich muss heraus gefiltert wdn.Diesen Filterprozess nennt man „Aufhärtung“.Aufhärtung der Strahlung = Absorption der weichen Strahlung.

§

© Prof. Dr. Remo Ianniello

Page 19: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Aufhärtung

Röntgen II © Prof. Dr. Remo Ianniello Folie 19

Bei gleicher Grenzwellenlänge• nimmt die Fläche

unter der Kurve ab, und damit die Photonenzahl,

• verschwinden Energie arme Fotonen (rechts),

• verschiebt sich das Maximum zu kleineren Wellenlängen: die verbleibenden Strahlen haben im Mittel eine höhere Energie.

§Das Diagramm zeigt die Aufhärtung der Röntgenstrahlung durch Filterung z.B. mit Kupfer unterschiedlicher Dicke.

© Prof. Dr. Remo Ianniello

Page 20: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Frag

en

Röntgen II © Prof. Dr. Remo Ianniello Folie 20

1) Wovon hängt es ab, wie viel Energie Röntgenstrahlen in Materie verlieren? Von der Dicke des Materials, der Ordnungszahl seiner Atome, von seiner Dichte, aber auch von der Energie der Strahlung.

2) Welche Röntgenstrahlen sind für biologisches Gewebe gefährlicher – weiche oder harte? Weiche.

3) Was ist die „Halbwertsdicke“? Die Dicke des durchstrahlten Materials, die die Strahlungsintensität halbiert.

4) Wie nennt man das Herausfiltern der weichen Strahlungsanteile? Aufhärten der Röntgenstrahlung.

5) Wie ist der mathematische Zusammenhang zwischen der Anfangs- und der gefilterten Strahlungsintensität? I = I0 e-µd.

6) Welche Eigenschaften berücksichtigt der Absorptionskoeffizient µ?

Material und Strahlungsenergie.

Die Röntgenröhre

§

© Prof. Dr. Remo Ianniello

Page 21: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Röntgen II © Prof. Dr. Remo Ianniello Folie 21

Absorptions-Arten

© Prof. Dr. Remo Ianniello

Page 22: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 22

Die Fotonen erfahren durch die Streuung (Zusam menprall)

einen Energieverlust und damit eine Ver längerung der

Wellenlänge.

Bei der Bestrahlung eines Materials werden die Röntgenfotonen auf zwei verschiedene Weisen geschwächt: • An den schwach gebundenen

Außenelektronen durch die Compton-Streuung,

• an den stark gebundenen Elektronen durch Fotoabsorption (besonders für Absorber höherer Ordnungszahl)

§

© Prof. Dr. Remo Ianniello

Page 23: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Röntgen II © Prof. Dr. Remo Ianniello Folie 23© Prof. Dr. Remo Ianniello

Page 24: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 24

Um 1922 untersuchte Arthur Holly Compton die Streuung von Röntgenstrahlen an Graphit.

§

Dazu strahlte er Röntgenlicht der Wellenlänge auf den Streukörper aus Graphit. Ein Teil der Röntgen-strahlung wurde am Graphit gestreut.Compton untersuchte die Wellenlänge der gestreuten Strahlung bei verschiedenen Streuwinkeln .

© Prof. Dr. Remo Ianniello

Page 25: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 25

Erwartung: Man ging davon aus, dass Intensität und Frequenz für jeden Streuwinkel konstant sind. Wenn man einen Spiegel in unterschiedlichen Winkeln mit blauem Licht bestrahlt, ist schließlich auch das reflektierte Licht blau.

§

© Prof. Dr. Remo Ianniello

Page 26: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 26

Entdeckung:

Compton fand aber, dass neben einer Streustrahlung, die dieselbe Wellenlänge wie die einfallende Strahlung besitzt, ein weiterer Strahlungsanteil mit einer etwas größeren Wellenlänge vorhanden war.Die Differenz zu der Original-Wellenlänge nahm mit dem Streuwinkel zu.

§

© Prof. Dr. Remo Ianniello

Page 27: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 27

Ein Foton • stößt mit einem ruhenden Elektron zusammen • überträgt einen Teil seiner Energie auf das Elektron.

© Prof. Dr. Remo Ianniello

∆=h

𝑚0𝑒 ∙𝑐(1−𝑐𝑜𝑠𝜑)

FazitDie Vergößerung der Wellenlänge hängt nur vom Streuwinkel und nicht von der Wellenlänge des eingestrahlten Röntgenlichts ab.

Die Wellenlänge des gestreuten Fotons vergrößert sich durch diesen Übertrag um

§

enthält kein , gilt also für alle

© Prof. Dr. Remo Ianniello

Page 28: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Auf

gabe

Auf

gabe

∆=𝐶=h

𝑚0𝑒 ∙𝑐=2 ,43 ∙10−12𝑚

𝐶=2 ,43𝑝𝑚

∆=h

𝑚0𝑒 ∙𝑐(1−𝑐𝑜𝑠𝜑)

Compton-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 28

FazitDie Vergrößerung der Wellenlänge hängt • nur vom Streuwinkel und • nicht von der Wellenlänge

des eingestrahlten Röntgenlichts ab.

Compton-WellenlängeBerechnen Sie die Änderung der Wellenlänge des eingestrahlten Röntgenlichts für einen Streuwinkel von 90°.

§

© Prof. Dr. Remo Ianniello

Page 29: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Foto-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 29

Fotonen lösen den Fotoeffekt aus, d.h. sie liefern einem Elektron die Ionisations-Energie, so dass das Elektron aus der Atomhülle ausbricht.

§

© Prof. Dr. Remo Ianniello

Page 30: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Foto-Effekt

Röntgen II © Prof. Dr. Remo Ianniello Folie 30

Bei der Auffüllung von Lücken in inneren Elek tronenschalen aus höheren Schalen wird die charakteristische Strahlung frei, die dem Energie unterschied der beiden Bahnen entspricht. Sie wird Fluoreszenzstrahlung genannt.

§

© Prof. Dr. Remo Ianniello

Page 31: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Schwächungs-Koeffizient

Röntgen II © Prof. Dr. Remo Ianniello Folie 31

Beide Ursachen der Strahlungsschwächung, also Compton- und Fotoeffekt, werden durch den Schwächungs-Koeffizienten µ berücksichtigt:

µ ≈ 5∙1026 ּ ּZ³ ּ³

Folge:• Blei (Z = 82) wird für die Abschirmung

vor Röntgenstrahlen verwendet.• Knochen bewirken eine stärkere

Schwächung der Röntgenstrahlen als die Organe, und

• Metall noch stärker als Knochen.

Es wird umso mehr Strahlung absorbiert, je höher die Dichte , die Ordnungszahl Z des Materials und die Wellenlänge ist.

§

© Prof. Dr. Remo Ianniello

Page 32: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Schwächungs-Koeffizient

Röntgen II © Prof. Dr. Remo Ianniello Folie 32

In welche der freien Felder gehören die verirrten Schwächungskoeffizienten?

1,30

8,10

33,50

111,000,24

µ ≈ 5∙1026 ּ ּZ³ ּ³

§

© Prof. Dr. Remo Ianniello

Page 33: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Frag

en

Röntgen II © Prof. Dr. Remo Ianniello Folie 33

1) Welche zwei wesentlichen Effekte bewirken die Schwächung der Röntgenstrahlen? Der Fotoeffekt und die Streuung von Röntgenstrahlen.

2) Von welchen Größen hängt der Grad der Schwächung von Röntgenstrahlen besonders stark ab? Von der Röntgen-Wellenlänge und der Material-Ordnungszahl Z.

3) Was ist der Unterschied zwischen dem Absorptionskoeffizienten µ und dem Schwächungskoeffizienten µ' ? µ' ist µ durch Dichte.

4) Wächst der Schwächungskoeffizient mit der Frequenz an? Nein. Je höher die Energie der Röntgenstrahlen, umso weniger wird absorbiert.

Anwendung

© Prof. Dr. Remo Ianniello

§

© Prof. Dr. Remo Ianniello

Pb Al

Page 34: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Röntgen II © Prof. Dr. Remo Ianniello Folie 34

Filter

Page 35: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Filter

Röntgen II © Prof. Dr. Remo Ianniello Folie 35

Röntgenstrahlen werden von der Anode (hier aus Mo) emittiert. Man verwendet gern die Intensitätspeaks der charakteristischen Strahlung und filtert die Bremsstrahlung aus. Denn die Bremsstrahlung wirkt sonst wie ein störendes Hintergrundrauschen. Ein Filter (hier aus Zr) sorgt dafür, dass nur eine der Intensitätspeaks durchgelassen wird.

§

© Prof. Dr. Remo Ianniello

Page 36: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Absorptionskanten

Röntgen II © Prof. Dr. Remo Ianniello Folie 36

Das Diagramm beschreibt die Menge an Röntgenstrahlung, die von einem Material absorbiert wird, je nach Wellenlänge der Röntgenstrahlung.

Grundsätzlich steigt der absorbierte Anteil der Strahlung

mit der Wellenlänge.Das Material absorbiert aber

Strahlung von speziellen Energien besonders gut.

Bei bestimmten Wellenlängen steigt das Absorptions- ver mögen schlagartig:

Die senkrechten Linien heißen Absorptionskanten.

§

© Prof. Dr. Remo Ianniello

Page 37: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Absorptionskanten

Röntgen II © Prof. Dr. Remo Ianniello Folie 37

Die Energien der absorbierten Strahlung an

den Absorptionskanten entsprechen den

Bindungsenergien der Elektronen in der

K, L, M usw. Schale des absorbierenden Materials.

Die Absorptionskanten sind nach aufsteigender

Energie aufgereiht: K, LI, LII, LIII, MI,....

Eine Absorptionskante gibt an, dass eine Strahlung mit diesem λ absorbiert, und dafür ein Elektron aus dem Atom emittiert wird.

§

© Prof. Dr. Remo Ianniello

Page 38: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Absorptionskanten

Röntgen II © Prof. Dr. Remo Ianniello Folie 38

Mit „Absorptionskante“ meint man die Energie, bis zu der Strahlung immer stärker absorbiert wird. Bei bestimmten Materialien liegen die Absorptionskanten ideal, um unerwünschte Wellenlängen aus Röntgenspektren abzublocken:

§

© Prof. Dr. Remo Ianniello

Page 39: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Röntgen II © Prof. Dr. Remo Ianniello Folie 39

Die Nickel-Absorptionskante liegt zwischen der Kß und der Ka Linie von Kupfer.

Dadurch wird die Kß / Ka Strahlung stark abgeschwächt, während die Kß / Ka Strahlung kaum geschwächt wird.

Durch geeignete Wahl der Dicke des Filters trifft man einen Kompromiss zwischen maximaler Löschung der unerwünschten und maximalem Durchlass der erwünschten Strahlung.Auf der x-Achse ist die Frequenz / Wellenlänge aufgetragen.Auf der y-Achse ist die Energie / Intensität aufgetragen.

§

© Prof. Dr. Remo Ianniello

Page 40: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Qui

z

Absorptionskanten

Röntgen II © Prof. Dr. Remo Ianniello Folie 40

• um also ein Fotoelektron / Foton zu erzeu gen.

• Für diesen Fotoeffekt ist eine Maximal-/Mindestenergie erforderlich:

• Mit abnehmendem λ (zunehmen der Energie) der einfallenden Röntgenstrahlung werden auch Elektronen mit kleinerer / höherer Bindungsenergie herausgelöst.

• Mit wachsenden Fotonen-Energien nimmt die Absorp-tion aber grundsätzlich ab/zu.

• Eine Absorptionskante tritt auf, sobald die Energie des einfal len den Fotons ausreicht, um ein kernnahes /-fernes Elektron aus seiner Bahn zu heben,

§

© Prof. Dr. Remo Ianniello

Page 41: Röntgenstrahlen II Röntgen II © Prof. Dr. Remo Ianniello 1

Form

eln

Formeln

Röntgen II © Prof. Dr. Remo Ianniello Folie 41

∆=h

𝑚0𝑒 ∙𝑐(1−𝑐𝑜𝑠𝜑)

𝐼𝑑=𝐼 0 ∙𝑒−µ𝑑

µ ≈ 5∙1026 ּ Zּ³ ּ³