17
Research & Advanced Engineering Simulation von Kerbeffekten durch Löcher und Schweißpunkte in Karosseriebauteilen aus Ultra Hochfesten Stählen April 18th, 2012, Bad Nauheim R&A Europe: H. Lanzerath, Aleksandar Bach, Hueseyin Cakir, Udo Brüx Research & Advanced Engineering 2 Horst Lanzerath Overview Introduction Need for Failure Modelling in Crash Simulation Summary

Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

1

Horst Lanzerath

Simulation von Kerbeffekten durch

Löcher und Schweißpunkte in

Karosseriebauteilen aus Ultra

Hochfesten Stählen

April 18th, 2012, Bad Nauheim

R&A Europe: H. Lanzerath, Aleksandar Bach, Hueseyin Cakir, Udo Brüx

Research & Advanced Engineering

2

Horst Lanzerath

Overview

• Introduction

• Need for Failure Modelling in Crash Simulation

• Summary

• Introduction

• Need for Failure Modelling in Crash Simulation

• Summary

Page 2: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

3

Horst Lanzerath

Introduction – Crash Performance Evaluation

� Increasing Safety Performance Acceptance Criteria

� Increasing Demand for Affordable Light Weight Designs

� Increasing number of derivates on the same, global platform

• ECE 94.01 front offset

• FMVSS 208 front impact Occupant protection

• FMVSS 301 front impactfuel system integrity

• Euro NCAP front offset 64kph

• USNCAP – front impact • IIHS front offset impact

FRONT

REAR

SIDE

ROOF

• ECE 95.01 side impact

• FMVSS214 side impact• IIHS side impact

• Euro NCAP side impact 50kph

• USNCAP side crabbed barrier

• USNCAP side oblique pole

• FMVSS 301 rear impact

fuel system integrity• Rear deformable EU

barrier (70% 80kph 1250kg)

• FMVSS new rule 216 roof strength

• IIHS roof crush assessment (4,2 veh. weight)legal requirement

public domain

Research & Advanced Engineering

4

Horst Lanzerath

47 % Mild Steel

26 % Conventional HSS

18 % Advanced HSS

9 % Ultra HSS

Introduction – UHSS Applications in Ford Focus

Page 3: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

5

Horst Lanzerath

Introduction – UHSS Applications in Ford Focus

MSW1200 DOCOL1400

Door Beams Rocker Reinforcement

cross member

1.8mm, MSW1200

2.6kg

MSW1200Rear Bumper Beam System

Research & Advanced Engineering

6

Horst Lanzerath

Weight Save Boron vs. DP600

∆m = 5.2 kg/vehicle

Weight Reduction = 28 %

Implementation – 2006 (CD-Car)

• Standard Boron technologies

• Monolitic hot-formed parts

Implementation – 2011 (Focus)

• Advanced Boron technologies

• Tailor Rolled Blanks / hot-formed

Additional Weight Reduction = 1.4 kg

Introduction – UHSS Applications in Ford Focus

Page 4: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

7

Horst Lanzerath

Overview

• Introduction

• Need for Failure Modelling in Crash Simulation

• Summary

Research & Advanced Engineering

8

Horst Lanzerath

Martensitic steels

•cold formed(e.g. DOCOL1400 M)

•hot formed(e.g. BORON1500)

Crash Properties of Steels

IF - SteelIF - Steel

Mild

Steel

Micro Alloyed High Strength Steel

BH and HS IF Steel

Martensitic SteelBoron

Steel

Dual Phase Steel

TRIP Steel

Dual Phase Steel

Complex Steel

Strength

Du

cti

lity

CONVENTIONAL steels

���� Low Strength

���� High Ductility

AHSS/UHSS

���� High Strength

���� Low Ductility

���� Sensitive to notches

� Light weight design ���� use of more AHSS/UHSS (thickness reduction)

� Light weight potential of UHSS cannot be utilised if material failure limits are not known

Page 5: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

9

Horst Lanzerath

t = 2mm

Crack starts at rectangular hole.

Observations in Prototype Parts

Failure mode and failure strain depend on:

• the local load situation (multiaxiality)

• the local material history• the local strain rate• …

Cracks start at welded areas.Prototype Parts shown

Research & Advanced Engineering

10

Horst Lanzerath

Failure Modelling - Simulation Approach

Materialcharacterisation

-E, ρ, ν-Flowcurve

-Yield Locus-Fracture Limit Curves

Material Models(User Subroutines)

MF GenYld ®

Elasto-plastizität

CrachFEM ®

Versagensmodell

Commercial Solver

• Radioss• LS-Dyna

(explizit)

Page 6: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

11

Horst Lanzerath

Flow Curve

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6True Strain [-]

Tru

e S

tre

ss

/ σσ σσ

y [

-]

Tensile Test

Layer Compression Test

Swift_Approximation

Strain rate sensitivity

( )( )

)2()1(

)2()1(

ln

ln

εε

σσ

&&=m( ) m

v

n

eqeqa εεεσ &⋅+⋅= 0

Uniform Elongation

Swift - equation Anisotropic behaviour

Research & Advanced Engineering

12

Horst Lanzerath

Failure Modelling – Material Model

FRACTURE PROPERTIES(failure limit curves)

stress state

pla

stic s

tra

in a

t fr

act

ure

DNF

DSF

INST

DNF ductile normal fracture

DSF ductile shear fracture

INST instability

More testing & material characterisation required !

Shear Fracture

Normal Fracture

Instability

Page 7: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

13

Horst Lanzerath

One Element Tests

Component Tests

Substructure Tests

Full Vehicle Tests

MATERIAL

MODEL

CORRELATION

TEST-SIMULATION ?

CORRELATION

TEST-SIMULATION ?

yes

yes

yes

no

no no no

• Robustness

F •V=const= 2.5mm/s•s

m ax= 500mm

0 DGOF

0 DGOF

Failure Modelling – Systematic Validation

Systematic Validation Procedure

& Version Checker

CAE vs. Test

Research & Advanced Engineering

14

Horst Lanzerath

MAT_1

MAT_2

CAE without failure modeling

MAT_1

MAT_2

CAE with failure modeling

Failure Modelling: Tool for Material Selection

Example:• Component tests on bumper beams• 2 different material grades investigated:

• MAT_1• MAT_2

Without failure modeling: MAT_1 would be the initially selected material

Page 8: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

15

Horst Lanzerath

1. Pure Material Failure

2. Geometrical Notches (Holes, Cut-edges, Rivets, …)

3. Metallurgical Notches (RSW, MIG-Welds, Laser-Welds, …)

Different Failure Mechanisms

Research & Advanced Engineering

16

Horst Lanzerath

Boron 1900 / N-mode

0 40 80 120

Displacement [mm]

TEST_1

TEST_2

CAE

3Point Bending

of a Boron

Beam

CAE

TEST

Boron 1500

Different Failure Mechanisms - Pure Material Failure

Tests on Prototype Parts

F/2

F/2

Fo

rce

F

F

Page 9: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

17

Horst Lanzerath

A A

HAZ (heat affected zone)

section A-A

METALLURGICAL NOTCHES

heat affected zones (HAZ) of spot welds in UHSS

METALLURGICAL NOTCHES

heat affected zones (HAZ) of spot welds in UHSS

GEOMETRICAL NOTCHES

(holes, cut-outs, …)

cut-outs in B-pillar reinforcement

Ø 10

14

METALLURGICAL NOTCHES

heat affected zones (HAZ) of spot welds in UHSS

GEOMETRICAL NOTCHES

(holes, cut-outs, …)

FAILURE MODELLING

of NOTCHES

Ø 10

14

CAE methodology to predict material

failure due to notches

Different Failure Mechanisms - Notches

Research & Advanced Engineering

18

Horst Lanzerath

0 10 20 30 40 50 60

Displacement [ mm ]

NO NOTCH

HOLE

SPOT WELD

3PB of Boron beam(with & without notches)

HOLE SPOT WELDNO NOTCH

Significantly reduced energy absorption and sudden failure !

Different Failure Mechanisms - Notches

Fo

rce

F

Page 10: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

19

Horst Lanzerath

epsPL

high

low

Discplacement [mm]

Imp

acto

r F

orc

e

CAE_STANDARD

CAE_REFINED

TEST

Refined mesh …

���� more accurate prediction of deflection behaviour including fracture

���� increase of CPU time

CAE_Standard CAE_Refined

Geometrical Notches – Holes

Research & Advanced Engineering

20

Horst Lanzerath

Direction 0°

Direction 45°

Direction 90°

Hardness HV

Section A-A

Metallurgical Notches

AA

Base BaseHAZ HAZNugget

� HAZ = Heat Affect Zone

Page 11: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

21

Horst Lanzerath

Metallurgical Notches – Conventional Modelling

Spring-Element

Typical Crash-Modell:- ~ 2 Mio. Finite Elements

- Edge Length 5 - 10 mm- ~ 3500 Spot Welds

Research & Advanced Engineering

22

Horst Lanzerath

Metallurgical Notches – Validation on Component Level

Conventional Modelling – Test vs. Simulation

Tests on Prototype Parts

Impactor: Force over Displacement

Conventional model for RSW not applicable to predict HAZ effects!

Page 12: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

23

Horst Lanzerath

Metallurgical Notches – Micro-Modelling

Properties:

- detailled geometrical representation

- local material properties- Mesh dependency

BaseHAZ

Weld-Nugget

A A

Section A-A� HAZ = Heat Affect Zone

Research & Advanced Engineering

24

Horst Lanzerath

Micro-Modelling – Test vs. Simulation

Metallurgical Notches – Validation on Component Level

Tests on Prototype Parts

Impactor: Force over Displacement

Page 13: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

25

Horst Lanzerath

Comparison of CPU Time – Full Car SimulationS

imula

tio

n T

ime in h

Conventional Micro

1. Accurate,

2. Efficient.

New CAE Methods are required, which are

Research & Advanced Engineering

26

Horst Lanzerath

What is “Multi-Domain” for Crash Simulation ?

source: Maciek Wronski (Altair), HTC Conference, 2010

� Arbitrary number of domains can be

specified within a Full Car Crash Model

� E.g. non-crash relevant parts can be

modelled with coarse meshes, while

safety critical components are

modelled in detail

� Each domain can have own time step

(element size)

� Optimized CPU usage

� Improved Failure Prediciton

RAD2RAD

DOMAIN A DOMAIN B DOMAIN C

Model 1

Model 2

� Increased computation accuracy at low CPU time increase

Model 1

Model 2

Page 14: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

27

Horst Lanzerath

STANDARD CAE

� no prediction of failure

Multi-Domain CAE

� accurate failure prediction

Side Pole Impact

Multi-Domain CAE: Validation on Full Vehicle Level

Standard CAE

Refined Mesh CAE

Multi-Domain CAE

Computational Time

Tests on Prototype Parts

Research & Advanced Engineering

28

Horst Lanzerath

Design Solutions

Page 15: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

29

Horst Lanzerath

Reduce Notch Effects – Tailored Tempering

Source: TKSE

Research & Advanced Engineering

30

Horst Lanzerath

Reduce Notch Effects – Tailored Properties

Source: GESTAMP

Page 16: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

31

Horst Lanzerath

Cut-edge moved in

less critical area

Reduce Notch Effects – Redesign

Research & Advanced Engineering

32

Horst Lanzerath

Further Challenges for CAE

• New Boron Technologies (1900 MPa, Tailored Properties,

Softzones, …)

• New Manufacturing Processes (e.g. Form Blow Technology, …)

• Mechanical joining technologies (e.g. RIVTAC, SPR, FDS,

laser-welding,friction-element welding,…)

Source: Böllhoff Source: EJOT Source: EJOT

RIVTAC EJOT-Weld FDS

Page 17: Simulation von Kerbeffekten durch Löcher und Schweißpunkte ... · Different Failure Mechanisms Research & Advanced Engineering 16 Horst Lanzerath Boron 1900 / N-mode 0 40 80 120

Research & Advanced Engineering

33

Horst Lanzerath

Summary

• The trend in body structure design is to use more and more

materials that offer lightweight potential at affordable costs.

• UHSS offer significant weight saving potential

• In order to utilize UHSS in the best way

• Design guidelines need to be followed

• CAE optimization including the capability to predict failure

modes is required

• The consideration of these aspects

• Supports proper material selection

• Enables robust designs and efficient d’pment processes

• Avoids bad surprises at first prototypes