26
Technische Universität München Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows Wolfgang Polifke Fachgebiet für Thermodynamik Technische Universität München Acknowledgements: Joao Carneiro, Patrick Dems, Stephan Föller, Thomas Komarek, Rohit Kulkarni, Luis Tay, Matthieu Zellhuber AG Turbo, Alstom, DFG, DST, KW21, Siemens MUSAF II Colloquium Sep. 18-20, 2013, CERFACS, Toulouse

Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

Tackling Combustor Design Problems with Large Eddy Simulation of Reacting Flows

Wolfgang PolifkeFachgebiet für ThermodynamikTechnische Universität München

Acknowledgements:Joao Carneiro, Patrick Dems, Stephan Föller, Thomas Komarek, Rohit Kulkarni, Luis Tay, Matthieu Zellhuber

AG Turbo, Alstom, DFG, DST, KW21, Siemens

MUSAF II ColloquiumSep. 18-20, 2013, CERFACS, Toulouse

Page 2: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Overview

Gas turbine combustor design challenges

• stability

• emissions

This talk

• mixing and auto-ignition in turbulent flow

• flame dynamics from system identification

• spray dispersion, evaporation & combustion

2

control & optimization,

c

ode couplingreacting flo

w

multi-physis, multi-scale

Page 3: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Sequential combustion in Alstom GT24/26

3

multi-stream mixing in swirling, turbulent flow

auto-ignition & flame propagation

Page 4: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Composite PV lookup from PSRs

4Mixture fraction!

Prog

ress

var

iabl

e! s

ourc

e!

Progress variable!

Technische Universität München!

0.0!

0.1!

0.1!

0.2!

0.2!

0.3!

0! 0.2! 0.4! 0.6! 0.8! 1!

Yc!

Z!

Yeq!

Chemistry simplification:!

Yc!

t!

Prog

ress

var

iabl

e! s

ourc

e!

Progress variable!

0.0!

0.1!

0.1!

0.2!

0.2!

0.3!

0! 0.2! 0.4! 0.6! 0.8! 1!

Yp!

Z!

Yeq!

Autoignition tabulation (0D reactors):!

Tabulated Chemistry Concept!

10!

Technische Universität München!

0.0!

0.1!

0.1!

0.2!

0.2!

0.3!

0! 0.2! 0.4! 0.6! 0.8! 1!

Yc!

Z!

Yeq!

Chemistry simplification:!

Yc!

t!

Prog

ress

var

iabl

e! s

ourc

e!

Progress variable!

0.0!

0.1!

0.1!

0.2!

0.2!

0.3!

0! 0.2! 0.4! 0.6! 0.8! 1!

Yp!

Z!

Yeq!

Autoignition tabulation (0D reactors):!

Tabulated Chemistry Concept!

10!

Page 5: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Stochastic fields for subgrid scale fluctuations

5

Technische Universität München!

Turbulence-Chemistry Interaction models!

Presumed PDF! Transported PDF!

Deterministic transport equations! Stochastic partial differential equations!

Turbulence chemistry interaction!

Lagrangian/Particle! method!

Eulerian/Fields !method!

(ITO formulation)!11!

Page 6: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Stochastic fields, composite progress variable

6

0!

10!

20!

30!

40!

940! 950! 960! 970! 980! 990!

Aut

oign

ition

leng

th L

ign/

d!

Air temperature [K]!

Experiment!Presumed PDF!Stochastic fields!

Implemented in Fluent and OpenFOAMValidation:

Markides & Mastorakos, Cabra, Delft, SEVH2, n-Heptane, CH4

Page 7: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Cabra-H2-Flame with Li-Dryer mechanism

7

see papers by Kulkarni, Zellhuber, Collonval ...

Page 8: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Thermo-acoustic combustion instabilities

8

from Lieuwen & Yang, 2006

Page 9: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Feedback between heat release and acoustics

9

W . Polifke / divide et impera — Ercoftac TecTag / 2

Thermo-Akustische Instabilität

(p’, u’) (p’, u’)Q’

!!Q !p d""# > 0.

Rückkopplung zwischen Fluktuationen

der Strömung (p’,u’) und der Wärmefreisetzung Q’

-> Selbsterregte Schwingungen !

Stabilitätskriterium nach Rayleigh:

Eingeschlossene Flamme

Rayleigh’s criterion: Instability requires�p� Q̇� dt > 0,

Premix flames are velocity sensitive: Q̇� = Q̇�(��),

System acoustics controls phase p� ↔ ��: Z =p�

��.

Page 10: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Multi-physics interactions with feedback

10

FlameFuel Supply

Air Supply

Combustor

Equivalence Ratio

Position and Area of Flame

Burning Velocity Q’

p’, u’u’

p’

Page 11: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013 11

Combustion LES captures (in principle) all relevant effects:

but:

• turbulent, reacting, compressible flow at low Ma-#

• acoustic boundary conditions !?

• wide range of length and time scales

Technische Universität München

“brute force” LES for combustion dynamics?

Page 12: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

“divide et impera”

12

Stability analysis by combined use of

• “system model” for combustor acoustics

• reduced order model (ROM) of heat source dynamics

This strategy may be adopted to

• network models

• state-space models

• Galerkin models

• FE/FV-based solvers for Helmholtz / APE / LEE

this is code-coupling, too !!

Page 13: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

ROMs of input-output systems

Matrix-based methods (for state-space models)

• Truncated Balanced Realization

• Krylov methods (moment matching)

Data-based models

• PODs & Galerkin Projection

• System Identificationnon-parametric model (e.g. spectral analysis)

parametric models

- Black Box models (e.g. time-delay models)

- Gray Box models (e.g. state space models)

13

Page 14: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Time-delay ROMs for linear systems

present response depends on present & previous signals

14

and previous responses ... and noise, too

+

trade offs: accuracy - uncertainty - # of coefficients - flow/flame physics

Page 15: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

FrequencyResponse F

F(ω)

F(ω) =�

k hke−�ω�tk

z-transform

Unit ImpulseResponse h

h

� · h = cWiener filter equation

Auto-correlation �Cross-correlation c

�, c

��j ∼�

k sk−�sk−j

c� ∼�

k sk−�rk

Time Series(��B(k�t); Q̇

�(k�t))

s, r

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Flame transfer function from LES

15

Signal

� �� �Q̇�

��B

Page 16: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Turbulent premix swirl burner

16

Komarek et al, ‘09, ’10; Tay et al, ’10, ‘11

URANS LESSolver CFX AVBP

Turb./Sub-grid model

SST WALE

Combustion Model

TFC DTFM1 step Kin.

Time step [s] 5e-5 1.25e-7

Spatial/temp. Discretization

Second order

Second order

Page 17: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

LES/SI for premix swirl burner

17

Page 18: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Validation: FTF from CFD/SI vs experiment

18

Page 19: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Daubechieswavelets

Tychonov Regularization for inversion of Wiener Filter:

hα =��T�+ α2RRT�−1

�Tc

Generation of optimal excitation signals:

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Advanced SI for low signal-to-noise

19

maximumentropy

non-Gaussiansimulation

Föller & Polifke, ICSV ’11:Transmission and reflectionof sound at duct discontinuity

Page 20: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Aero-acoustic scattering at an orifice

20

input to excite acoustic eigenmodes of the pipe network. If the acoustic lossesare weaker than the acoustic gain provided by the orifice the eigenmode willgrow rapidly and the system becomes acoustically unstable.

Due to the high amplification potential and the regular appearance in pipenetworks, orifices were studied by several research groups. Experimentally,the scattering coefficients of cylindrical orifices with different diameters andthicknesses were determined and analyzed by Testut et al. [TAMH09]. In com-parison to experimental studies, orifices were investigated more frequently byresearches with different numerical approaches. Kirkegaard et al. [KAEÅ12]applied the linearized Navier-Stokes equations to solve for the scattering coef-ficients of a 2-dimensional orifice configuration. Rupp et al. [RCS10] analyzednumerically the aero-acoustic interactions in the vicinity of an orifice geom-etry based on unsteady 3-dimensional Navier-Stokes simulations. In previ-ous years, results for the scattering coefficients and for the whistling crite-rion [AS99] of the here introduced geometry were already published by La-combe et al. [LMF+10, Lac11, LFJ+13]. All these results base on the SI method-ology presented by Föller et al. in 2012 [FP12] where a FIR model structurewithout individual time lag adaption was employed.

The aero-acoustical network element representation of the orifice configu-ration is shown in Fig. 6.2. There are potentially two directions for incidentacoustic waves with fu as the corresponding upstream ingoing characteris-tic wave amplitude and gd as the downstream ingoing counterpart. The twooutgoing characteristic wave amplitudes are upstream gu and downstreamfd, respectively. Since the orifice configuration represents a 2x2 aero-acoustic

Figure 6.2: Acoustical network element representation of the cylindrical orifice in a pipe

MIMO system, its scattering matrix (Eq. (6.1)) agrees with the acoustic ele-

189

6.3 Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

1.2

1.4

Sr

|T+ |

(a) upstream transmission

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

1.2

Sr

|R! |

(b) downstream reflection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

1.2

Sr

|R+ |

LES/SI99% Conf. Int.Lacombe, exp.

(c) upstream reflection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sr

|T! |

(d) downstream transmission

Figure 6.5: Amplitudes of the scattering coefficients for the cylindrical orifice in a pipe vs. Srnumber; LES/SI results with 99% confidence intervals at 2 M numbers (MLES/SI =0.0252: black, MLES/SI = 0.0349: red) in comparison with experimental data of La-combe [Lac11] (Mexp = 0.026: black, Mexp = 0.0335: red)

highest model frequency of interest fmax,mod. The remaining frequency con-tent in ranges above fmax,mod in the acoustic responses gu and fd is not mod-eled and thus, causes a reduction of the prediction quality.

Comparing the results in Figs. 6.5 and 6.6 to the LES/SI results presentedin earlier publications [LMF+10, LFJ+13], methodological improvements ledto the significant better quality of the solutions. Especially, the occurrenceof wavy deviations over the entire frequency range could be successfully re-

201

M = 0.026M = 0.034

Page 21: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Summary

Status Quo

• LES/SI can give flame dynamics with quantitative accuracy

Ongoing work

• optimal model structures for identification

• non-linear effects

• high frequencies, acoustic losses

• combustion noise

• LES model for (partially) premixed (spray) combustion

21

Page 22: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013 22

Poly-Celerity MOM for polydisperse sprays

• • • • • •

• • •

• • • • • •• • •

• • •

• • •

• • • • • •

• • •

• • • • • •

• • •

• • •

• • • • • •

• • • • • •

• • •

• • •

• • •

• • •

• • •

• • • •

• •• •

• • • • • •• • •

• • • •

• •

• • •

• • • •

• •

• • •

• • •

• •

• •

• • • • • • • • • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• •

• •

• • • • • • • • • •

• • •

• • •

• • • • • •

• • •

• • •

x0

y

f(x0,y)

y

f(x0,y;D)

D

• • • • • •• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • • • • •

• • •

• • •

• • •

• • •

• • • • • •

• • •

• • • • • • •

• •• •

• • •

• • •

• • •

Page 23: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Test case: sedimentation of bubbles

23

2.4 Test Case

Figure 2.2: Contours of the Sauter Mean Diameter obtained with the Moments Model in Open-FOAM.

Figure (2.4) shows the evolution of the bubble size distribution function at several positionsinside the channel (corresponding to axial positions x = 1,5; 5,7 cm and vertical positions y =0,1; 10; 19,9 mm). As bubbles tend to move towards the upper side of the channel, the numberdensity is higher for the vertical coordinate corresponding to y = 19,9 mm, and smaller at y =0,1 mm. Furthermore, a very reasonable agreement can be noted between both methods, withthe Moments Model being able to reproduce not only the shape of the distribution function, butalso its variation along the channel. However, the distribution obtained with the Moments Modelnear the upper wall at the most downstream axial position in the channel deviates considerablyfrom that of the Multi-Fluid solution. This occurs because the shape of the spectral distributionat that location is dominated by the high accumulation of big bubbles near the top wall, whichis not appropriately reproduced by a Gamma distribution.

11

(Carneiro et al)

Page 24: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Experiments (Sommerfeld & Qiu, ’91) vs. LES (Dems et al, 2012)

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Polydisperse multi-phase turbulent swirl flow

24

Technische Universität München

Results for Sommerfeld & Qiu - Axial Velocity

!"#$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&!'

(#)%%%%%%%%%%%*#+,-./"

Gas phase Particles

Technische Universität München

Comparison Against Experiment of Sommerfeld & Qiu (1991)

!"#$%&%'()*+,-.(/01234( !"5$%&%6-17+(8*8,(91

:70,

:70,%;%<*/,9=(1

Swirl air

Particles & air

D = 200 mm

Axial velocities

Page 25: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013

Conclusions

Large Eddy Simulation is relevant for R&D in industry

Industrial applications imply special modelling requirements

Reduced Order Models can be an interesting alternative to code-coupling for multi-physics, multi-scale problems

25

Page 26: Tackling Combustor Design Problems with Large Eddy Simulation … · 2013. 9. 24. · W. Polifke - MUSAF II, Sep. 2013 Overview Gas turbine combustor design challenges • stability

Technische Universität München

W. Polifke - MUSAF II, Sep. 2013 26

Thank you !