64
The full-Ward Takahashi identity for random tensors Dimensons 3 and 4 Carlos. I. P´ erez-S´ anchez Mathematics Institute, University of M¨ unster eminaire de Physique Math´ ematique Institute Camille Jordan, Lyon, 3rd. February

The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

The full-Ward Takahashi identity for random tensorsDimensons 3 and 4

Carlos. I. Perez-Sanchez

> 12

Corporate Design Manual 1.1

> 13

> 11

Logofarben und Farbumgebung des Logos in der Praxis>

Das Logo steht üblicherweise in Pantone

Black 7 bzw. in CMYK (90% Schwarz,

10% Yellow) auf weißem Untergrund.

Diese Definition gilt für sämtliche hochwer-

tigen Printerzeugnisse wie zum Beispiel

Briefbogen Premium, Visitenkarte, Flyer,

Folder, Broschüren, Einladungskarten,

Magazine, auf Fahnen und Universitäts-

fahrzeugen, Schildern etc.

Sollte dieser Kontrast in der Wirkung in Aus-

nahmefällen nicht ausreichend sein, kann

das Logo negativ (Weiß) auf dunklen Farb-

hintergründen platziert werden, die zu

dem verbindlichen Farbspektrum (siehe

Kapitel 2.2 Farben) gehören.

Außerdem besteht die Möglichkeit, das Logo

negativ (Weiß) auf einem in Pantone Black 7

eingefärbten Hintergrund zu positionieren.

Grundsätzlich darf das Logo nicht als Outline-

Variante (siehe nächste Seite) verwendet

werden. Außerdem sollte das Logo weder

mit einem harten bzw. weichen Schatten

hinterlegt werden. „Photoshop-Spielereien“,

wie zum Beispiel die Verwendung von Relief-

Filtern sind ausdrücklich nicht gestattet.

Auf Faxbögen, dem Biefbogen Standard und

dem Kurzbrief wird das Logo in 100% Schwarz

angelegt, um einen Qualitätsverlust bei der

Wiedergabe des Logos auf herkömmlichen

Arbeitsplatzdruckern zu vermeiden.

Logo in Pantone Black 7auf weißem Hintergrund

Logo negativ (Weiß)auf Hintergrund in Pantone Black 7

Logo negativ (Weiß)auf Hintergrund inPantone 315

2. Grundelemente | 2.1 Das Logo

>

>

>

>

Mathematics Institute,University of Munster

Seminaire de Physique MathematiqueInstitute Camille Jordan,

Lyon, 3rd. February

Page 2: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

MotivationMotivation

Random Geometry framework (“Quantum Gravity”)

Z =∫∑

topologies

geometries

D[g] exp (−SEH [g]) ∼∫∑

( )∈ topologiesgeometries

µ

(k

1

2

DD

1

2

k

k

1

)

∫D[ϕ]e−S(ϕ)

I Gravity Quanta – ‘fundamental blocks of space(time)‘, simplexesI Interactions – how to glue those quanta, i.e. gluing simplexes

Random matrices do that successfully for 2D. Random tensor modelsis a higher-dimensional arena S(ϕ), together with QFT-techniques,based on this idea

C. I. Perez Sanchez (Math. Munster) Motivation 3rd. February 2 / 44

Page 3: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

OutlineOutlinetopology and geometry of random tensor models ( gravity)I boundaryless manifolds, vacuum graphsI manifolds with boundary and sundry graph-encoded topological

operations

Non-perturbative approach to quantum tensor fields (graph-theory isubiquitous, though)

ϕ4-intearction Λ0 Λ � Λ0

I full Ward-Takahashi Identities: non-perturbative, systematic approachI Schwinger-Dyson equations: equations for the multiple-point functions

C. I. Perez Sanchez (Math. Munster) Outline 3rd. February 3 / 44

Page 4: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Random matrix theory: ensembles

Nuclear physics: Wigner’s model of heavy nuclei

Stochastics: E ⊂ MN(K):

Z =∫

Edµ

Statistics of random eigenvalues; study limit N ∞; universality,µ-independence (tensor models too: book by R. Gurau)

usually, for certain polynomial P(x) = Nx2/2 + N V(x),

Z =∫

EdM e−Tr P(M) =

EdM e−

N2 Tr M2

︸ ︷︷ ︸dµ0

−NTr V(M) =∫

Edµ0 e−NTr V(M)

Interesting deviations from this are, for instance:I Kontsevich’s model with Airy function interaction iTrM3 and

non-trivial Gaußian term, Tr(EM2).I NCG-models for which the potential is not the trace of a polynomial

TrM2 · TrM2

I From noncommutative-QFT: Grosse-Wulkenhaar model

C. I. Perez Sanchez (Math. Munster) Matrix models 3rd. February 4 / 44

Page 5: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Random matrix theory: ensembles

Nuclear physics: Wigner’s model of heavy nuclei

Stochastics: E ⊂ MN(K):

Z =∫

Edµ

Statistics of random eigenvalues; study limit N ∞; universality,µ-independence (tensor models too: book by R. Gurau)

usually, for certain polynomial P(x) = Nx2/2 + N V(x),

Z =∫

EdM e−Tr P(M) =

EdM e−

N2 Tr M2

︸ ︷︷ ︸dµ0

−NTr V(M) =∫

Edµ0 e−NTr V(M)

Interesting deviations from this are, for instance:I Kontsevich’s model with Airy function interaction iTrM3 and

non-trivial Gaußian term, Tr(EM2).I NCG-models for which the potential is not the trace of a polynomial

TrM2 · TrM2

I From noncommutative-QFT: Grosse-Wulkenhaar model

C. I. Perez Sanchez (Math. Munster) Matrix models 3rd. February 4 / 44

Page 6: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Power-counting in N: Z =∫

E⊂MN(R)dM e−

N2 Tr(M2)+NλTr(M3)

δkk′

δk′k

k′i′

j′Mj′i′ . . .k

j

i. . . Mij

N per vertex

N−1 factor per propagator

}A(G) ∼ NV(G)−E(G)+F(G) = Nχ(Σg(G))

N per ∑a,b

δabδba

For generic models models, Feynman diagrams are ribbon graphs:

1

,

1

,

1

=

1

C. I. Perez Sanchez (Math. Munster) Ribbon graphs 3rd. February 5 / 44

Page 7: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Power-counting in N: Z =∫

E⊂MN(R)dM e−

N2 Tr(M2)+NλTr(M3)

δkk′

δk′k

k′i′

j′Mj′i′ . . .k

j

i. . . Mij N = Tr(1N)

N per vertex

N−1 factor per propagator

}A(G) ∼ NV(G)−E(G)+F(G) = Nχ(Σg(G))

N per ∑a,b

δabδba

For generic models models, Feynman diagrams are ribbon graphs:

1

,

1

,

1

=

1

C. I. Perez Sanchez (Math. Munster) Ribbon graphs 3rd. February 5 / 44

Page 8: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

• An example of ribbon graph of a quartic model:

C. I. Perez Sanchez (Math. Munster) Ribbon graphs 3rd. February 6 / 44

Page 9: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

• Any ribbon graph uniquely determines a closed, orientable Riemanniansurface, Σg:

C. I. Perez Sanchez (Math. Munster) Ribbon graphs 3rd. February 7 / 44

Page 10: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

• Usual scalar fields fail to generate “faces”

C. I. Perez Sanchez (Math. Munster) Ribbon graphs 3rd. February 8 / 44

Page 11: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Coloured Tensor ModelsColoured Tensor Models

a quantum field theory for tensors ϕa1...aD and ϕa1...aD

the indices transform under different representations of

G = U(N1)×U(N2)× . . .×U(ND)

for g ∈ G, g = (U(1), . . . , U(D)), U(a) ∈ U(Na),

ϕa1a2 ...aD

g(ϕ′)a1a2...aD = U(1)

a1b1U(2)

a2b2. . . U(D)

aDbDϕb1 ...bD

the complex conjugate tensor ϕa1a2...aDtransforms as

ϕa1a2...aD

g(ϕ′)a1a2 ...aD = U(1)

a1b1U(2)

a2b2. . . U(D)

aDbDϕb1b2 ...bD

G-invariants serve as interaction vertices

S[ϕ, ϕ] = ∑i

τiTrBi(ϕ, ϕ) = TrB2(ϕ, ϕ) + ∑α

λαTrBα(ϕ, ϕ)

For D = 2, rectangular matrices, ϕ ∈ MN1×N2(C) and

ϕ U(1)ϕ(U(2))t

and invariants are Tr((ϕϕ†)q), q ∈ Z≥1

C. I. Perez Sanchez (Math. Munster) Coloured Tensors 3rd. February 9 / 44

Page 12: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

traces TrB are indexed by vertex-bipartite regularly edge-D-coloured graphsB (“D-coloured graphs”).

In D = 3-colours (with obvious generalization to higher ranks) we associate

ϕa1a2a3 and ϕp1p2p3 (reversed order!)

Contract: 1 = δa1p12 = δa2p2

3 = δa3p3

Rank-3-Example: One way (out of 7) to obtain a sixth-order vertex is

ϕa1a2a3

ϕb1b2b3

ϕc1c2c3

ϕq1q2q3

ϕr1r2r3

ϕp1p2p3

1

TrKc(3,3)(ϕ, ϕ) = ∑a,b,c,p,q,r

(ϕr1r2r3 ϕq1q2q3 ϕp1p2p3)

· (δa1p1 δa2r2 δa3q3 δb1q1 δb2p2 δb3r3

δc1r1 δc2q2 δc3p3)

·(ϕa1a2a3 ϕb1b2b3 ϕc1c2c3)

C. I. Perez Sanchez (Math. Munster) Coloured Tensors 3rd. February 10 / 44

Page 13: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Feynman diagrams: Choose an action, for instance, the ϕ43-theory,

S[ϕ, ϕ] = TrB2(ϕ, ϕ) + λ(TrV1(ϕ, ϕ) + TrV2(ϕ, ϕ) + TrV3(ϕ, ϕ))

and

V1 =

1

, V2=

1

, V3 =

1

,

Z[J, J] =∫D[ϕ, ϕ] eTrB2 (Jϕ)+TrB2 (ϕJ)−N2S[ϕ,ϕ]

∫D[ϕ, ϕ] e−N2S[ϕ,ϕ]

, with TrB2 ↔

dµC(ϕ, ϕ) := D[ϕ, ϕ]e−N2S0[ϕ,ϕ] := ∏a

dϕadϕa2πi

e−N2TrB2 (ϕ,ϕ)

• Write for Wick’s contractions w.r.t. the Gaußian measure∫

dµC(ϕ, ϕ)ϕa ϕp = C(a, p) = δap = a p

C. I. Perez Sanchez (Math. Munster) Feynman diagrams 3rd. February 11 / 44

Page 14: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Feynman diagrams: Choose an action, for instance, the ϕ43-theory,

S[ϕ, ϕ] = TrB2(ϕ, ϕ) + λ(TrV1(ϕ, ϕ) + TrV2(ϕ, ϕ) + TrV3(ϕ, ϕ))

and

V1 =

1

, V2=

1

, V3 =

1

,

Z[J, J] =∫D[ϕ, ϕ] eTrB2 (Jϕ)+TrB2 (ϕJ)−N2S[ϕ,ϕ]

∫D[ϕ, ϕ] e−N2S[ϕ,ϕ]

, with TrB2 ↔

dµC(ϕ, ϕ) := D[ϕ, ϕ]e−N2S0[ϕ,ϕ] := ∏a

dϕadϕa2πi

e−N2TrB2 (ϕ,ϕ)

• Write for Wick’s contractions w.r.t. the Gaußian measure∫

dµC(ϕ, ϕ)ϕa ϕp = C(a, p) = δap = a p

C. I. Perez Sanchez (Math. Munster) Feynman diagrams 3rd. February 11 / 44

Page 15: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

• Example. An O(λ4)-contribution (vacuum sector)

1

⊂∫

dµC(V1V2[V3]2)

C. I. Perez Sanchez (Math. Munster) Feynman diagrams 3rd. February 12 / 44

Page 16: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

1

=

1

2

3

1

2

3

2

3

12

3

11

2

3

1

2

3

3

1

23

1

2

0 0

0

0

00

0

0

0 0

0

0

00

0

0

0 0

0

0

00

0

0

1

Vertex bipartite regularly edge–D-coloured graphs

Feynman graphs of a model V, FeynD(V) are (D + 1)-coloured.Crystallization theory or GEMs [Pezzana, ‘74] says all PL-manifolds ofdimension D can be represented as D + 1-coloured graphs, Grphc,D+1.

G(p) = G’s p-bubbles = “conn. subgraphs with edges in p colours”

G(0) = V(G), G(1) = E(G), G(2) = F (G), . . .

C. I. Perez Sanchez (Math. Munster) Feynman diagrams 3rd. February 13 / 44

Page 17: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Rank-2 models

For an interaction λTr((ϕϕ)2), different connected O(λ2)-graphs are

12

1 2

1 2

12

0

0

0

0

1

12

1 2

2 1

21

0

0

0

0

Can be drawn on a sphere Can be drawn on T2

(capped twice)

C. I. Perez Sanchez (Math. Munster) Ribbon graphs as coloured ones 3rd. February 14 / 44

Page 18: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Rank-2 models

For an interaction λTr((ϕϕ)2), different connected O(λ2)-graphs are

12

1 2

1 2

12

0

0

0

0

1

12

1 2

1 2

12

0

0

0

0

Can be drawn on a sphere Can be drawn on T2

(capped twice)

C. I. Perez Sanchez (Math. Munster) Ribbon graphs as coloured ones 3rd. February 14 / 44

Page 19: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

The complex ∆(G)for each vertex v ∈ G(0), add a D-simplex σv to ∆(G) with colour-labelledvertices {0, 1, . . . , D}

ϕ, ϕ vk

0

1

D

for each edge ek ∈ G(1)k of arbitrary colour k, one identifies the two(D− 1)-simplices σs(ek)

and σt(ek)that do not contain the colour k.

s(ek) t(ek)

ek k

0

1

DD

0

1

k

k

1

,

edges come from either ϕa1 ...ak ...aD δakpk ϕp1 ...pk ...pD(k 6= 0) or ϕa ϕp (k = 0).

[Gurau, ’09] and [Bonzom, Gurau, Riello, Rivasseau, ’11];

A(G) = λV(G)/2N F(G)−D(D−1)4 V(G)

︸ ︷︷ ︸=: D− 2

(D−1)! ω(G) generalizes g; not topol. invariant

= exp(−SRegge[N, D, λ])

C. I. Perez Sanchez (Math. Munster) Graph-encoded topology 3rd. February 15 / 44

Page 20: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

The complex ∆(G)for each vertex v ∈ G(0), add a D-simplex σv to ∆(G) with colour-labelledvertices {0, 1, . . . , D}

ϕ, ϕ vk

0

1

D

for each edge ek ∈ G(1)k of arbitrary colour k, one identifies the two(D− 1)-simplices σs(ek)

and σt(ek)that do not contain the colour k.

s(ek) t(ek)

ek k

0

1

DD

0

1

k

k

1

,

edges come from either ϕa1 ...ak ...aD δakpk ϕp1 ...pk ...pD(k 6= 0) or ϕa ϕp (k = 0).

[Gurau, ’09] and [Bonzom, Gurau, Riello, Rivasseau, ’11];

A(G) = λV(G)/2N F(G)−D(D−1)4 V(G)

︸ ︷︷ ︸=: D− 2

(D−1)! ω(G) generalizes g; not topol. invariant

= exp(−SRegge[N, D, λ])

C. I. Perez Sanchez (Math. Munster) Graph-encoded topology 3rd. February 15 / 44

Page 21: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Invariants of the associated complex.

Graph-homology Hbbl? . Chain groups are generated by p-bubbles (p ≤ D)

Hbbl?

(

3

4

1 2

3

4

12

1

)= H?(S

3) = Hbbl? (

1

) but ω(

3

4

1 2

3

4

12

1

)6= ω(

1

)

Zero–Gurau-degree graphs are called melons.

Fundamental group. Gagliardi’s algorithm (here 4-coloured crystallizations).

I Choose two colours i, j. To each face G i,jα xα (generator).

I for the other two colours k, l to each face Gk,lγ but one

R(Gk,lγ ) = alt’d product of the generators touching the vertices of Gk,l

γ

I Presentation: π1(G) = 〈x1, . . . xF|xF, {R(G i,kγ )}〉. π1|∆(G)| ∼= π1(G)

i = 0, j = 1, R(Γ231 ) = x+1

1 x−12 x+1

1 x−12 x+1

1 x−12

Γ =323

2 3 2

2

3

2

3

2

3

323

2 3 2

2

3

2

3

2

3

x1

323

2 3 2

2

3

2

3

2

3

x2

323

2 3 2

2

3

2

3

2

3

π1(Γ) ∼= 〈x1, x2 | x2, R(Γ231 )〉 = 〈x1 | x3

1〉 ∼= Z3 ∼= π1(L3 ; ∗) .

C. I. Perez Sanchez (Math. Munster) Homology & π1 3rd. February 16 / 44

Page 22: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Invariants of the associated complex.

Graph-homology Hbbl? . Chain groups are generated by p-bubbles (p ≤ D)

Hbbl?

(

3

4

1 2

3

4

12

1

)= H?(S

3) = Hbbl?

( )but ω

(

3

4

1 2

3

4

12

1

)6= ω(

1

)

Zero–Gurau-degree graphs are called melons.

Fundamental group. Gagliardi’s algorithm (here 4-coloured crystallizations).

I Choose two colours i, j. To each face G i,jα xα (generator).

I for the other two colours k, l to each face Gk,lγ but one

R(Gk,lγ ) = alt’d product of the generators touching the vertices of Gk,l

γ

I Presentation: π1(G) = 〈x1, . . . xF|xF, {R(G i,kγ )}〉. π1|∆(G)| ∼= π1(G)

i = 0, j = 1, R(Γ231 ) = x+1

1 x−12 x+1

1 x−12 x+1

1 x−12

Γ =323

2 3 2

2

3

2

3

2

3

323

2 3 2

2

3

2

3

2

3

x1

323

2 3 2

2

3

2

3

2

3

x2

323

2 3 2

2

3

2

3

2

3

π1(Γ) ∼= 〈x1, x2 | x2, R(Γ231 )〉 = 〈x1 | x3

1〉 ∼= Z3 ∼= π1(L3 ; ∗) .

C. I. Perez Sanchez (Math. Munster) Homology & π1 3rd. February 16 / 44

Page 23: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Invariants of the associated complex.

Graph-homology Hbbl? . Chain groups are generated by p-bubbles (p ≤ D)

Hbbl?

(

3

4

1 2

3

4

12

1

)= H?(S

3) = Hbbl? (

1

) but ω(

3

4

1 2

3

4

12

1

)6= ω(

1

)

Zero–Gurau-degree graphs are called melons.

Fundamental group. Gagliardi’s algorithm (here 4-coloured crystallizations).

I Choose two colours i, j. To each face G i,jα xα (generator).

I for the other two colours k, l to each face Gk,lγ but one

R(Gk,lγ ) = alt’d product of the generators touching the vertices of Gk,l

γ

I Presentation: π1(G) = 〈x1, . . . xF|xF, {R(G i,kγ )}〉. π1|∆(G)| ∼= π1(G)

i = 0, j = 1, R(Γ231 ) = x+1

1 x−12 x+1

1 x−12 x+1

1 x−12

Γ =323

2 3 2

2

3

2

3

2

3

323

2 3 2

2

3

2

3

2

3

x1

323

2 3 2

2

3

2

3

2

3

x2

323

2 3 2

2

3

2

3

2

3

π1(Γ) ∼= 〈x1, x2 | x2, R(Γ231 )〉 = 〈x1 | x3

1〉 ∼= Z3 ∼= π1(L3 ; ∗) .C. I. Perez Sanchez (Math. Munster) Homology & π1 3rd. February 16 / 44

Page 24: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Dipole reduction (1-dipole example)

2

2

3

32

2

3

3

2

23

3

e0e′0

e′′0

323

2 3 2

2

3

2

3

2

3

Given a model V, how to go backwards? Algorithm?

probably |∆(Grphc,D+1)|?= |∆(FeynD(V))|, for V sufficiently

simple, e.g. ϕ4D,m.

C. I. Perez Sanchez (Math. Munster) Dipole reduction 3rd. February 17 / 44

Page 25: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

“Connected sum” is additive with respect to ω

e, f of the same colour:

Q

Rs(e)

t(f)

t(e)

s(f)

e

f

#e f

R #e fQs(e)

t(f)

t(e)

s(f)

F

E

|(Re#fQ)(2)| = |R(2)|+ |Q(2)| −D

|R(2)| = 12

(D2

)R(0) + D− 2ω(R)

(D− 1)!

|Q(2)| = 12

(D2

)Q(0) + D− 2ω(Q)

(D− 1)!

ω(Re#fQ) = ω(R) + ω(Q)P. Cristofori: dipole moves lead to theknown # of the crystallization-theory.

for coloured-0 edgese and f , e#f restrictsto a binary operationon FeynD(V)

C. I. Perez Sanchez (Math. Munster) Cone & connected sum 3rd. February 18 / 44

Page 26: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

The cone C : Grphc,D Grphc,D+1C adds one colour. In the QFT-context, it is the 0-colour.

B ×{0}

B

2

2

1

1

3

3

1 3

1

2

1C. I. Perez Sanchez (Math. Munster) Cone & connected sum 3rd. February 19 / 44

Page 27: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

The cone C : Grphc,D Grphc,D+1C adds one colour. In the QFT-context, it is the 0-colour.

B ×{0}

B

2

2

1

1

3

3

1 3

1

2

B(0) ×{1}

C. I. Perez Sanchez (Math. Munster) Cone & connected sum 3rd. February 19 / 44

Page 28: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Graphs of closed closed open openCTMD V(Φ) connected disconn. conn. disc.

D-coloured 1. Observables Boundary gr.graphs (2. Boundaries) im∂ ∅ ∅

Grphc,D ⊂ qGrphc,D(D + 1)- Vacuum gr. FeynD(V) ⊂

col. graphs Feyn0D(V) ∅ ∪k Grph

(2k)c,D+1 ∅

Grphc,D (D = 2, . . . , 5)-examples

...

1

= M

M

M

M

M

M

M

...

1D = 2

323

2 3 2

2

3

2

3

2

3 i j ij

1

D = 3 D = 4 D = 5

C. I. Perez Sanchez (Math. Munster) Table vs. confusion 3rd. February 20 / 44

Page 29: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Graphs of closed closed open openCTMD V(Φ) connected disconn. conn. disc.

D-coloured 1. Observables Boundary gr.graphs (2. Boundaries) im∂ ∅ ∅

Grphc,D ⊂ qGrphc,D(D + 1)- Vacuum gr. FeynD(V) ⊂

col. graphs Feyn0D(V) ∅ ∪k Grph

(2k)c,D+1 ∅

Feyn2((ϕϕ)2) ⊂ ∪kGrph(2k)c,2+1 (2k = number of external legs)

1

2

1

2

1

2

12

0

0S

dual to

S2 \(D

21t D

2 )

1

2

1

2

2

1

2

1

0

dual to

T2 \(t

3i=

1D2i)

0

1

2

1

2

1

2

1

2

0

0

S

dual to

S2 \(D

22t D

2 )

1

2

1

2

1

2

12

0

0S

0

1

2

1

2

2

1

2

1

0

0

1

2

1

2

1

2

1

2

0

0

S

Surgery in colored tensor modelsSurgery in colored tensor models

1

2

1

2

1

2

12

0

00

0

dual to

S2 \D2

1

2

1

2

1

2

1

2

0

0

1

2

1

2

1

2

1

2

0

0

S

0

0

0

0

C. I. Perez Sanchez (Math. Munster) Table vs. confusion 3rd. February 20 / 44

Page 30: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Graphs of closed closed open openCTMD V(Φ) connected disconn. conn. disc.

D-coloured 1. Observables Boundary gr.graphs (2. Boundaries) im∂ ∅ ∅

Grphc,D ⊂ qGrphc,D(D + 1)- Vacuum gr. FeynD(V) ⊂

col. graphs Feyn0D(V) ∅ ∪k Grph

(2k)c,D+1 ∅

Feyn3(ϕ4) ⊂ Grph(6)c,3+1

21

2

12

1

333

/∈ Feyn3(ϕ4)2 2

1

12

2

1 1

2

2 1

1

∈ Feyn3(ϕ4)

C. I. Perez Sanchez (Math. Munster) Table vs. confusion 3rd. February 20 / 44

Page 31: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Graphs of closed closed open openCTMD V(Φ) connected disconn. conn. disc.

D-coloured 1. Observables Boundary gr.graphs (2. Boundaries) im∂ ∅ ∅

Grphc,D ⊂ qGrphc,D(D + 1)- Vacuum gr. FeynD(V) ⊂

col. graphs Feyn0D(V) ∅ ∪k Grph

(2k)c,D+1 ∅

Boundary sector im ∂ ⊂ qGrphc,D

(D = 3)-example.

∂G has as vertices the external legs of G. And has a i-coloured edgebetween them for each 0i-bicoloured edge in G

21

2

12

1

333

2 2

1

12

2

1 1

2

2 1

1

C. I. Perez Sanchez (Math. Munster) Table vs. confusion 3rd. February 20 / 44

Page 32: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Ward-Takahashi IdentityWard-Takahashi Identity

motivated by the WTI for matrix models by [DGMR];

WTI fully exploited by [GW]

for Tαa a hermitian generator of the a-th summand of Lie(U(N)D),

δ log Z[J, J]δ(Tα

a )mana

= 0.

this implies

∑pi∈Z

E(ma, na)δ2Z[J, J]

δJp1 ...pa−1mapa+1 ...pD Jp1 ...pa−1napa+1 ...pD

= ∑pi∈Z

{Jp1 ...pa−1mapa+1 ...pD

δ

δJ p1 ...pa−1na ...pD

− Jp1 ...pa−1napa+1 ...pD

δ

δJ p1 ...pa−1ma ...pD

}Z[J, J] .

with E(ma, na) = Ep1 ...pa−1mapa+1 ...pD − Ep1 ...pa−1napa+1 ...pD .

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 21 / 44

Page 33: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Jq1...qa−1maqa+1...qD

Jq1...qa−1naqa+1...qD

1

=

Jq1...qa−1naqa+1...qD

Jq1...qa−1naqa+1...qD

1

Jq1...qa−1maqa+1...qD

Jq1...qa−1maqa+1...qD

1

where the LHS is

∑pi∈Z

(Ep1 ...pa−1mapa+1 ...pD − Ep1 ...pa−1napa+1 ...pD) ·

Jq1...qa−1ma...qD

Jq1...qa−1na...qD

Jp1...pa−1ma...pD

Jp1...pa−1na...pD

1

Aims: understand the combinatorics of the correlation functions recover the(ma, na)-symmetric part.

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 22 / 44

Page 34: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))

2k=#(B(0))

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of B

Ja1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 35: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))2k=#(Vertices ofB)

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of B

Ja1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 36: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))

2k=#(B(0))

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of B

Ja1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 37: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))

2k=#(B(0))

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of BJa1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 38: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))

2k=#(B(0))

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of BJa1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 39: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of the free energy

∂ FeynD(V) is the boundary sector of the model V

W[J, J] =∞

∑k=1

∑B∈∂FeynD(V(ϕ,ϕ))

2k=#(B(0))

1|Autc(B)|

G(2k)B ? J(B) .

Coloured automorphisms of BJa1

Ja2

Jak

......

Jp1

Jp2

Jpk

(J(B))(a1, . . . , ak︸ ︷︷ ︸

(ZD)k

) = Ja1 · · · Jak Jp1 · · · Jpk

Green’s function G(2k)B = ∂2kW[J, J]/∂J(B)|J=J=0

F : (ZD)k C; ? : (F, J(B)) F ? J(B) = ∑a

F(a) · J(B)(a)

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 23 / 44

Page 40: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Green’s functions

G =

Ja1

Ja2

Jak

......

Jp1

Jp2

Jpk

B = ∂G J(B){ai} =k

∏i=1

Jai Jpi

One can derive a functional X[J, J] with respect to a graph. For instance:

∂(

2 2

1

12

2

1 1

2

2 1

1

)=

∂X[J, J]

∂ c

a

b1

=∂6X[J, J]

∂Ja ∂Jb ∂Jc ∂Ja1c2b3 ∂Jb1a2c3 ∂Jc1b2a3

So:∂

∂ c

a

b1

(g

e

f

1

)= δe

aδfbδ

gc + δ

ga δe

bδfc + δf

aδgbδe

c ↔ Autc( ) ' Z3

Lemma

G(2k)B (a1, . . . , ak) =

∂2kW[J, J]∂J(B)(a1, . . . , ak)

∣∣∣∣J=J=0

are all non-trivial, B ∈ im∂

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 24 / 44

Page 41: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Green’s functions

G =

Ja1

Ja2

Jak

......

Jp1

Jp2

Jpk

B = ∂G J(B){ai} =k

∏i=1

Jai Jpi

One can derive a functional X[J, J] with respect to a graph. For instance:

∂(

2 2

1

12

2

1 1

2

2 1

1

)=

∂X[J, J]

∂ c

a

b1

=∂6X[J, J]

∂Ja ∂Jb ∂Jc ∂Ja1c2b3 ∂Jb1a2c3 ∂Jc1b2a3

So:∂

∂ c

a

b1

(g

e

f

1

)= δe

aδfbδ

gc + δ

ga δe

bδfc + δf

aδgbδe

c ↔ Autc( ) ' Z3

Lemma

G(2k)B (a1, . . . , ak) =

∂2kW[J, J]∂J(B)(a1, . . . , ak)

∣∣∣∣J=J=0

are all non-trivial, B ∈ im∂

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 24 / 44

Page 42: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Boundary graphs and bordisms

The correlation functions G2kB support a 1/N-expansion in sectors of

the same value of ω:

G(2k)B = ∑

ω

G(2k,ω)B , ω ∈ ((D− 1)!/2) ·Z≥0 (D ≥ 3)

as matrix models do in the genus..

since ∂ represents the ‘boundary of a simplicial complex’, one can givea bordism-interpretation to the Green’s functions

for instance, if |∆(B)| = S3 t S2 × S1 t L3,1

ϕ4-generated

4D-bulk

S3

L3,1

S2 × S1

+ϕ4-generated

4D-bulk

S3

L3,1

S2 × S1

+ϕ4-generated

4D-bulk

S3

L3,1

S2 × S1

+ . . .

C. I. Perez Sanchez (Math. Munster) Boundary-graph-expansion of W[J, J] 3rd. February 25 / 44

Page 43: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

LemmaThe boundary sector of rank-D quartic melonic models is all of qGrphc,D.

For D = 3, all quartic vertices are melonic. The lowest order boundaryconnected graphs are:

k = 1M

1

Autc(M) = {∗}

ω

0#

1

k = 2Vc

c

1

Autc(Vc) = Z2

ω

0#

3

k = 3Ec

c

Autc(Ec) = {∗}

ω

0#

3

k = 3Qc

c

c c

1

Autc(Qc) = Z3

ω

0#

3

k = 3Kc(3, 3)

2

1

2

1

2

1

33

3

Autc(Kc(3, 3)) = Z3

ω

1#

1

Page 44: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

D = 4-connected boundary graphs

k = 1M

1

Autc(M) = {∗}

ω

0#

1

k = 2Vi

i

Autc(Vi) = Z2

ω

0#

4

k = 2Nij

i j ij

1

Autc(Nij) = Z2

ω

1#

3

k = 3Eij

j

ji

i1

Autc(Eij) = {∗}

ω

0#

6

k = 3Qij

j i ji

i

1

Autc(Qij) = {∗}

ω

1#

12

k = 3Ci

i i

i

Autc(Ci) = Z3

ω

0#

4

No counting

needed

For any colouri ∈ {1, 2, 3, 4}

Since Nij = Nji

one imposes i < j

Eij = Eji i < ji, j ∈ {1, 2, 3, 4}

Qij 6= Qji

arbirary colours i, jarbirary colour i

Page 45: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

k = 3Lij

jj

j

i

i

i

Autc(Lij) = Z3

ω

2#

3

k = 3Dijk

i

i ijk

k

1Autc(Dijk) = {∗}

ω

2#

6

k = 3F•

1Autc(F•) =coloration

dependent

ω

?#

?Lij = Lji, Lij = Lkl

{i, j, k, l} ∈ {1, 2, 3, 4}Dijk = Djil, i < j,{i, j, k, l} = {1, . . . , 4}

?

k = 3Fij

ii

i

j

jj

1Autc(Fij) = Z3

ω

4

#

6

k = 3F ′k

k k

k

i1

i2

i3

Autc(F ′k) = {∗}

ω

3

#

4Fij = Fji, so i < ji, j ∈ {1, 2, 3, 4}

k arbitrary, butpairwise ip 6= iq

Page 46: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

WD=4[J, J]

WD=4[J, J] = G(2)

1

? J(

1

)+

12!

G(4)|

1

|1

| ? J(

1

|1

)+

4

∑j=1

12

G(4)

i? J(

i

)

+ ∑i<j

12

G(4)j i

1

? J

(i j ij

1

)+

13!

G(6)|

1

|1

|1

| ? J(

1

|1

|1

)

+12

4

∑j=1

G(6)|

1

| i | ? J(

1

|i

)+

12 ∑

i<jG(6)|

1

| j i1

| ? J(

1

| i j ij

1

)

+ ∑i<j

G(6)

ji1

? J(

j

ji

i1

)+ ∑

i 6=jG(6)

j ji

1

? J(

j i ji

i

1

)

+13 ∑

i<jG(6)

iij j

? J( jj

j

i

i

i)+

13

4

∑i=1

G(6)

i

? J(

i i

i

)

+ ∑i<j

∑k 6=ik 6=j

G(6)i i

i j

k

1

? J( i i

i j

kk

1

)+

13 ∑

i<jG(6)

iii

j

jj

1

? J(

iii

j

jj

1

)

+4

∑k=1

{G(6)

i1 i3i2

kkk

1

? J(

k k

k

i1

i2

i3

)}∣∣∣∣∣{i1,i2,i3}={k}c

+ O(J4, J4)

Page 47: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Theorem (Full Ward-Takahashi Identity for arbitrary tensor models)

If the kinetic form E in Tr2(ϕ, Eϕ) of a rank-D tensor model is such that

Ep1 ...pa−1mapa+1 ...pD − Ep1 ...pa−1napa+1 ...pD = E(ma, na) for each a = 1, . . . , D

then its partition function Z[J, J], as a consequence of unitary invariance of themeasure (δZ[J, J]/δ(Ta)mana = 0, Ta a generator of u(N)), satisfies

∑pi∈Z

δ2Z[J, J]δJp1 ...pa−1mapa+1 ...pD δJp1 ...pa−1napa+1 ...pD

−(

δmanaY(a)ma [J, J]

)· Z[J, J]

= ∑pi∈Z

1E(ma, na)

(Jp1 ...ma ...pD

δ

δJ p1 ...na ...pD

− Jp1 ...na ...pD

δ

δJ p1 ...ma ...pD

)Z[J, J]

where

Y(a)ma [J, J] :=

∑k=1

∑B′ 1|Autc(B)|

〈〈G(2k)B ,B〉〉ma

=∞

∑k=1

∑B′ 1|Autc(B)|

k

∑r=1

(∆Bma,rG

(2k)B)? J(B er

a) .

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 30 / 44

Page 48: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Defining B B era and ∆Bma,r : (C)Zk·D

(C)Z(k−1)·D(r = 1, . . . , k)

Locally:

S

era

.

.

....

.

.

.• era7→ .

.

....

Let

w = (ma, {qh}h∈I(e ar )

, {xξ(r,g,a)g }g∈A(e a

r )) (colour-ordered);

qh is a dummy variable for each colour-h removed edge other than era

xξ(r,g,a)g colour-g entry of xξ(r,g,a)

Set for F : (ZD)k C,

(∆Bma,rF)(x1, . . . , xr, . . . , xk) = ∑

{qh}F(x1, . . . , xr−1, w(ma, x, q), . . . , xk) and

〈〈G(2k)B ,B〉〉ma :=

k

∑r=1

(∆Bma,rG

(2k)B)? J(B er

a)

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 31 / 44

Page 49: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Defining B B era and ∆Bma,r : (C)Zk·D

(C)Z(k−1)·D(r = 1, . . . , k)

Locally:

S

era

.

.

....

.

.

.

ixξ(r,i,a)

xξ(r,j,a)j

• era7→ .

.

....

Let

w = (ma, {qh}h∈I(e ar )

, {xξ(r,g,a)g }g∈A(e a

r )) (colour-ordered);

qh is a dummy variable for each colour-h removed edge other than era

xξ(r,g,a)g colour-g entry of xξ(r,g,a)

Set for F : (ZD)k C,

(∆Bma,rF)(x1, . . . , xr, . . . , xk) = ∑

{qh}F(x1, . . . , xr−1, w(ma, x, q), . . . , xk) and

〈〈G(2k)B ,B〉〉ma :=

k

∑r=1

(∆Bma,rG

(2k)B)? J(B er

a)

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 31 / 44

Page 50: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Examples of 〈〈G(2k)B ,B〉〉ma

for instance, for D = 3, a = 2

⟨⟨G(2)

1

,1

⟩⟩m2

= ∆m2,1G(2)

1

? J(∅) = ∑q1,q3∈Z

G(2)

1

(q1, m2, q3) .

In D = 4, for F ′c =

c

cc

a

a

ab

1

, one has

F ′c e1a = F ′c e3

a =

a c ac

1

, F ′c e2a =

a

⟨⟨G(6)F ′c ,F ′c

⟩⟩ma

= ∆ma,1G(6)F ′c ? J

(

a c ac

1

)

+ ∆ma,2G(6)F ′c ? J

(

a

)

+ ∆ma,3G(6)F ′c ? J

(

a c ac

1

)

∆ma,2G(6)F ′c (y, z)

=∑qc

G(6)F ′c (y, (ma, yb, qc, zd), z)

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 32 / 44

Page 51: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Examples of 〈〈G(2k)B ,B〉〉ma

for instance, for D = 3, a = 2

⟨⟨G(2)

1

,1

⟩⟩m2

= ∆m2,1G(2)

1

? J(∅) = ∑q1,q3∈Z

G(2)

1

(q1, m2, q3) .

In D = 4, for F ′c =c

cc

a

a

ab

1

, one has

F ′c e1a = F ′c e3

a = a c ac

1

, F ′c e2a =

a

⟨⟨G(6)F ′c ,F ′c

⟩⟩ma

= ∆ma,1G(6)F ′c ? J

(a c ac

1

)

+ ∆ma,2G(6)F ′c ? J

(a

)

+ ∆ma,3G(6)F ′c ? J

(a c ac

1

)

∆ma,2G(6)F ′c (y, z)

=∑qc

G(6)F ′c (y, (ma, yb, qc, zd), z)

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 32 / 44

Page 52: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

WD=4[J, J]

WD=4[J, J] = G(2)

1

? J(

1

)+

12!

G(4)|

1

|1

| ? J(

1

|1

)+

4

∑j=1

12

G(4)

i? J(

i

)

+ ∑i<j

12

G(4)j i

1

? J

(i j ij

1

)+

13!

G(6)|

1

|1

|1

| ? J(

1

|1

|1

)

+12

4

∑j=1

G(6)|

1

| i | ? J(

1

|i

)+

12 ∑

i<jG(6)|

1

| j i1

| ? J(

1

| i j ij

1

)

+ ∑i<j

G(6)

ji1

? J(

j

ji

i1

)+ ∑

i 6=jG(6)

j ji

1

? J(

j i ji

i

1

)

+13 ∑

i<jG(6)

iij j

? J( jj

j

i

i

i)+

13

4

∑i=1

G(6)

i

? J(

i i

i

)

+ ∑i<j

∑k 6=ik 6=j

G(6)i i

i j

k

1

? J( i i

i j

kk

1

)+

13 ∑

i<jG(6)

iii

j

jj

1

? J(

iii

j

jj

1

)

+4

∑k=1

{G(6)

i1 i3i2

kkk

1

? J(

k k

k

i1

i2

i3

)}∣∣∣∣∣{i1,i2,i3}={k}c

+O(J4, J4)

Page 53: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Singling out a in each graph, WD=4[J, J] reads:

G(2)

1

? J(

1

)+

12!

G(4)|

1

|1

| ? J(

1

|1

)+ ∑

c 6=a

12

G(4)

c? J(

c

)+

12

G(4)

a? J(

a

)

+ ∑c 6=a

12

G(4)a c

1

? J

(a c ac

1

)+

13!

G(6)|

1

|1

|1

| ? J(

1

t3)+

12

G(6)|

1

| a | ? J(

1

| a

)

+12 ∑

c 6=a

[G(6)|

1

| c | ? J(

1

| c

)+ G(6)

|1

| a c1

| ? J(

1

| a c ac

1

)]+ ∑

c 6=aG(6)

ac

1

J(

ac

1

)

+ ∑c 6=a

G(6)

ca1

? J(

c

ca

a1

)+ ∑

c 6=aG(6)

c a1

? J(

c a ca

a

1

)

+ ∑c 6=a

G(6)a a

c1

? J(

a c ac

c

1

)+ ∑

c 6=a∑

f=b,dG(6)

ac c a

f

1

? J(

ac

ac a

f

f

1

)

+13 ∑

c 6=aG(6)

aac c

? J( aa

a

c

c

c)+

13

G(6)

a? J(

a a

a

)+

13 ∑

c 6=aG(6)

c? J(

c c

c

)

+ ∑c 6=a

G(6)a a

a c

f

1

? J( a a

a c

ff

1

)+

13 ∑

c 6=aG(6)

ccc

a

aa

1

? J(

ccc

a

aa

1

)+

13 ∑

c 6=aG(6)

a

a

c

ca

c

? J( c

c

ca

a

a)

+ ∑c 6=a

{G(6)

c cc

aaa

? J(

c c

caa

a )}+ G(6)

i1 i3i2

aaa

1

? J(

i1 i3i2

aa

a )+O(J4, J4)

Page 54: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of Y(a)ma [J, J] for D = 4

: {a, b, c, d} = {1, 2, 3, 4}, b < d and (i1, i2, i3) = {a}c

∆ma,1G(2)

1

? 1 +12

{∑

s=1,2∆ma,sG

(4)|

1

|1

| +4

∑j=1

s=1,2

∆ma,sG(4)

j+ ∑

c 6=a∑

s=1,2∆ma,sG

(4)a c

1

}? J(

1

)

+O(J2, J2)

(One needs only ↗ in order to derive the equation for the 2-pt function;for the 4-pt functions one also needs...)

+{

13!

3∑r=1

∆ma,rG(6)|

1

|1

|1

| + 12

4∑i=1

∑s=2,3

∆ma,sG(6)

|1

| i | + 12

∑c6=a

[ ∑s=2,3

∆ma,sG(6)|

1

| a c1

| +

∆ma,2G(6)

ac

1

+ ∆ma,2G(6)

a a

c1

]}? J(

1

|1

)+{

12∆ma,1G

(6)

|1

| a | + 13

3∑r=1

∆ma,rG(6)

a+

∑c6=a

[∆ma,1G

(6)

c a1

+ 13

3∑r=1

G(6)

ccc

a

aa

1

+ ∆ma,2G(6)

c cc

aaa

+ ∆ma,3G(6)

ca1

]}? J(

a

)+

3∑α=1

{12∆ma,1G

(6)

|1

|iα

|+∆ma,αG

(6)

i1 i3i2

aaa

1

}?J( iα

)+∑c6=a

{[ ∑s=1,2

∆ma,sG(6)

ca1

+∆ma,1G(6)

a a

c1

+

13

3∑r=1

∆ma,rG(6)

c+∆ma,1G

(6)a a

a c

b

1

+∆ma,1G(6)

a a

a c

d

1

]?J(

c

)+[∆ma,3G

(6)

ac

1

+∑s=1,2

∆ma,sG(6)

ac c a

b1

]?

J(

ba,c)

+[∆ma,1G

(6)

ac

1

+∑s=1,2

∆ma,sG(6)

ac c a

d1

]?J(

da,c)}

+∑c6=a

{[12∆ma,1G

(6)|

1

| a c1

|+

∑s=2,3

∆ma,sG(6)

c a1

+∆ma,3G(6)

a a

c1

+ 13

3∑r=1

∆ma,rG(6)

aac c

+ 13

3∑r=1

∆ma,rG(6)

a

a

c

ca

c

+∑`=1,3

∆ma,`G(6)

c cc

aaa

]?

J(

a c ac

1

)+[∆ma,3G

(6)

ac c a

d1

+∆ma,2G(6)

a a

a c

d

1

+∆ma,3G(6)

a a

a c

b

1

]?J(

ba,c a ba,ca

1

)+[∆ma,3G

(6)

ac c a

b1

+

∆ma,3G(6)

a a

a c

d

1

+ ∆ma,2G(6)

a a

a c

b

1

]? J(

da,c a da,ca

1

)}+ O(J3, J3)

1

Page 55: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Expansion of Y(a)ma [J, J] for D = 4 : {a, b, c, d} = {1, 2, 3, 4}, b < d and (i1, i2, i3) = {a}c

∆ma,1G(2)

1

? 1 +12

{∑

s=1,2∆ma,sG

(4)|

1

|1

| +4

∑j=1

s=1,2

∆ma,sG(4)

j+ ∑

c 6=a∑

s=1,2∆ma,sG

(4)a c

1

}? J(

1

)

+{

13!

3∑r=1

∆ma,rG(6)|

1

|1

|1

| + 12

4∑i=1

∑s=2,3

∆ma,sG(6)

|1

| i | + 12

∑c6=a

[ ∑s=2,3

∆ma,sG(6)|

1

| a c1

| +

∆ma,2G(6)

ac

1

+ ∆ma,2G(6)

a a

c1

]}? J(

1

|1

)+{

12∆ma,1G

(6)

|1

| a | + 13

3∑r=1

∆ma,rG(6)

a+

∑c6=a

[∆ma,1G

(6)

c a1

+ 13

3∑r=1

G(6)

ccc

a

aa

1

+ ∆ma,2G(6)

c cc

aaa

+ ∆ma,3G(6)

ca1

]}? J(

a

)+

3∑α=1

{12∆ma,1G

(6)

|1

|iα

|+∆ma,αG

(6)

i1 i3i2

aaa

1

}?J( iα

)+∑c6=a

{[ ∑s=1,2

∆ma,sG(6)

ca1

+∆ma,1G(6)

a a

c1

+

13

3∑r=1

∆ma,rG(6)

c+∆ma,1G

(6)a a

a c

b

1

+∆ma,1G(6)

a a

a c

d

1

]?J(

c

)+[∆ma,3G

(6)

ac

1

+∑s=1,2

∆ma,sG(6)

ac c a

b1

]?

J(

ba,c)

+[∆ma,1G

(6)

ac

1

+∑s=1,2

∆ma,sG(6)

ac c a

d1

]?J(

da,c)}

+∑c6=a

{[12∆ma,1G

(6)|

1

| a c1

|+

∑s=2,3

∆ma,sG(6)

c a1

+∆ma,3G(6)

a a

c1

+ 13

3∑r=1

∆ma,rG(6)

aac c

+ 13

3∑r=1

∆ma,rG(6)

a

a

c

ca

c

+∑`=1,3

∆ma,`G(6)

c cc

aaa

]?

J(

a c ac

1

)+[∆ma,3G

(6)

ac c a

d1

+∆ma,2G(6)

a a

a c

d

1

+∆ma,3G(6)

a a

a c

b

1

]?J(

ba,c a ba,ca

1

)+[∆ma,3G

(6)

ac c a

b1

+

∆ma,3G(6)

a a

a c

d

1

+ ∆ma,2G(6)

a a

a c

b

1

]? J(

da,c a da,ca

1

)}+ O(J3, J3)

1

Page 56: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

(D = 4) Equation for the 2-point function

For Ex = m2 + |x|2 a Laplacian on T4

G(2)

1

(x) =1

Ex+

(−λ)

Ex

{4

∑a=1

[2 ·G(2)

1

(x)

·(

∑qi1(a)

∑qi2(a)

∑qi3(a)

G(2)

1

(xa, qi1(a), qi2(a), qi3(a)))+ ∑

qi1(a)

∑qi2(a)

∑qi3(a)

(

G(4)|

1

|1

|(xa, qi1(a), qi2(a), qi3(a); x) + G(4)|

1

|1

|(x; xa, qi1(a), qi2(a), qi3(a)))

+ ∑c 6=a

∑qb(a,c)

∑qd(a,c)

(G(4)

c(xa, xc, qb, qd; x) + G(4)

c(x; xa, xc, qb, qd)

)

+ ∑c 6=a

∑qc

(G(4)

a c1

(xa, xb, qc, xd; x) + G(4)a c

1

(x; xa, xb, qc, xd))+ 2G(4)

a(x; x)

+ ∑ya

2|xa|2 − |ya|2

(G(2)

1

(x)−G(2)

1

(ya, xi1(a), xi2(a), xi3(a)))]}

C. I. Perez Sanchez (Math. Munster) The full WTI for tensor models 3rd. February 36 / 44

Page 57: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Conclusions & outlookConclusions & outlook(Coloured) tensor field theories [Ben Geloun, Bonzom, Carrozza, Gurau, Krajewski,

Oriti, Ousmane-Samary, Rivasseau, Ryan, Tanasa, Vignes-Tourneret,. . .] provide aframework for 3 ≤ D-dimensional random geometryI A new Ward-Takahashi identity (bare parameters) based on

[Disertori-Gurau-Magnen-Rivasseau] and [Grosse-Wulkenhaar] has been foundF non-perturbativeF universal: same for each interaction verticesF full (information has been recovered)F provides a method to systematically obtain exact equations for

correlation functions

I Eq. for the 2-point function was obtained. Correlation functionthere can be expanded in Gurau-degree’s sectors ( decouple?)

I A bordism interpretation of the correlation functions was given.

Apply this techniques for SYK-like ([Sachdev-Ye-Kitaev]) models [Witten]

Outlook. The tensor model graphs are not canonically simplicialcomplexes. Aiming at gauge theories on a random (quantum)spacetime, representations of graphs directly in categories of(almost-commutative) spectral triples should be possible.

C. I. Perez Sanchez (Math. Munster) Dipole reduction 3rd. February 37 / 44

Page 58: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

Non-Classical geometry of classical fieldsNon-Classical geometry of classical fields

Brute-force summary of NCG-approach to SM: The ‘geometry’ determinesthe form DF, thus of interactions

DF =

0 0 Υ∗ν 0 0 0 0 0 0 Υ∗

R0 0 0 0 0 0 0 0

0 0 0 Υ∗e 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Υν 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 Υe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Υ∗u 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Υ∗d 0 0 0 0 0 0 0 0 0

0 0 0 0 Υu 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 Υd 0 0 0 0 0 0 0 0 0 0 0

ΥR 0 0 0 0 0 0 0 0 0 0 ΥTν 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ΥTe 0 0 0 0 0

0 0 0 0 0 0 0 0 0 Υν 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Υe 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ΥTu 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ΥTd

0 0 0 0 0 0 0 0 0 0 0 0 0 Υu 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Υd 0 0

⊗ 13

⊗ 13

“all forces are gravity in disguise”

Page 59: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

BosonicSpectral Action

Tr(f(D/Λ))

Topologicalterm

R∗R∗ 7→ χ(M)

Non-minimal

R|ϕ|2

Conformalgravity

CαβσρCαβσρ

Einstein-Hilbert∫

d4x√gR

CosmologicalConstant∫

d4x√g

Higgsquadratic& quartic

|ϕ|2, |ϕ4|Higgs kinetic

1

2|Dµϕ|2

Yang-Mills

−1

4F aµνF

µνa

FermionicSpectral Action

1

2〈Jξ,DAξ〉

Fermions-Gauge

couplings

Majoranamassesfor νR

Fermion-Higgscouplings

The Stan-dard Model

with νR

Gauge Fixingterms

Fermions-Gauge

couplings

Majoranamassesfor νR

Fermion-Higgscouplings

Higgs self-couplings

Higgs Gaugecouplings

Faddeev-Popovghosts

Gauge self-couplings

GeneralRelativity

Einstein-Hilbert

CosmologicalConstant

Page 60: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

BosonicSpectral Action

Tr(f(D/Λ))

Topologicalterm

R∗R∗ 7→ χ(M)

Non-minimal

R|ϕ|2

Conformalgravity

CαβσρCαβσρ

Einstein-Hilbert∫

d4x√gR

CosmologicalConstant∫

d4x√g

Higgsquadratic& quartic

|ϕ|2, |ϕ4|Higgs kinetic

1

2|Dµϕ|2

Yang-Mills

−1

4F aµνF

µνa

FermionicSpectral Action

1

2〈Jξ,DAξ〉

Fermions-Gauge

couplings

Majoranamassesfor νR

Fermion-Higgscouplings

The Stan-dard Model

with νR

Gauge Fixingterms

Fermions-Gauge

couplings

Majoranamassesfor νR

Fermion-Higgscouplings

Higgs self-couplings

Higgs Gaugecouplings

Faddeev-Popovghosts

Gauge self-couplings

GeneralRelativity

Einstein-Hilbert

CosmologicalConstant

Page 61: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

1

Page 62: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

1

Page 63: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

1

(Av1 , Hv1 , 0) (Av2 , Hv2 , 0)

(Av3 , Hv3 , 0)

(Av4 , Hv4 , 0)

Page 64: The full-Ward Takahashi identity for random tensorsmath.univ-lyon1.fr/~vignes/pmwiki/Docs/SeminarICJ/Perez2017.pdf · The full-Ward Takahashi identity for random tensors Dimensons

ReferencesReferencesM. Disertori, R. Gurau, J. Magnen, and

V. Rivasseau.Phys. Lett., B649:95–102, 2007.arXiv:hep-th/0612251.

H. Grosse and R. Wulkenhaar,Commun. Math. Phys. 329 (2014) 1069arXiv:1205.0465 [math-ph].

R. Gurau,Commun. Math. Phys. 304, 69 (2011)arXiv:0907.2582 [hep-th] .

D. Ousmane Samary, C. I. Perez-Sanchez, F. Vignes-Tourneret andR. Wulkenhaar,Class. Quant. Grav. 32 (2015) 17,175012arXiv:1411.7213 [hep-th]

C. I. Perez-Sanchez.arXiv:1608.08134 and arXiv:1608.00246

E. WittenarXiv:1610.09758v2 [hep-th].

Thank you for your attention!