12
Vergleichende Analyse der Infrastrukturkosten für Batterie- und Brennstoffzellenfahrzeuge NOVEMBER 08, 2018 THOMAS GRUBE, JOCHEN LINSSEN, MARTIN ROBINIUS, MARKUS REUSS, PETER STENZEL, KONSTANTINOS SYRANIDIS, DETLEF STOLTEN [email protected] Institute for Electrochemical Process Engineering (IEK-3) 7. WIRTSCHAFTSGESPRÄCH IM CLUSTER UMWELT | 5. HYPOS-DIALOG Leipzig IEK-3: Institut für Elektrochemische Verfahrenstechnik Who we are 1 Process and Systems Analysis (VSA) Head of Department: Dr.-Ing. Martin Robinius Renewable energies & storage Infrastructures Transport Residential sector Industry Areas of VSA’s Expertise: 0 5 10 15 20 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Scientists Energy System Analysis CCS/CCU

Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

Vergleichende Analyse der Infrastrukturkosten für Batterie- und Brennstoffzellenfahrzeuge

NOVEMBER 08, 2018 THOMAS GRUBE, JOCHEN LINSSEN, MARTIN ROBINIUS,

MARKUS REUSS, PETER STENZEL,

KONSTANTINOS SYRANIDIS, DETLEF STOLTEN

[email protected]

Institute for Electrochemical Process Engineering (IEK-3)

7. WIRTSCHAFTSGESPRÄCH IM CLUSTER UMWELT | 5. HYPOS-DIALOG

Leipzig

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Who we are

1

Process and Systems Analysis (VSA)Head of Department: Dr.-Ing. Martin Robinius

Renewable energies &

storage

InfrastructuresTransport

Residential sector

Industry

Areas of VSA’s Expertise:

0

5

10

15

20

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Sci

enti

sts

Energy System Analysis CCS/CCU

Page 2: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Highlights

2

Motivation

Transport sector essential for reaching the ambitious climate protection goals

Electric drivetrains key elements of renewably-based, clean and energy-efficient transport

Research question and approach

What are costs, efficiencies and emissions of an infrastructure capable of supplying hundred thousand or several million vehicles with hydrogen or electricity?

In depth scenario analysis of infrastructure designs, case study for Germany

Spatio-temporally resolved models for generation, conversion, transport and distribution

Conclusion

Hydrogen and controlled charging key to integration of renewable electricity in transportation

Complementary development of both infrastructures maximize energy efficiency, optimize the use of renewable energy and minimize CO2 emissions

Hydrogen infrastructure roll-out for transportation sector enables further large-scale applications in other sectors

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Greenhouse Gas (GHG) Emissions in Germany Since 1990

3

[1] BMWi, Zahlen und Fakten Energiedaten - Nationale und Internationale Entwicklung. 2018: Berlin. [2] BRD, Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. 2010: Berlin.[3] BMU, Klimaschutzplan 2050 - Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. 2016: Berlin.

GH

G e

mis

sion

com

pare

d to

199

0 [%

]

Total emissions[1] Sector specific emissions[1]

TransportationIndustry

Energy

Today

Buildings

Today

Mitigation targets of the Federal Government 2010[2]

Mitigation targets according to Climate Action Plan 2016[3]

► No GHG reductions in the transportation sector since 1990

► Achieving mitigation targets requires contributions from all sectors

Page 3: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

What are investments, cost, efficiencies and emissions of infrastructures?

Battery Cars (BEV) & Fuel Cell Cars (FCEV) are Key Elements of GHG mitigation in Transportation

4

Renewable power generation

FCEVBEV

BEV charging infrastructure

H2 fueling infrastructure

Mass market

Introduction

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Battery Cars (BEV)

44,419 Plug-in hybrids and 53,861 BEVs (Jan 1, 2018)[1]

Supply infrastructures are market ready – required technologies are available.

Fuel Cell Cars (FCEV)

325 cars, 15 buses, 2 trucks, 2 semi trucks (Jan 1, 2018)[1]

Status Quo of BEV & FCEVs and Infrastructures in Germany

5

Pub

lic c

ahrg

epo

ints

[3]

H2

Fue

ling

Sta

tions

[5]

Planned (2018)

[1] KBA. Bestand am 1. Januar 2018 nach Motorisierung. 2018 (FCEV Auf Anfrage) [2] Nationale PlattformElektromobilität: Wegweiser Elektromobilität. 2016. [3] BDEW, Erhebung Ladeinfrastruktur. 2017: Berlin. [4] H2 MOBILITY: H2-Stations. 2018 [5] HyARC, International Hydrogen Fueling Stations. 2018.

40070,000 77,100 in 2020 [2] 400 in 2023[4]

13,500 in July 2018[3]

52 in Oct. 2018[4]

Page 4: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Number of in million 0.1 1 3 5 10 20

Market penetration scenario

Analysis of investments, costs, efficiencies and emissions

Electric vehicle penetrationApproach

6

Meta-analysis of existing infrastructure scenario studies

In depth scenario analysis of infrastructure designs,

case study for Germany

Spatio-temporally resolved models for generation, conversion, transport and distribution

Consistent scenario framework with different vehicle penetrations

Renewable electricity & demand Electricity generation & grid

Hydrogen production

Mass marketRamp-up →

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Meta Analysis

7

Selection criteria of scenario studies

Focus on Germany (broader context studies for EU, worldwide) and quantitative results; parameters: number of H2 fueling stations and charging points, cumulative investment for infrastructure set-up

Number of scanned literature sources: 79

Studies selected for meta analysis: 25 (12 on H2 fueling and 13 on BEV charging)

Lessons learned of the meta analysis

Mostly aggregated results; in many cases without provision of techno-economic assumptions

Regarding H2 fueling infrastructures: Lack of information on parameters that are important infrastructure parameters, e.g., H2 pipeline length, number of trucks for H2 transport→ no meta-analysis possible

Regarding BEV charging studies: lack of studies concerning high xEV penetration scenarios, investment for infrastructure build-up, demand for fast-charging and impacts on the distribution grid

Page 5: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Assumed Electricity Scenario Assessment based on municipal level and hourly resolution of grid load/ RES feed-in

RES power [GW | TWh]: onshore: 170 | 350; offshore: 59 | 231; PV: 55 | 47; hydro: 6 | 21; bio: 7 | 44; fossil: 63 | 118Further assumptions: grid electricity: 528 TWh; imports: 28 TWh; exports: 45 TWh; pos. residual: natural gasPo

wer

-Se

ctor

Residual energy [MWh/km²]

Negative residual energy (Surplus)

Positive residual energy

Power flow analysis based on 523 nodes and 802 edges

Share of RES electricity generation: 78 %Total curtailment (including future grid): 266 TWh

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Components of Electrical Charging Infrastructure

9

Power generation | Electricity transport | Electricity distribution | Charging

Public4–22 kW

At home 2–10 kW

Autobahn up to 350 kW

City, up to 350 kW

Renewable power

Power plants & grids

Spatially and temporally highly resolved models required.

Controllable power

Page 6: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Components of Hydrogen Fueling Infrastructure

10

H2 production Storage Transport Fueling

Spatially and temporally highly resolved models required.

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Hydrogen Infrastructure Model

Technology database

Selection of fueling stations

Optimize grid/route network

Hydrogen supply chain model

Geospatial database

• Hydrogen production• Hydrogen demand• Candidate grid• (Highway grid)• Fueling station locations

Derive results

Scenario selection

• Number of FCEV• Number of fueling stations• Investigated pathways

• Hydrogen costs• Energy demand• GHG emissions

Preprocessinggeospatial data

11

Page 7: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Selected Results and Infrastructure Parameters

12

H2

Mass marketIntroduction

400

42

12,000 km

1,500

2 TWh

730

12,000 km

3,800

10 GW

1,500

12,000 km

7,000

19 GW

3,000

11 million @ 22 kW

245,000 @ 350 kW

187,000

0.1 million 10 million3 million 20 million

100,000 @ 3.7 kW

6,000 @ 150 kW

2.8 Million

81,000

6,100

6.5 Million

175,000

55,000

1,800 km 28,000 km 183,000 km

3 GW

5 TWh 10 TWh

Cable length

Transformers

Normal charging

Quick chargers

Storage

Electrolysis

Trucks

Pipeline

Fueling stations

► During introductory phase BEV benefit from available infrastructure

► From 3 million FCEV onwards a hydrogen transmission pipeline will be beneficial

► Hydrogen infrastructure includes storage of renewable energies

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Total Cumulative Investment Hydrogen Infrastructure

13

Page 8: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

3,1122,834

2,527

0

1,000

2,000

3,000

4,000

0.1millionBEV

1millionBEV

20millionBEV

Inv

est

per

BE

V [

€]Total and Specific InvestmentCharging Infrastructure

14

311

2,834

50,538

100

1,000

10,000

100,000

1,000,000

To

tal i

nv

est,

[m

illio

n €

]

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Comparison of Infrastructure Investments

15

► Cumulative investments are comparable during introductory and mass markets

► Future charge patterns unclear – greater uncertainty for charging infrastructure

► Hydrogen infrastructure with significant scaling effects

Page 9: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Comparison of Mobility Costs

16

vehicle purchase and operation costs excluded

► For very small vehicle fleets, BEV fuel costs significantly lower

► H2 cost increase between 1 and 3 million cars caused by switch to renewable energy

► For high market penetration scenario fuel cost are roughly the same

IEK-3: Institut für Elektrochemische Verfahrenstechnik

► Efficiency of charging infrastructure is higher, but limited in flexibility and use of surplus electricity

► Fueling infrastructure for hydrogen with inherent seasonal storage option

► Low specific CO2 emissions for both options in high penetration scenarios with advantage for

hydrogen, well below the EU emission target after 2020: 95 gCO2/km

CO2 Emissions & Electricity Demand

17

Page 10: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

New

0

5

10

15

20

25

jäh

rlic

he

Inve

stit

ion

en

[M

rd €

/a]

H2 fueling and charging infrastructures: Annual investment low compared to maintenance und extension investments of existing energy infrastructures

Comparison with Annual Investments in Energy Infrastructures

18

[1] Robinius, M. et al.: Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles. 2018 [2] BNetzA: Monitoringbericht 2017. [3] BDEW: Investitionen der deutschen Stromwirtschaft. 2018 [4] BMWi: Erneuerbare Energien in Zahlen. 2017

20132014201520162017Scenario

DistributionTransm.

H2

infr

astr

uctu

re*

20 M

io. F

CEV

[1]

Cha

rgin

g in

fras

tr.*

20

Mio

. BEV

[1]

*Average annual invest over 30

years

An

nu

al in

vest

men

ts

[bill

ion

€/a

]

IEK-3: Institut für Elektrochemische Verfahrenstechnik

H2 fueling and charging infrastructures: Annual investment low compared to maintenance und extension investments of existing energy infrastructures

Comparison with Annual Investments in Energy Infrastructures

19

[1] Robinius, M. et al.: Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles. 2018 [2] BNetzA: Monitoringbericht 2017. [3] BDEW: Investitionen der deutschen Stromwirtschaft. 2018 [4] BMWi: Erneuerbare Energien in Zahlen. 2017

New Grid maintenance and extension

H2

infr

astr

uctu

re*

20 M

io. F

CEV

[1]

Cha

rgin

g in

fras

tr.*

20

Mio

. BEV

[1]

Elec

tric

grid

[2]

Gas

grid

[2]

*Average annual invest over 30

years

20132014201520162017Scenario

DistributionTransm.0

5

10

15

20

25

jäh

rlic

he

Inve

stit

ion

en

[M

rd €

/a]

An

nu

al in

vest

men

ts

[bill

ion

€/a

]

Page 11: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

H2 fueling and charging infrastructures: Annual investment low compared to maintenance und extension investments of existing energy infrastructures

Comparison with Annual Investments in Energy Infrastructures

20

[1] Robinius, M. et al.: Comparative Analysis of Infrastructures: Hydrogen Fueling and Electric Charging of Vehicles. 2018 [2] BNetzA: Monitoringbericht 2017. [3] BDEW: Investitionen der deutschen Stromwirtschaft. 2018 [4] BMWi: Erneuerbare Energien in Zahlen. 2017

New Gridmaintenance and extension

Power Generation maintenance and extension

H2

infr

astr

uctu

re*

20 M

io. F

CEV

[1]

Cha

rgin

g in

fras

tr.*

20

Mio

. BEV

[1]

Elec

tric

grid

[2]

Gas

grid

[2]

Pow

er g

ener

atio

n re

new

able

[4]

Pow

er g

ener

atio

n fo

ssil

[3]

*Average annual invest over 30

years

20132014201520162017Scenario

DistributionTransm.0

5

10

15

20

25

jäh

rlic

he

Inve

stit

ion

en

[M

rd €

/a]

An

nu

al in

vest

men

ts

[bill

ion

€/a

]

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Conclusions

21

Hydrogen and controlled charging are key to integration of renewable electricity in transportation

Complementary development of both infrastructures improves energy efficiency and renewable energy utilization and reduces CO2 emissions

Hydrogen infrastructure roll-out for transportation sector enables further large-scale applications in other sectors

Integrated infrastructures analysis and energy systems to identify win-win situations

Modeling of BEV charging requires in depth analysis: high uncertainties regarding number of chargers, siting and impact of fast charging on electric distribution grid

Impact analysis of new mobility and vehicle ownership concepts as well as autonomous driving on future transport supply concepts

Need for further research

Page 12: Vergleichende Analyse der Infrastrukturkosten für Batterie ...€¦ · IEK-3: Institut für Elektrochemische Verfahrenstechnik Highlights 2 Motivation Transport sector essential

IEK-3: Institut für Elektrochemische Verfahrenstechnik

Battery and Fuel Cell

Thank you for your attention!

22

http://hdl.handle.net/2128/16709

Project team:

Martin Robinius, Jochen Linßen, Thomas Grube, Markus Reuß, Peter Stenzel, Konstantinos Syranidis, Patrick Kuckertz, Detlef Stolten

Full report available: