49
1 „Voltage Source Inverter (VSI)“ Prof. Dr.‐Ing. Hans‐Georg Herzog ([email protected]) Prof. Dr.‐Ing. Ralph Kennel ([email protected]) Technische Universität München Arcisstraße 21 80333 München Germany

Voltage Source Inverter (VSI) · PDF file5 Control Methods Voltage Source Inverter (VSI) a) amplitude control b) angle shifting control (block width control) c) pulse control (pulse

Embed Size (px)

Citation preview

1

„Voltage Source Inverter (VSI)“

Prof. Dr.‐Ing. Hans‐Georg Herzog([email protected])

Prof. Dr.‐Ing. Ralph Kennel([email protected])

Technische Universität MünchenArcisstraße 21

80333 MünchenGermany

2

„Voltage Source Inverter (VSI)“

Bridge Topology

3

Voltage Source Inverter (VSI) (Pulse Inverter)

+

-

+

-

+

-

motor

U0

4

Voltage Source Inverter (VSI) (Pulse Inverter)

5

Control MethodsVoltage Source Inverter (VSI)

a) amplitude control

b) angle shifting control (block width control)

c) pulse control (pulse width modulation – PWM)

6

Voltage Graphs under Block Width Control

in case of multi-phase windingsthe phase-to-phase voltage is active at the motor terminals

within the motor the resulting phase voltage comes closer to the sinusoidal form than the phase voltage at the inverter !!!

uR uS uTuM0

uR0uRS

7

Current Measurement in Suboscillation PWM Control

8

Symmetrical and AsymmetricalSuboscillation PWM Control

symmetrical asymmetrical

9

10

11

12

13

Space Vector/Phasor Modulation

14

free choice of zero vector

Space Vector/Phasor Modulation

15

Space Vector/Phasor Modulationfree choice of zero vector

16

TINV

Space Vector/Phasor Modulation

17

PWM HardwareASIC or FPGA

18

Voltage Graphs under Pulse Width Modulation (PWM)Pulse Patterns Vary with the Operation Point as well as the Frequency Ratio

19

Voltage Graphs under Pulse Width Modulation (PWM)Harmonics in Supply Voltages (Square Form)

20

Comparison :PWM Bang-bang Control

advantage: very dynamicdisadvantage : variable switching frequency

21

PWM Schemes

22

PWM Schemessimilar, but different pulse patterns

Unterschwingungsverfahrensuboscillation method

23

Space Vector/Phasor Modulation

24

Suboscillation Method „Addition“ of the 3rd harmonic

1/6 of fundamental amplitude 1/4 of fundamental amplitude

PWM acc. to Schörner

Space Vector/Phasor Modulation

PWM Schemes

25

Extension of Output Voltage Rangeby „adding“ a 3rd harmonic

is also possible when using the „suboscillation method“

„addition“ of the 3rd harmonic

1/6 of the fundamental amplitude

space vector/phasor modulation

26

Discontinuous PWM Schemes

DC Link Capacitor Design

Prof. Dr.‐Ing. Ralph Kennel

([email protected])

Technische Universität München

Arcisstraße 21

80333 München

28

DC Link Capacitance Design

Attention !!!!

… reactive power

for the load

is not relevant !!!

+

-

+

-

+

-

Motor

U0

29

30

31

32

33

34

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

induction machines needreactive power

for magnetization… where does

reactive powercome from ???

… it is no problem for the inverter to provide it

… as the sumof reactive power

in all 3 phases is zero („0“) !

35

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

… it is no problem for the inverter to provide it

… as the sumof reactive power

in all 3 phases is zero („0“) !

… with regard to reactive power the inverter is like a marshalling yard (switching station) for trains !

36

Reactive Power

+

-

+

-

+

-

Motor(e. g. induction machine)

U0

… with regard to reactive power the inverter is like a marshalling yard (switching station) for trains !

… therefore inverters can be used easily for compensating reactive power in grids !

… especially in regenerative energy applicationslike wind power farms or solar power arrays !

37

criteria :

• energy : EC = ½ * C * UC2

• energy fluctuation :

∆EC = ½ * C * [(UC + ∆U)2 - UC2 ]

• capacitance :

C = 2 * ∆EC / [∆U * (2*UC + ∆U)]

DC Link Capacitance Design

38

example : single phase power supply

• capacitance :

C = 2 * ∆EC / [∆U * (2*UC + ∆U)]

+

-

+

-

+

-Motor

U0

C = 1800 µF

10 kWhalf line period10 ms

∆EC = 100 Ws

line voltage 550 V line voltage variation ∆U = 10 V80

11800

1

1250000

DC Link Capacitance Design

39

example : single phase power supply

• capacitance :

C = 2 * ∆EC / [∆U * (2*UC + ∆U)]

+

-

+

-

+

-Motor

U0

C = 1800 µF

10 kWhalf line period10 ms

∆EC = 100 Ws

line voltage 550 V line voltage variation ∆U = 10 V80

11800

1

1250000

DC Link Capacitance Design

40

DC Link Capacitance Design

criteria

• switching frequency : C = I * tt / ∆U

• line voltage variations :

C = I * tnetz / 2 * ∆U (2 puls-Brücke)

C = I * tnetz / 6 * ∆U (6 puls-Brücke)

• inductive load …

41

EL = ½ L I2

+

-

+

-

U0

e. g. 100 A e. g. 200 µH e. g. 420 µF

= ½ 200 106 * 100 100 Ws

= 106 * 10-6 Ws

= 1 Ws

DC Link Capacitance Design

42

EC = ½ C Umax2 - ½ C Unenn

2

+

-

+

-

U0

e. g. 100 A e. g. 200 µH e. g. 420 µF

C = 2 * EC / (Umax2 - Unenn

2)

= 2 * 1 / (4002 - 3202) F

= 35 µF

= ½ C (Umax2 - Unenn

2)

DC Link Capacitance Design

43

criteria

• storage of kinetic energy of the drive

is not realistic !!!

• solutions :

• … fast supervision and switch-off (within µs)

(consequence : drive „coasting“)

• … ballast switch with resistance in the DC link

(consequence : drive decelerating)

DC Link Capacitance Design

44

be careful with large capacitances(e. g. electrolythic capacitances)

• … large capacitance results in low voltages variations

this, however, means

a significantly higher AC current (switchinh frequency) !!!

• many (electrolythic) Capacitances are

not designed for a high AC current (see data sheet) !!!

• … the AC current loading is very often decisive for the design !!!

• for that reason the capacitance of the DC link capacitor

might be larger than indicated by calculation !!!

DC Link Capacitance Design

45

„Voltage Source Inverter (VSI)“

TopologiesSpecific for Automotive Applications

46

47

48

reduced number of power devices

• cost number of power devicescompromise in performance !

… in DC machines there was the same effectwith respect to commutators

in earlier times as well!!! today : commutator cost

commutator size (material input)

field effect transistors (FET)

• sufficient voltage range• high switching frequency

inverter topology usually used in vehiclesinverter topology usually used in industry

Power Semiconductor DevicesSpecific for Automotive Applications

bipolar transistors field effect transistors

question :… can we expect in future

power electronics cost silicon area ??? can anything be done

to acceleratethis process (cost reduction) ?

49

TopologiesSpecific for Automotive Applications

+

-

+

-

inverter topology usually used in industry

+ +

--

inverter topology usually used in vehicles

reasons

• low supply voltage(1 device in series only)

• less devices(but : more complex winding)

1 phase of motor

parallel winding