94
Es gibt keine schwarzen Löcher Von Einstein zu Zweistein Walter Greiner

Von Einstein zu Zweisteinsymposium-cindro.irb.hr/talks/Greiner.pdf · 2011-09-20 · Albert Einstein Karl Schwarzschild 2m dr2 ( ) Metric: 2 2 2 2 sin2 2 2 1 ω 1 r dθ θdφ r m

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Es gibt keine schwarzen Löcher

Von Einstein zu Zweistein

Walter Greiner

Frankfurt Institute for Advanced Studies

Prof. Senator E. h. Carlo Giersch Senatorin E.h. Karin Giersch

1

Special Message to Nicola up in Heaven:Special Message to Nicola up in Heaven:

There are no Black Holes!There are no Black Holes!

Albert EinsteinAlbert Einstein Karl SchwarzschildKarl Schwarzschild

( )22 drm

Metric:Metric:

( )22222

22 sin2

1

21 φθθω ddr

r

m

drdt

r

md +−

−−

−≈

Singularity:Singularity: light cannot escape from within light cannot escape from within

the Schwarzschild radiusthe Schwarzschild radius

A fatal fall into the gravitational center

(tidal forces)

Astronaut

GravitationskraftGravitationskraftGravitationskraftGravitationskraft

Isaac Newton

1M 2Mr

Isaac Newton

* 04.01.1643-

† 31.03.17272

21

r

MMK γ=

Relative Relative Relative Relative GrößenGrößenGrößenGrößen von von von von SonneSonneSonneSonne und und und und IhrenIhrenIhrenIhren PlanetenPlanetenPlanetenPlaneten

Sonnenradius ≈ 695000 km Erdradius ≈ 6400 km

PlanetenPlanetenPlanetenPlaneten und und und und derenderenderenderen UmlaufbahnenUmlaufbahnenUmlaufbahnenUmlaufbahnen

Solar SystemSolar SystemSolar SystemSolar System

E

Veff

BahntypenBahntypenBahntypenBahntypen imimimim effektiveneffektiveneffektiveneffektiven PotentialPotentialPotentialPotential

EEllipse

EHyperbel

r

rmin rmax

rKreis

2LMV +−=

γ

EKreis

Drehimpuls Null

22mr

L

r

MVeff +−=

γ

2

2r

mTkin &=

FluchtgeschwindigkeitFluchtgeschwindigkeitFluchtgeschwindigkeitFluchtgeschwindigkeit

Die Gesamtenergie ist gleich auf derErdoberfläche und weit weg von der Erde

0)(2

1 2 ≅∞→=−= ⊕ rER

mMmVE F

γ2 ⊕R

F

⊕=⇒R

MVF

γ2ist die kleinste nötige

Geschwindigkeitum Gravitationsfeld

verlassen zukönnen.

Himmelskörper Fluchtgeschwindigkeit km/s

Erde 11.2

Venus 10.2

Jupiter 59.6

Sonne 617.3

können.

Schwarzschild RadiusSchwarzschild RadiusSchwarzschild RadiusSchwarzschild Radius

Naive Rechnung: die Fluchtgeschwindigkeit

darf die

V(r)

rR RSchwarzschild

darf die Lichtgeschwindigkeit nicht

überschreiten

⇒== cR

MVF

γ22

2

c

MR ildSchwarzsch

γ=

Himmelskörper-Masse Schwarzschild Radius

Erde 1 cm

Jupiter 3.2 m

Sonne 3 km

Syrius A 6.3 km

R c

GeschlosseneGeschlosseneGeschlosseneGeschlossene UmlaufbahnenUmlaufbahnenUmlaufbahnenUmlaufbahnen und und und und RosettenlaufbahnRosettenlaufbahnRosettenlaufbahnRosettenlaufbahn

Jupiter MoonsJupiter MoonsJupiter MoonsJupiter Moons

Die Die Die Die MilchstraßeMilchstraßeMilchstraßeMilchstraße GalaxieGalaxieGalaxieGalaxie

SONNESONNESONNESONNE

IM ORIONNEBELIM ORIONNEBELIM ORIONNEBELIM ORIONNEBEL

100000 100000 100000 100000 LichtjahreLichtjahreLichtjahreLichtjahre

Beinhaltet ungefähr Beinhaltet ungefähr Beinhaltet ungefähr Beinhaltet ungefähr 2222ˣ1010101011111111 SonnenmassenSonnenmassenSonnenmassenSonnenmassen

Die Die Die Die nächstenächstenächstenächste UmgebungUmgebungUmgebungUmgebung derderderder SonneSonneSonneSonne

FRANKFURT560 km

Barnards

Pfeilstern

α Centauri

61 Cygni

Prokyon

FRANKFURT

Sirius

61 Cygni

Die Die Die Die MilchstraßeMilchstraßeMilchstraßeMilchstraße

MagellanscheMagellanscheMagellanscheMagellansche WolkenWolkenWolkenWolken kreisenkreisenkreisenkreisen um um um um MilchstraßeMilchstraßeMilchstraßeMilchstraße

This galaxy known as Messier101 (Feuerrad-Galaxie) helped measuring the expansion rate

of the universe within the Hubble project

Interstellar gases are collecting into Interstellar gases are collecting into Interstellar gases are collecting into Interstellar gases are collecting into newly forming stars newly forming stars newly forming stars newly forming stars

Sometimes they reach 100 LY in diameter and have the mass of 6ˣ106 solar masses (T=10 K).

"Eye of God“ - the Helix Nebula is actually the glowing gas remnants of a dying star

GravitationslinseGravitationslinseGravitationslinseGravitationslinse

Einsteinring

BeschleunigteBeschleunigteBeschleunigteBeschleunigte Expansion des Expansion des Expansion des Expansion des UniversumsUniversumsUniversumsUniversumsin Supernovae in Supernovae in Supernovae in Supernovae EntfernungsmessungenEntfernungsmessungenEntfernungsmessungenEntfernungsmessungen....

DunkleDunkleDunkleDunkle MaterieMaterieMaterieMaterie????

Blaue Linie zeigt die Messungen. Grüne Linie entsprichtdem Weltraum, der sich weder beschleunigt noch verzögert.

Andere Linien zeigen aktuelle theoretische Modelle.

Clusters of Matter in the Cosmos

DARK ENERGY:

ANTI-

Gravitation!Gravitation!

-Drives the

Universe apart:

Expansion

Large - scale Large - scale

cosmic matter

distribution

(simulation)

““““SchwarzesSchwarzesSchwarzesSchwarzes Loch”Loch”Loch”Loch”

““““SchwarzesSchwarzesSchwarzesSchwarzes Loch”Loch”Loch”Loch”

““““SchwarzesSchwarzesSchwarzesSchwarzes Loch”Loch”Loch”Loch”

Gibt es Schwarze Löcher?

Erde Schwarzes Loch? Nein!

Erd-Masse mit Durchmesser kleiner als 2 cm!

Jedoch: Im Zentrum unserer Milchstraße sitzt

Sonne Schwarzes Loch? Nein!

Sonnen-Masse mit Durchmesser kleiner als 6 km…

Jedoch: Im Zentrum unserer Milchstraße sitzt

ein gewaltiges Schwarzes Loch von

M = 3,6 Millionen Sonnenmassen !

Ein Monster im Sternbild Schütze: wurde entdeckt von Reinhard Genzel aus München

(MPI für Astrophysik)

Ein Schwarzes Loch von Ein Schwarzes Loch von

M =3,6 Millionen Sonnenmassen im

Zentrum unserer Milchstraße

Bewegung von Sternen um das Schwarze Loch

beobachtet !

Schwarzes Loch im Zentrum unserer Milchstraße M=3,6

Millionen Sonnenmassen

Bahnen von Sternen 1992 – 2006 innerhalb von 10

Lichttagen um das Zentrum der Milchstraße Sagitarius A*,

Sternbild Schütze: Genzel et al.

Das Zentrum der

Milchstraße ist Milchstraße ist

25 000 Lichtjahre von

der Sonne entfernt.

Sichtbares Licht wird

an Staub absorbiert.

Wir können bis zum

Zentrum mit

infrarotem Licht

sehen.

Aufbau der aktiven Galaxiekerne

ähnlich wie galaktische scharze Löcher,

aber insgesamt etwas beeindruckender...

•supermassives schwarzes Loch (107 M )•supermassives schwarzes Loch (107 Mʘ)

•Akkretionsrate der Scheibe (1-2 Mʘ/Jahr)

•Leuchtkraft hoch (L ≈ 1010 Lʘ)

•Schwarzschildradius jetzt ≈ 1 AU

Amand Fassler, Tübingen

Computer-Simulation des

Proton-Proton-Stoßes am LHC.

Spekulationen über Mikro Schwarze Löcher

The Lord did not create the World

in order to exclude himself

from certain parts of it...

Walter Greiner

PSEUDO-COMPLEX GENERAL

RELATIVITY

Peter O. Hess (ICN-UNAM and FIAS)

and

Walter Greiner (FIAS)

34

FROM KLEI-GORDO TO DIRAC

( )

22

γ=β,γ=βα

βmc+pα=c

Ecm+cp±=E

rr⋅→422

( )0ii γ=β,γ=βα

35

The Dirac equation yields an explanation for the vacuum.

Remember the historical fact2 2 = 2 + 02 2

Historical Relativistic Equations

2 2 = 2 + 02 2

1 2 2Ψ2 = 22 + 22 + 22 − 02 2ℏ2 Ψ

Klein-Gordon Equation

1 2 Ψ2 = 2 + 2 + 2 − ℏ2 Ψ

ℏ Ψ = ℏ !"#1 1 + "#2 2 + "#3 3% + 0 2&' ( Ψ

Dirac Equation

Recall the Dirac Matrices

"# = )0 0 0 10 0 1 00 1 0 0* "# = )0 0 0 −0 0 00 − 0 0 *

Dirac Matrices

"#1 = )0 0 0 10 0 1 00 1 0 01 0 0 0* "#2 = )0 0 0 −0 0 00 − 0 0 0 0 0 *

"#3 = )0 0 1 00 0 0 −11 0 0 00 −1 0 0 * &' = )1 0 0 00 1 0 00 0 −1 00 0 0 −1* "#3 = )0 0 1 00 0 0 −11 0 0 00 −1 0 0 * &' = )1 0 0 00 1 0 00 0 −1 00 0 0 −1*

And the Dirac Gamma-Matrices

Gamma-Matrices

+0 = )1 0 0 00 1 0 00 0 −1 00 0 0 −1* +1 = ) 0 0 0 10 0 1 00 −1 0 0−1 0 0 0*

+2 = ) 0 0 0 −0 0 00 0 0− 0 0 0 * +3 = ) 0 0 1 00 0 0 −1−1 0 0 00 1 0 0 * +2 = ) 0 0 0 −0 0 00 0 0− 0 0 0 * +3 = ) 0 0 1 00 0 0 −1−1 0 0 00 1 0 0 *

The Dirac Equation in a Covariant Form

Dirac Equation

The Dirac Equation in a Covariant Form

Ψ=Ψ

∂∂

+∂∂

+∂∂

+∂∂

mcxxxx

i3

3

2

2

1

1

0

0 γγγγh

Klein-Gordon Equation contains no spin

From Klein-Gordon to Dirac Equation

Dirac Equation describes particles spin 1/2

E

mc2

The Dirac equation predicts

-mc2

0

Dirac Sea

The Dirac equation predicts

the existence of antiparticles

and yields the model

for the vacuum

CONTENT:

Pseudo-complex variables

Pseudo-complex General Relativity

Schwarzschild metric as an example (“black holes”, perihelion

shift of Mercury)

Pseudo-complex Robertson-Walker Metric

Conclusions and outlook

41

FIRST ATTEMPTS.

A. Einstein, Ann.Math. 46 (1945), 518.

A. Einstein, Rev. Mod. Phys. 20 (1948), 35.

(Unification of gravitation and electrodynamics)

C. Mantz, T. Prokopec, (2008); arXiv:0804.0213

(hermitian gravity and cosmology)

12 −+ =ipm

lix=X µµµ

(Introduction of the Planck length, l)

42

m

[ ] νµµνδ dxdxgdsipx ki

jk == 2, hBorn’s equivalence

principle:but

(M. Born, Proc. Roy. Soc. A 165 (1938), 291 and

M. Born, Rev. Mod. Phys. 21 (1949), 463.)

PROPOSAL(M. BORN)

2 1dτ

du

dul+dxdxdudul+dxdxdΩ

µµ2µ

µ

µ

µ

µ

==

( )221 aldxdx

dτdτ

µ

µ

µµµ

−→

ττ

µµµ

µd

du

d

duaaa =−=2

2

2 1

al ≤

44

Maximal acceleration!!!

E.R. Caianiello (1981), H.E. Brandt, R.G. Beil (1980’s)

S.G. Low (1990’s and more recently: representation theory)

ττ dd

l is a minimal length

PSEUDO-COMPLEX VARIABLES

1, 2

21 =+= IIXXX

Alternative: −−++± +=⇒±= σσσ XXXI )1(2

1

2

Permits the independent treatment of the two components!

Pseudo-Complex conjugate: )(*

mσσσX+σX=IXXX ±++21 =−= −−

Null-Norm : !=XX=XσX=X 0*2⇒

±± =σσ 20=−+σσ

45

Null-Norm : !=XX=XσX=X ±± 0*2⇒

(Other names in the literature: Para-complex, hyperbolic,

hypercomplex, semi-complex Variables).

Plane of the pseudo-complex variable X. Shown are the

pseudo-real, pseudo-imaginary components and the

zero divisor basis.46

)σF(X+)σF(X=F(X) ++ −−

Rules for manipulation are similar as with

real and complex numbers/variables:

F(X)∆X)+F(XDF(X)

σ)G(X

)F(X+σ

)G(X

)F(X=

(X)G(X)G

(X)F(X)G=

G(X)

F(X)

)σ)G(XF(X)σ)G(XF(X=F(X)G(X)

+

+

+

+++

++

+

−−

−−−

−−

*

*

∆X

F(X)∆X)+F(X=

DX

DF(X)∆X

−→0lim

47

CONSEQUENCE OF THE PSEUDO-COMPLEX

EXTENSION FOR THE LORENTZ SYMMETRY

Finite transformation:µν

µνω Λie

21 σωσωωωω +=+= −+I

=Λµν Normal Lorentz-

transformation

21

21

µνµνµν

µνµνµνµνµν

ωωω

σωσωωωω

±=

+=+=±

−−

++I

transformation

)!=σ(σ)(SO)(SOσΛ

e+σΛ

e=Λ

e ++

µνµν

+

µν+µν

iωµν

µνiω

03,13,1 −−−

Direct product of two Lorentz groups because both commute with each

other. The normal Lorentz group is obtained for a vanishing

pseudo-complex part in omega.

48

pseudo-complex part in omega.

consequence: Appearance of a minimal Length“l”.

It is a scalar parameter!

Minimal Length = maximal acceleration

µµµ IluxX +=Pseudo-complex world line:

Pseudo-complex world line:µµµ IluxX +=

Remark:

IluxX +=

µx

µu

= position in 4-space

= basis vector of the tangent space at µx

with units of the 4-velocity

49

NEW VARIATIONAL PRINCIPLE:

τdLS ∫=Define the action through the Lagrangian

for the variation we requirefor the variation we require

DivisorZerodLS ∈= ∫ τδδ

this results in the equations of motion

)(conventionS −= ξσδ

50(F. Schuller, PhD thesis, University of Cambridge (2003);

F. Schuller, Ann. Phys. (N.Y.) 299 (2002), 174,

F. S. has proposed this general variation principle in his thesis at Cambridge.)

this results in the equations of motion

DivisorZeroDX

DL

DX

DL

Ds

D∈

µµ

Fields, variables and masses are pseudo complex

Scalar Field

Pseudo Complex Field Theory

( )22

2

1Φ−ΦΦ= MDD µ

µL

Scalar Field

Dirac Fieldµµ

XD

∂∂

=

( )Ψ−Ψ= MDi µµγL

Dirac Field

Propagator for the scalar field

11−

Field Propagators

2222

−+ −−

− MpMp

Propagator for the Dirac field

−−

− MpMp µµ γγ11

−+ −− MpMp µµ

µµ γγ

Regularization via Pauli-Villars is automatically

included within the theory!

Can one extend the General Can one extend the General

Relativity to pseudo-complex

coordinates?

53

EXTENSION OF THE THEORY OF

GENERAL RELATIVITY:

•The metric is pseudo-complex, without torsion:•The metric is pseudo-complex, without torsion:

* pseudo-complex length element

νµµνµνµνµν σσ ggggg =+= −−

++ ,

=ω νµµν DXDXgd 2

54

−−−−

++++ +=

=

σσ

ωνµ

µννµ

µν

µν

DXDXgDXDXg

DXDXgd

Parallel Transport and Christophel symbols:

55

Covariant derivative of a contravariant 4-vector:Covariant derivative of a contravariant 4-vector:

56

The covariant derivative of the metric is zero.

This assures a universal metric

or57

COORDINATES:

58

THE LENGTH ELEMENT:

−−−−

++++ += σσω νµ

µννµ

µν DXDXgDXDXgd 2

Condition of reality:

µµ

µµ

µµ

µµ

ω duduldxdxd

dxdududxl

22

0)(

+=

=+

Condition of reality:

Dispersion relation!

(will be used as a

constriction) (see next slide)

59

µµ

µµω duduldxdxd 22 +=

Limit of standard GR (pseudo-complex part=0): old results,

where the dispersion relation is AUTOMATICALLY fulfilled.

ds

dx=u

ds

dx=u

µµ

µ ;µ

4-velocity:

Dispersion relation: constuu =µDispersion relation: constuu =µ

µ

Differentiation:

( ) dxdx µ( )0

00

=dudx+dxdu

=duds

dx

ds

dxdu=uud

µ

µ

µ

µ

µµµ

µ

µ

µ

+⇒

60

THE LENGHT ELEMENT (CONT.)

0 =+ λνλν δhhgg

Problems:

00

0

0

0

=+

=+λν

µλλν

µλ

µνλν

µλλν

µλ δ

hggh

hhgg

61

Problems:

The g- und h-”matrix”, alone, are no tensors!

Setting we getRgL −=

Equations for the matter free space

DivisorZeroRgRG ∈−= µνµν 1

Equations for the matter free space

DivisorZeroRgRG ∈−= µνµνµν

2

1

This suggests that the right hand side is

related to the energy momentum tensor

EQUATIONS OF MOTION IN THE

SCHWARZSCHILD PROBLEM

−=

+ σξλν

µ µλνµ XXX &&&& (1)

λν

(2)

( ) −−−−

=−−′+′+

=′+

σξϕϑϑνλ

σξν

λλλν ReRReXeRR

XRX

222202

000

sin2

1

2

1&&&&&&

&&&&

−=−+ σξϕϑϑϑϑ ϑ&&&&& R

Rcossin

2 2

63

., etc,Ds

DR=R

DR

Dν=ν' &

Comparison of (1) with (2) Christoffel symbols of the 2. kind

−=++ σξϕϑϕϑϕ ϕ&&&&&& R

R

R

2cot2

CHRISTOFFEL SYMBOLS OF THE 2.KIND

ν ′=

=

2

1

10

0

01

0 λνν −′=

e2

1

00

1λ ′=

2

1

11

1

21001 200 211

λ−−=

Re22

1

R

1

21

2

12

2=

=

λϑ −−=

eR 2sin33

1

ϑϑcossin2

−=

ϑcot33

=

=

64

ϑϑcossin33

−=

ϑcot

2332=

=

R

1

13

3

31

3=

=

THE RICCI-TENSOR:

65

SOLUTION:

[ ]22222202 )(sin)()()( ϕϑϑω λν DDRDReDXed +−−=

01 ξξ =

[ ]−

−−

+− ∫+= −−−+ σσ

ξξννλ DRR

eee2/)( 10

The integral in the metric should vanish at large distances. In order

to achieve this, the simplest way is to make the following assumption:

66

Assumption: νλ ee =⇒ −

νννλ eee=e =+ −+− −+ σσ

SOLUTION:

++λ

R=e

2M1−

−:component−+σ

+R

:component−−σ

definition:

mM =±

67

In order to approach the Schwarzschild solution for large distances,

applying the before mentioned reality condition on the length

element, leads to the identification of:

FURTHER PROBLEMS:

Ω=?Ω should fall off with distance sufficiently, such that it does not

contradict current measurements (solar system experiments).

2

3

2

−−

==R

mb

R

( )≈

k

+k

k R

mb

R

−−

==1

contradict current measurements (solar system experiments).

This leads to the minimal ansatz:

But it also can be:

Using: ( )rrl±r=Rl ± ≈&1,<<

−= 12m

exp2

3 kr

r

mbΩ α

68Also possible:

here the

contribution is

arbitrary small

for r>2m

Using:

The spherically symmetric

Schwarzschild Solution

Equations for the matter free space

0RR == &0µν

2 Bm

+−

We obtain the isotropic Schwarzschild solution

2

2

22

2

2

21

21

2

21

2

21 dr

r

B

r

m

r

mr

B

r

m

dtr

B

r

md

+−

+−−

+−≈ω

The Red Shift g factor:

1

gdtdtr

B

r

mdtgd ≡

+−=≈3

0

002

21τ

The Red Shift

The metric component

of the time must be positive

00

00 >g3

27

64mB >

Antigravitation below

g0.4

0.6

0.8

1

repulsion

attraction

Antigravitation below

2/3 of the Schwarzschild

radius!r/(2m)1 10 1000.1

0

0.2

A fatal fall into the black hole (tidal forces)

Astronaut

Binary Star with one Visible and one Black Hole Component

Binary Star

Schwarzschild Solution embedded

into the Euclidean Space

Typical Black Hole

There are no Black Holes!

Antigravitation in the center

EFFECTIVE POTENTIAL(MISNER ET AL., GRAVITATION)

75

(B=5m3)

PARAMETRIZED-POST-NEWTON (PPN)-FORMALISM:

ISOTROPIC COORDINATES

[ ]22222222 dΩrrdf)(dXg=dΩr(dr)g+)(dXgdω 200

00

0

rr

00

00

2 −+−=

= ∫ drg

rrr

exp

2

222022

r

r=frdf=drgdΩrf=dΩr 22

rr

2 ⇒

32

31

2

3221 dt

r

mb

r

m+

r

mdω 22

−−

−≈

= ∫ dr

rr exp

76

[ ]222

2

2

321 dΩr+rd

r

m+

r

m+

The correction appears only in the time element-

Perihelion shift, everything else is identical to standard GR.

(approx. 10-7) in the perihelion shift

PSEUDO-COMPLEX

ROBERTSON-WALKER

UNIVERSE

with

77

with

EQUATIONS OF MOTION

78

Christophel symbols:Christophel symbols:

79

EQUATIONS OF MOTION-2:

80

Metric:

Homogeneity: 321 , ξξξ ==== TTTHomogeneity:321

3

3

2

2

1

1 , ξξξ ==== TTT

−= σξπκ

cρ Λ 0

2

8Dark energy density:

(Pseudo-complex energy density)

81

PSEUDO-COMPLEX PRESSURE

Shifting ξ to the left hand side:

−=

−−−→

σξπκ

cp

c

p

c

p

c

πκσξ

πκ

c+T

c

πκ

ξ

k

k

k

8

8

8

8

4

222

2

2

with

negative pressure!

82

−−= σξπκ

p kξ8

negative pressure!

83

k=0 flat universe

( )20122

33ξ

2

13p4

Rc

Rσξ

c+ρ

c

πκ ′′−−=

( )22

2

0122

20122

2

14

2

Rc

RRRσξξ

c

p+ρ

c

πκ

Rccc

′′−′−−=

84

ESTIMATION OF ξk -FUNCTIONS:

R

Rc

2

20

R2

3

′′′

′′=

R=rrl±r=R ≈&

RcRc

222

2

1

R2 ′′+

′=

[ ] [ ] HH+H=HH+H

H=

R

RR+H=

R

R)R(=

R

R

R

R=

R

R

r

rr

r

rr

r

r

r

r

r

r ≈′

′′′′′′′

′′′′′

lnlnln

Using the approximations:

=radius of the universe

( )...3

0

2

001 +++= δξγξβξξ 85 (Ansatz)

r± R=rrl±r=R ≈&

(k=0)

=radius of the universe

we obtain:

LOCAL ENERGY CONSERVATION

01 βξξ = )1(3

0

−−Λ= βξ RSolution for ξ: assumption

Condition: (Energy + energy due to pressure) = 0dt

d

0 −

86

Solution for ρ: p=αρ

+−2

13

c

α

Rρ=ρ r0

(α=0 dust, =1/3 radiation)

ACCELERATION:

Defining a rescaling, for notational reasons:

2~ AcA=

we obtain for the accelereation (rescaled):

( ) 1/13

2

1)1(3

0

2

1)13(~

4

3~ ++−+−

+−−=′′

=′′ c

rrr

r Rc

RAk

RR αβ α

βρπ

016 ρπkA=

87

Contribution to dark energy classical part

yields acceleration yields de-acceleration

if β>(1/3)

204

rrrckπ

DIFFERENT CASES CASES:

• β <1/3 de-acceleration• β <1/3 de-acceleration

2) 2/3> β >1/3 acceleration, with diminishing strength in R

88

3)β >2/3 acceleration, with increasing strength in R

β =1/2 , A=3

maximum

1. phase: de-acceleration

2. phase: increasing acceleration, until a

maximum is reached

3. phase: decreasing acceleration89

β =2/3 , A=4

No maximum!

1. phase: de-acceleration1. phase: de-acceleration

2. phase: increasing acceleration, which for

Rinfinity approaches a constant value

In the standard GR, with a constant Λ, the asymptotic

behavior is linear in R.90

ESTIMATION FOR β : RELATION OF TO THE HUBBLE

CONSTANT H AND ITS DERIVATIVE

RRξ

Rc

2

20

2

3

′′+

′=

′′=

Rc

R

Rc

2221

2 ′′+

′=

[ ] [ ]

H+H=HH+H

H=

R

RR+H=

R

R)R(=

R

R

R

R=

R

R

r

rr

r

rr

r

r

r

r

r

r

′′′′′′

′′′′′

lnlnln

2

2

221

3

21

32

H

H+β

Hc

ββξHc

+ξξ 00

′=⇒

==′=⇒

91

H+H=HH+H

= ′

UNIVERSE WITH DUST AND

RADIATION:

[ ]'R

(P. Peebles, Rev. Mod.75 (2003), 559.

[ ]

2)1()1()(

)()1()1(

)1(3)1(3

432

0

'

−=⇒+=+=

Ω++Ω++Ω=

+−

Λ

ββ wzzzf

zfzzHR

R

w

rd

r

r

dust radiation dark energy

within our theory

92

z)+(R

R

r

r0 1=with: and z as the redshift variable

CONCLUSIONS AND OUTLOOK

Variables = pseudo-complex

Modified variational principle dark energy

Schwarzschild solution: Dark energy accumulates towards smaller

radial distances Collaps is avoided

Pseudo-complex Robertson-Walker- Universe: different, old and

new solutions, Estimation of ξ_k as a function of the Hubble

constant H and its derivative.

If , then w must be different from -1!

0' ≠H

93

OUTLOOK

Application of the PPN-formalism

Results only different to standard GR in the perihelion shift

Determine perihelion shift of … the moon???... (difficult due to the

influence of the sun)

50