Transcript
Page 1: LS Perspectives NANOSCALE MATERIALS: SCIENTIFICALLY … · 2013-01-28 · Nanomaterials are now being manufactured and used in many products. However, our knowledge of the human health

�� Nanomaterials�are�now�being�manufactured�and�used�in�many�products.�However,�our�knowledge�of�the�human�health�effects�and� environmental� or� occupational� exposures� to� engineered�nanomaterials�or�nanoparticles�is�incomplete.�

�� Major� research� efforts�must� be�made� to� provide� a� complete�toxicity�profile�of�every�type�of�nanoparticles�currently�in�use,�as�almost�1000�products�are�already�in�use�[4]�and�many�more�are�now�being�developed�in�the�medical�field�and�in�electronics.�

�� Nanotechnologies�are�evolving�rapidly�all�over�the�world;�this�is� why�we�must� focus� on� filling� strategically� the� knowledge�gaps�[see�Figure�1C].�Without�interpretation�of�the�toxicological�findings,� no� sound� risk� assessment� can� be� performed� and�the� level�on�uncertainty� is� too�great� for�comfort.�The�current�occupational�extent�of�the�exposure�in�manufacturing�facilities�and� laboratories� is�not� known�and�ought� to�be�prioritized� to�properly�determine�the�human�health�hazard�[3].

Tapin, D.3, Patenaude, J.1,2

�� A�literature�review�was�performed�in�order�to�better�evaluate�the�limited�toxicological,�epidemiologic�and�ecotoxicological�studies�[see�Figures�1A�and�1B].�

�� Nanotechnology� integrates� engineering� with� biology,�chemistry�and�physics.� It�describes�a� research�area�where�the� very� nanoscale� properties� are� explored� and� strategies�are�developed�to�exploit�the�new�functionalities�of�materials�in�term�of�health�applications�and�marketable�products�[2].�

Objectives and Methodology

�� Bearing�in�mind�the�complexity,�uncertainty�and�the�ambiguity�of�the�research�data�so�far�it�is�duly�recommended�to�avoid�undue�human�exposure,�especially�in�the�industrial�facilities�and�laboratories�working�environments�where�nanotechnologies�are�produced.��

�� Current��data�on�toxicological�risk�assessment�suggest�that�we�are�deeply�in�the�fields�of�hypothetical�risk,�partially�estimated�risk�and�perceived�risk.�

�� In�the�absence�of�hard�facts�about�the�use�and�the�risks�of�carbon�nanotubes�for�example,�people�and�stakeholders��make�decisions�based�on�value�judgements.�

�� Ultimately,�reflecting�on�the�transparency,�public�perception�and�confidence�in�the�risk�assessment�process�is�crucial�[3].

Conclusion

[1] Council of Canadian Academies, 2008. Report of the Expert Panel on Nanotechnology. Small is different: A science perspective on regulatory challenges of the nanoscale. Ottawa, p. 54-117.[2] Borm P., Robbins D, et al. 2006. The potential risks of nanomaterials: a review carried out for ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals). Particle and Fibre Toxicology 3(11): 1-35.[3] Handy RD, Shaw BJ, 2007. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk & Society 9(2): 125-144.[4] Manach JM, Nanotechnologies : ce qui se vend. 2009 Oct. 9. Le Monde. Available from:http://www.lemonde.fr/technologies/article/2009/10/09/nanotechnologies-ce-qui-se-vend_1251924_651865.html [5] Oberdörster G, Maynard A, et al., 2005. Principles for potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology 8: 8-42.[6] Smart SK, Cassady AI, et al. 2006. The biocompatibility of carbon nanotubes. Carbon 44(6): 1034-1047.

This� study� is� currently� funded� by� a� grant� from� the� Canadian�Institute� for� Health� Research� (IRSC)� entitled:� Development� of�an� interdisciplinary� reference� guide� to� facilitate� the� analysis� of�impacts�of�nanotechnologies�on�health�and�social�acceptance.�We�also�thank�Simon�Brière�and�Mélanie�Goddard�for�their�support.�J�Patenaude� is� funded�by� the�Fonds�de� la�Recherche�en�Santé�du�Québec� (FRSQ)�and�member�of� the�FRSQ-funded�Centre�de�recherche�clinique�Étienne-Le�Bel.

Accompanying�Nanotechnological�Developments:�NE3LS�Perspectives

NANOSCALE�MATERIALS:�SCIENTIFICALLY�BASED�OR�JUDGEMENTAL�RISK�ASSESSMENT

1 2 3

�� Are�nanoscale�materials�already�in�use�dangerous?�In�order�to�address�their�potential�human�health�risks�and�environmental�impacts,�customized�nanotechnology�protocols� for� toxicity�testing�are�urgently�needed�and�should�be�developed.�

�� Current�human�health�and�ecological�risk�assessment�protocols�are�rigorous,�but�their�application�to�nanomaterials�requires�new�ways�of�measuring�exposure,�dose�and�response.�Long-term�studies�are�not�available�and�the� lack�of� toxicological�data�results�in�our�inadequacy�to�perform�clear�quantitative�risk�assessments�on�existing�and�emerging�nanomaterials.�

�� The� aim� of� this� study� is� to� outline� existing� toxicological�risk�data� regarding� current� and� emerging�nanoparticles�or�nanomaterials�in�order�to�report�on�the�actual�scientific�gaps�and�uncertainty�related�to�human�health�risk�assessment.

�� Moreover,�one�of�our�objectives�is�to�measure�the�effectiveness�of� the� current� risk� assessment� and� risk� management�process� in� order� to� determine� the� type� of� governance�required�to�accompany�the�introduction�of�any�cutting-edge�nanotechnology.

Background and Research Problem

Incomplete Data on Nanoparticle Characterization and Properties

No Data on Human or Environmental Exposure

Incomplete Data on Lung Toxicity Studies

No Data on Dermal Exposures

E�ect of CNT Properties on Cytotoxicity - Relevance of Impurities

Absorption, Distribution and Excretion - No Data Into the Ability of CNT (Carbon Nanotubes) to Migrate or Accumulate In Vivo

E�ciency of Chemical Functionalization - CNT Functionalized for drug or vaccine delivery exhibit lower toxicity. Further research

needed to con�rm toxicity

HEALTH EFFECTS DATAIn VitroToxicityStudies

In VivoToxicityStudies

EpidemiologyDose

ResponsePharmacokinetics

(PBPK)

EXPOSURE DATA

Contaminant EmissionEnvironmentalExposure

OccupationalExposure

HEALTH RISK ASSESSMENT

UNCERTAINTY

Engineered Carbon Nanotube

Toxicology Research

Engineered Carbon Nanotube

Toxicology Research

Lung Toxicity Studies

Skin Irritation

Macrophage Response

In Vivo Absorption,Distribution and

Excretion

Properties on Cytotoxicity

E�ciency of ChemicalFunctionalization

A B

C

Figure�1.�A) Engineered Nanotube Current Toxicology Studies [3, 5, 6]B) CNT Toxicological Data Needed for Sound Risk Assessment [3, 5, 6]C) Nanoparticles Quantitative Health Risk Assessment [3, 5, 6]

�� Nanotechnology:� The� intentional� manipulation� of� matter�at� the� nanoscale,� to� create� materials� and� products� with�nanostructure-dependent�properties.

�� Nanoparticle:�A�single�particle�that�is�approximately�between�1�nm�and�100�nm�in�all�three�dimensions.

�� Engineered nanoparticle:� A� nanoparticle� that� has� been�produced�in�a�manufacturing�process�or�naturally�occurring�nanoparticles�that�have�been�processed�prior�to�being�used�as�a�commercial�product.

�� Nanomaterial:� � A� material� having� one� or� more� external�dimensions�in�the�nanoscale�or�material�that�is�nano-structured�including�nanoparticles,�nanofibres�and�nanotubes,�composite�materials�and�nano-structured�surfaces.

�� Nanoproduct:�Any�product�that�incorporates�nanotechnology�like� semiconductor� chips;� textiles� coated�with� nanometre-thick�films;�sunscreens�containing�engineered�nanoparticles,�and�any�biomedical�nanoproduct.

Nano Lexicon [1,2]

NE Inter ³LSGroupe de Recherche InterdisciplinaireInterdisciplinary Research GroupNano-E³LS

Preliminary Results

ReferencesAcknowledgements

Recommended