Zentralabitur Biologie 2006 Fotosynthese, Stoffwechsel Ökologie Evolution

Preview:

Citation preview

Zentralabitur Biologie 2006

Fotosynthese, Stoffwechsel

Ökologie

Evolution

Erkenntnistheorie

Die beiden Induktionsprobleme Humes

• Das logische Problem: nur weil ein Ereignis bisher immer so geschehen ist, kann man keinen Rückschluss auf die Wahrscheinlichkeit ziehen!

• Das psychologische Problem: Wir begegnen Ereignissen mit „Gewohnheit“

Wissenschaftliche Erkenntnisse unmöglich

Popper fügt hinzu:

• Er stimmt Hume zu, dass man aus Einzelaussagen keinen Rückschluss bezüglich der Wahrheit einer Aussage ziehen kann

• Trotzdem können Einzelergebnisse klarstellen, dass eine Theorie FALSCH ist

• Man kann also zwischen Hypothesen abwägen

Eigenschaften einer besseren Theorie

• Liefert Erklärungen für Fehler bisher widerlegter Theorien

• Ist zum aktuellen Zeitpunkt nicht widerlegt• Hat sich im Vergleichsexperiment

gegenüber einer anderen Theorie durchgesetzt

• Ist besser prüfbar• Muss falsifizierbar sein

Versuchsprotokolle

• Ausgangshypothese

• Durchführung

• Beobachtung

• Diskussion Hypothese falsifiziert?Erläutern der ErgebnisseGegebenenfalls neue HypotheseMethodenkritik (Versuchsaufbau geeignet?)

Fotosynthese

Blattquerschnitt

Aufbau von Chloroplasten

Chlorophyll in der Biomembran

• Hydrophiler „Kopf“

• Hydrophober „Schwanz“

• Es bilden sich Schichten, Köpfchen über der Mitte, Schwänzchen rein und sich gegenüber

• iiiiiiiiiiiiiiiiiiiiiiiiiiiii

• !!!!!!!!!!!!!!!!!!!!!!!!!

Warum ist Chlorophyll grün?

• Chlorophyll absorbiert am Besten blaues und rotes Licht

• Dadurch bleibt das grüne Licht und wird reflektiert

• Chlorophyll arbeitet am Besten in einem Wirkungsspektrum von 450-600nm Wellenlänge

Papierchromatographie

• Durch das Verfahren der Papierchromatographie von Blattgrün stellt sich heraus, dass drei verschiedene Stoffe im Blattgrün vorkommen: -Carotin, Chlorophyll a und Chlorophyll b

Ermitteln eines Wirkungsspektrums

• Die Extinktion des Lichts ist bei 510-620 nm am Geringsten

• Hier ist auch die Sauerstoffproduktion am Kleinsten

• Bedeutet: grünes Licht braucht die Pflanze nicht und strahlt es zurück; für die Fotosynthese sind rot oder blau attraktiver

Überblick über die Fotosynthese

LICHTREAKTION

Endprodukt O²

Energie von außen (Licht)

ADP+PATP ^H>0

H wird abgegeben (H²O)

Braucht Licht+H²O

Findet im Granum statt

e-+H+ NADP+NADPH

DUNKELREAKTION

Endprodukt Glukose

Energie aus ATP

ATP ADP+P ^H<0

H wird von CO² aufgen.

Brauch CO²+ATP

Findet im Stroma statt

NADPHe-+H+NADP+

Elektronentransport in der Biomembran

• H²O wird im Thylakoidinnenraum zu 2H+ und ½ O² gespalten; 2 e- bleiben übrig

• Elektronentransporter Plastochinon befördert beim Transport der 2 e- gleichzeitig 2 H+ in den Innenraum

• Die Elektronen werden benutzt für NADP++H++2e-NADPH (1 NADPH pro H²O)

Wie ATP gemacht wird

• Auf drei Arten wird beim Elektronentransport ein Konzentrationsgefälle von H+- Ionen erzeugt

• Sie diffundieren durch die ATP-Synthase und liefern hier Energie

OSMOTISCHE KRAFT!

Warum 12 H²O?

• Die Summenformel der Fotosynthese lautet

6 CO² + 12 H²O C6H12O6 + 6O² + 6 H²O

Im Calvinzyklus werden 12 NADPH gebraucht, um 1 Zucker herzustellen! Für 1 NADPH braucht man 1 H²O

Calvinzyklus

• Dunkelreaktion

• Endergonisch (braucht Energie)

• Hier wird CO² aus der Luft zu Zucker umgewandelt (mehrere Schritte)

• ATP wird verbraucht

ATP

• Adenosintriphosphat• ATP treibt die zelluläre Arbeit an, indem es

exergonische an endergonische Teilreaktionen koppelt• Mechanische, Chemische und Transportarbeit finden

in der Zelle statt• Die Hydrolyse von ATP setzt Energie frei, weil alle

Phosphatgruppen negative Teilladungen haben und aneinander hängen: leicht lässt sich das äußerste abspalten

• Entropiezunahme

Außenfaktoren (FS)

• Schwachlicht: Abnahme der FS bei +°C• Starklicht: Peak bei 35°, dann rapider

Abfall (0-Punkt bei 40°)• +CO²+FS; Starklicht stärker als

schwaches Schwachlicht• Mehr Licht mehr FS, aber nicht bei

Schattenkräutern• Warum? Blätter(n)!

Schattenblatt (Sonnenblatt)

• Kein Palisadengewebe• Weniger CO² Aufnahme da weniger Chloroplasten• Dünner• größer• Lichtkompensationspunkt bei 0,3 Kilolux (1);

Sättigung bei ca.8KL (mehr als 30)• Optimale Anpassung an jeweiligen Lebensraum

Warum Stärke und nicht Glukose

• Stärke spart Platz

• Zucker ist osmotisch aktiv, Stärke dagegen nicht. Zu viel Zucker in der Zelle würde sie also zum Platzen bringen

Überblick: FOTOSYNTHESE

• 6CO²+12H²O C6H12O6+ 6O²+ 6H²O• Wichtig: Licht- u. Dunkelreaktion• Außenfaktoren: Licht, Temperatur, CO²• Man braucht ATP und NADPH (für

Dunkelreaktion)• FS findet in Chloroplasten statt• Licht= Energielieferant• 2 Arten Chlorophyll• Pflanzen speichern Glukose in Form von Stärke

Zellatmung

Citratzyklus

• Aufgabe: Glukose noch mehr Energie abgewinnen

• Die Glykolyse setzt nicht einmal 25% der in Glukose enthaltenen Energie frei

• Die Pyruvate gehen wenn Sauerstoff vorhanden ist in die Mitochondrien

Funktion Citratzyklus

• Umwandlung des Pyruvats in Acetyl-Coenzym A durch

1.) Abspaltung der Carboxylgruppe als CO²

2.) Oxidation zur Acetylgruppe (dabei Speicherung der Energie durch Wasserstofftransfer als NADH)

3.) CoA bindet an Acetylgruppe (sehr energiereich), Acetyl-CoA geht weiter in den Citratzyklus

Citratzyklus

• Durch Abgabe von CO² und Reaktionen mit Wasser entstehen immer wieder neue Moleküle.

• Es werden pro Pyruvat 2CO², 3NADH, 1FADH² und 1 ATP abgegeben.

• Atmungskette: ATP entsteht aufgrund von Konzentrationsgefälle

Genetik

Proteine, DNA, Transkription, Translation, Mutationen,

Proteinbiosynthese

Proteine

• Übernehmen die meisten wichtigen Funktionen im Körper

• Bestehen aus Aminosäuren

• Werden von Chaperonen zu Tertiär-und Quartärstrukturen gefaltet

DNA

• Aufbau: Doppelhelix; „Seile“ aus Desoxyribose und Phosphatresten; „Sprossen“ aus Basenpaaren: Adenin – Thymin; Cytosin – Guanin

• Replikation: Trennung des Doppelstrangs durch Helicase; Verhinderung der erneuten Paarung durch SSB-Proteine. Leitstrang: kontinuierlich durch DNA-Polymerase; Folgestrang: kurze RNA-Primer (DNAOkazaki-Fragmente) werden durch DNA-Ligase verbunden

Translation

• An jedem t-RNA-Molekül gibt es ein Anticodon und eine Bindungsstelle für eine spezifische Aminosäure

• Ribosomen binden die t-RNA an die m-RNA, eine Polypeptidkette entsteht

• Stopp-Codon: die Kette wird freigelassen

Mutationen

• Mutation= Plötzlich auftretende Veränderung der Erbsubstanz durch äußere Einflüsse; ausgelöst durch Mutagene

• Genmunation: Substitution, Rastermutation, Duplikation, Inversion

• Genommutation: Haploidie, Polyploidie• Chromosommutation: Strukturveränderung

des Chromosoms

Prokarioten

• Kein Zellkern, keine Organellen

• Zellwand

• DNA ringförmig, frei im Cytoplasma

• Keine sexuelle Fortpflanzung

• Bakterien&co.

Regulation des Stoffwechsels

Phenylalanin-Stoffwechsel

• Verschiedene Enzyme im Körper wandeln Phenylalanin zu Abbauprodukten um

• Dazu gehört die Ein-Gen-ein-Enzym-Hypothese: Ein Gen codiert ein Enzym; es darf nicht kaputt sein

• Dominant-rezessiver Erbgang: entweder der Betroffene ist krank oder nicht

Polyphänie/ Polygenie

• Polyphänie: Ein Gen beeinflusst viele Merkmale (z.B. mutiertes Fibrillin-Gen wirkt auf Kreislauf, Auge und Skelett)

• Polygenie: Viele Gene beeinflussen gleichzeitig ein Merkmal

Regulation des mRNA-Abbaus

• Prokariotische mRNA-Moleküle sind kurzlebig• Bei Eukarioten ist mRNA meist langlebiger, es

werden mehr Kopien hergestellt• In Eizellen wird Translation und enzymatischer

Abbau blockiert, weil es hier nur um die Speicherung der mRNA geht

• Proteine lagern sich an die mRNA an und verhindern ihren Abbau

Regulation des Lactoseabbaus

• Wenn Glukose vorhanden ist, bildet der Co-Repressor gemeinsam mit dem Apo-Repressor den aktiven Holo-Repressor

• Die Enzymsynthese wird blockiert; Lactose wird nicht abgebaut

• Ist keine Glucose mehr da, blockiert Lactose als Induktor den Apo-Repressor; Enzyme werden synthetisiert!

Puffbildung bei Insekten

• Hypothese: Puffs sind die Bereiche eines Chromosoms, an denen in einem gewissen Entwicklungsstadion besonders viel Transkription stattfindet

Regulation des Blutzuckerspiegels

NahrungsaufnahmeGlukoseabbau (Bewegung) Glukosemangel in den Zellen Augleich durch das Blut Blutzuckerspiegel sinkt AdrenalinStop der Insulinproduktion Abbau Insulin Insulinkonzentration sinkt Produktion von Glukagon Abbau Glykogen Glukose-Neubildung Anstieg Blutzuckerspiegel

Zwei Wege zur Regulation• Hormone können durch

Osmose auch in die Nichtzielzelle eindringen, lösen aber nichts aus

• In Zielzelle wird durch Protein und Hormon der Hormon-Protein-Komplex aktiv

• Letzterer dringt in Zellkern ein und löst dort Transkription aus

• mRNA verlässt Zellkern, Translation Enzyme

• Hormone dringen nicht in die Zelle ein

• Rezeptor nimmt das Hormon auf

• Rezeptorstruktur von Nichtzielzelle verhindert Aufnahme des Hormons

• Zielzelle: es gibt inaktive Enzyme, darum Hormonaufnahme

• Hormon in Rezeptor c-AMP wird hergestellt

• C-AMP aktiviert das Enzym

Vorteile

• Keine ständige Enzymproduktion weniger Energieverbrauch

• Gut für die Enzyme, die nicht ständig und schnell bereit stehen müssen

• Enzym kann sofort bereitgestellt werden

• Ein Hormon kann mehrere verschiedene Enzyme über c-AMP (aus ATP am Rezeptor gewonnen) aktivieren

• Gut für die Enzyme, die ständig bereit stehen müssen

Beeinflussung der Enzymaktivität

• Enzymfunktion: Aufnahme des Substrats Strukturveränderung des Enzyms; dann Spaltung des Substrats und Abgabe

• Enzyme oszillieren zwischen der aktiven R-Form und der inaktiven T-Form. Sie besitzen allosterische und aktive Zentren

• Enzymregulatoren setzen sich in allosterische Zentren. Aktivator: R-Form! Inhibitor: T-Form!

• Substrate nutzen die aktiven Zentren und stabilisieren die R-Form

Ökologie

Begriff: Ökologie

• Ökologie ist die Wissenschaft von den Wechselwirkungen der Lebewesen zu ihrer belebten und unbelebten Umwelt und den Beziehungen innerhalb einer Art. Außerdem geht es um Stoffkreisläufe in Lebensräumen.

Artkonzepte

• Morphologisch: Art= Gruppe, deren Mitglieder sich in Aussehen und Form ähneln

• Biologisch: nur Mitglieder einer Art haben miteinander fortpflanzungsfähige Nachkommen

• Ökologisch: Mitglieder einer Art haben dieselbe ökologische Nische

Ökologische Nische

• Alle Faktoren, die ausschließen, dass Konkurrenz mit einer anderen Art besteht, definieren die ökologische Nische einer Art

Schwierigkeiten der Artkonzepte

• Morphologisch: Zwei Arten unterschieden sich kaum oder eine Art ist so variabel, dass es scheint, sie bestünde aus mehreren Arten

• Biologisch: schwer überprüfbar (Paarung kaum zu untersuchen)

• Ökologisch: zu umfangreich, um alle Faktoren zu untersuchen

Bergmannsche Regel

• Tiere in kälteren Regionen sind größer als ihre Verwandten in wärmeren Regionen

Anpassung an den Winter

• Fettvorrat

• Nahrungsvorrat

• Nestauspolsterung

• Winterfell (bessere Luftisolation)

• Farbenwechsel

• Zugvögel: Flug gen Süden

• Winterstarre (Amphibien); Winterschlaf

Thermoregulation bei Wirbeltieren

• Winterschlaf

• Kapillaren bei Kälte verengt geringe Wärmeabgabe

• Bei Kälte Arterien und Venen dicht zusammen hoher Wärmeaustausch

Thermoregulation bei Insekten

• Ectotherm (erhalten Wärme aus der Umgebung)

• Ausrichten im Temperaturfeld• Verhaltensfieber• Manche Insekten brauchen für Aktivität

Mindesttemperaturen• Sonnenbaden bei Insekten mit kleiner

Körpermasse (Bergmann)

Verhaltensweisen

• Konduktion: Wärmeaustausch mit Substrat, dass das Tier berührt, besonders bei aquatischen Insekten

• Konvektion: Austausch durch Strömung

• Strahlung

• Flügelstellung (Reflexionsbaden)

Morphologische Anpassungen

• Dunkle Flügel absorbieren viel Licht

• Helle Flügel für das Reflexionsbaden besonders geeignet

• Wärmeisolation des Thorax

• Muskelzittern als Aufwärmmechanismus

Soziale Thermoregulation

• Insektenstaaten sorgen für günstiges Thermoverhältnis

• Fächeln bei Ameisen als Abkühlung durch Verdunstungskälte

Gefrierschutz

• Zwei Arten: (partielle) Gefriertoleranz und Super-Unterkühlbarkeit

• Gefriertolerante Arten: Gefrieren der extrazellulären Flüssigkeiten

Osmoregulation

• Salzwasserfische geben wenig Harn ab, Süßwasserfische dagegen viel

• In Süßwasserfische dringt ständig osmotisch Wasser ein

• Tiere, die wenig Wasser bei der Abgabe von Abfallstoffen verlieren dürfen, verarbeiten Ammoniak zu Harnstoff bzw. Harnsäure weiter

Ökologische Potenz

• Ökologische Potenz: Toleranzbereich zwischen Minimum, Optimum und Maximum

• Stenök: kleine ökologische Potenz

• Euryök: große Ökologische Potenz

Der pH-Wert

• pH=-lg[H+]

• Je saurer (mehr H+), desto kleiner ist der pH-Wert

• Viele Pflanzen und Tiere treten nur bei bestimmten pH-Werten auf (stenoion), andere in einem weiteren Bereich (euryion)

Populationsökologie

• Population: Zu einer Population gehören alle Mitglieder, die sich mit der gleichen Wahrscheinlichkeit fortpflanzen.

• Probleme von Populationen: Nahrungsangebot sinkt DreckKein Platz Krankheiten- ab einem gewissen Punkt stagniert das Wachstum;

Wachstumsfaktor=1- Logistisches Wachstum

Wachstumskurven

• Basisdaten: Populationsgröße und Dichte (Abundanz)

• Natalität=b; Mortalität= d• Wachstumsrate r=b-d• N=Individuenzahl• Zunächst exponentiell: dN/dT= r*N• Kapazitätsgrenze= K• Logistisches Wachstum: dN/dT= r*((K-N)/K)*N

Erst exponentiell, dann logistisch?

• Das Wachstum verläuft immer logistisch, trotzdem wirkt es am Anfang wie ein exponentielles Wachstum. Grund:

lim((K-N)/K) = 1N0

Versuche von Gause

• P. aurelia und P. caudatum haben getrennt ein relativ gleichmäßiges Wachstum bis zu ihrer Umweltkapazität

• In Kokultivierung hat P. aurelia einen kompetitiven Vorteil Eliminierung von P. caudatum

• Höhere Fortpflanzungsrate ?

Populationsschwankungen (Hypothesen)

• Rhythmische Schwankungen der Populationsgröße bei einigen Populationen

• Hormonelle Schwankungen• Antwort auf dichteabhängige Faktoren erfolgt

verzögert Oszillationen um das Kapazitätsplateau• Mehr Beute mehr Räuber • Nahrungsqualität der Futterpflanzen durch hohe

Populationsdichte beeinträchtigt• Anpassung gegen Räuber: 17 bzw. 13-jähriger

Zikadenzyklus

K-Strategen vs. r-Strategen

• R-Strategen: stark schwankende Populationsgröße; keine Betreuung der Larven; stark zufallsabhängig

• Besonders häufig bei sich rasch ändernden Ökosystemen

• K-Strategen: weniger Nachkommen, dafür Betreuung

• Stabile Lebensräume• Neubesiedlung eines Lebensraums: zunächst mehr

r-Strategen, dann immer stärker K-Strategen

Wechselwirkungen zwischen Arten

• Parasitismus + - ; Zecke+Warmblüter

• Konkurrenz - - ; zwei Tiere streiten um Beute

• Räuber-Beute + - ; Fuchs und Hase

• Karpose + 0; Kuhreiher und Rinder

• Symbiose + + ; Mykorrihiza+Waldbaum

Ordnungen

• Produzent (Gras) Konsument 1. Ordnung/ Primärkonsument (Antilope) Konsument 2. Ordnung/ Sekundärkonsument (Löwe) (Tertiärkonsument)

• Destruenten fressen das, was schon tot ist

Konkurrenzbeispiel Seepocken

• Balanus (unter Wasser): fundamentale und realisierte Nische stimmen weitgehend überein

• Chthalamus(über Wasser): fundamentale Nische viel größer als realisierte Nische

• Schlüsselräuber Pisaster nötig für Artenvielfalt

Biomassepyramiden

• Beim Fluss der Energie durch ein Ökosystem geht auf jeder Trophiestufe ein Großteil verloren

• Jedes Glied der Nahrungskette setzt Energie nicht nur in eigene Biomasse um sondern verliert Energie durch Respiration

• Deshalb waren auch keine Tertiärkonsumenten im Kuhfladen: es gibt sie kaum!!!

Gärung

• C6H12O6 + 2P + 2ADP 2 C2H5OH+ 2ATP+ 2CO²

Insektizide/ Schadstoffe

• Der Einsatz von Insektiziden schadet nicht nur Schädlingen

• Anreicherung von Schadstoffen führt dazu, dass die Gifte in der Nahrungskette auch auf unserem Teller landen

• Cadmiumanreicherung und DDT als Beispiele

Artensterben

• Das Aussterben einer Art ist ein Indiz für das Aussterben ganzer Ökosysteme

• Störung bestehender Symbiosen• BIODEPTH-Versuch: Entfernung aller Arten aus

einer Wiese oberirdische Pflanzentrockenmasse (Heu) nahm um 80g/m²/Jahr ab

• Artenarme Ökosysteme können durch erhöhte Nitratauswaschung (Nitrit, giftig) die Trinkwasserqualität verschlechtern

Thermodynamik in Ökosystemen

• Energie kann nicht erzeugt oder zerstört, sondern nur übertragen und umgewandelt werden! (1. Hauptsatz der Thermodynamik)

• Chemische Elemente gehen auch nicht verloren, sie können nur von einem in ein anderes Ökosystem übergehen

Klimaerwärmung

• 1. Hypothese: Treibhauseffekt

• CO² absorbiert langwellige, terrestrische Strahlung

• Diese Absorption bedeutet, dass die Wärme nicht ins Weltall entweicht

• Besonders schlimm: CO² absorbiert genau jene Wellenlängen, die H²O durchlässt

Klimaerwärmung

• 2. Hypothese: Sonnenflecken• Schwankungen der Energieabgabe der

Sonne• Wenn es viele Sonnenflecken gibt, ist es

warm (flairs)• Sonnenfleckenminima (1645-1715; 1800-

1820) stimmen mit „Mini-Eiszeiten“ überein!

Wasserkreislauf

• Regen tropft auf die Erde. Evapotranspiration befördert ihn wieder in die Wolke. Aber ein bisschen Wasser bleibt übrig. Das sickert in den Boden. Durch Oberflächenabfluss und Grundwasser gelangt es ins Meer. Dort verdunstet es. Es fällt wieder als Niederschlag ins Meer oder wird nettoverfrachtet zum Land durch den Wind.

Kohlenstoffkreislauf

• CO² fliegt in der Atmosphäre umher. Durch Pflanzen wird es assimiliert. Die Pflanzen bieten Nahrung für Tiere oder zerfallen. Sie betreiben Respiration, genau wie die Tiere. Dadurch gelangt das CO² wieder in die Atmosphäre. Auch der Boden gibt CO² ab, denn schließlich zerfällt ja das tote Material.

Stickstoffkreislauf

• Für Pflanzen verwertbar: NH4+ (Ammonium), NO³- (Nitrat)

• N² in der Atmosphäre (80%); nicht für Pflanzen verfügbar

• Atmosphärische Deposition (5-10%): Ammonium und Nitrat gelangen im Regen gelöst oder mittels Feinstaub in den Boden

• Stickstoff-Fixierung durch Prokaryoten• Zunächst Wandlung in Ammoniak NH³/pH-Wert

abhängig

Nitrat, Nitrit...

• Tiere können nur organischen Stickstoff assimilieren

• Für Pflanzen wird Ammonium meist von aeroben Bakterien zu Nitrat umgesetzt

• Zersetzer bauen organische Stickstoffverbindungen wieder zu Ammonium ab Boden

• In der Bilanz wird nur wenig Stickstoff tatsächlich aus der Luft assimiliert!

Stickstoffkreislauf

Stickstoffdüngung

• Immer mehr Stickstoff gelangt in ein Ökosystem

• Gefährdete Arten überleben nicht auf Böden mit zu hohem Stickstoffgehalt

• Viele Arten sind stenök was den Stickstoffgehalt angeht

Intensivlandwirtschaft: Maßnahmen

• Flurbereinigung: Zusammenlegung von Ackerflächen• Vergrößerung der Betriebe• Bodenbearbeitung, Bodenverbesserung• Pflanzenschutz, Schädlingsbekämpfung, Mineraldünger• Hochertragssorten• Umgestaltung von Produktionsabläufen• Kapitaleinsatz für Maschinen• Spezialisierung• Massentierhaltung

Folgen

• Überschüsse (Butterberge und Milchseen)

• Gefährdung und Ausrottung von Wildkräutern

• Schadstoffanreicherung

• Anfällige Monokulturen

• Keine Tiergerechte Haltung

Eutrophierung• Auswaschung von Gülle und Mineralwasser gelangt in die

Gewässer• Starke Vermehrung des Phytoplanktons aufgrund höheren

Nährstoffgehalts• Temperatursprungschicht verhindert Austausch von Stoffen

im Sommer• Der Sauerstoffgehalt am Boden nimmt ab• Faulschlamm lagert sich am Seeboden ab• Die Fotosynthese der Algen entzieht dem Wasser CO²,

dadurch steigt der pH-Wert an CO²+H²OHCO³-+H+

• Faulgase werden gebildet wegen O²-Mangel

Probleme bei ökologischen Untersuchungen

• Finden der Arten• Bestimmung der Arten• Zufallsbeobachtungen: Gesetz der großen Zahlen

(viele Proben)• Veränderung der Populationsgröße, Sukzession

[biotisch]• Veränderung des Wetters, Nährstoffmenge, Tageszeit

[abiotisch]• Beeinflussung des Ergebnisses durch viele Faktoren• Beeinträchtigung durch Beobachter

Biologische Schädlingsbekämpfung: Probleme

• Nützlinge relativ teuer• Erwünschter Effekt meist nicht sofort• Nützlinge können anderen Nützlingen schaden• Nützlinge im Freiland nicht konzentriert einsetzbar• Probleme bei Transport, Lagerung, Massenzüchtung• Schädigung der Pflanzen nicht vollständig

verhinderbar• wetterabhängig

Gründe für biologische Schädlingsbekämpfung

• Umweltfreundlich da keine Chemie• Schädlinge werden nicht resistent• Keine Negativen Auswirkungen auf den

Menschen (keine Schadstoffanreicherung)• Kein Töten unschuldiger Insekten/

Nützlinge• Beispiel: Schwebfliegen als

Blattlausantagonisten

Die Kastanien-Miniermotte

• Blätter werden braun und fallen ab

• Flecken auf den Blättern

• Verbreitet sich immer weiter

• 1985 Jugoslawien erste Sichtung

Evolution

Was sagt die Schöpfungsgeschichte?

• Himmel und Erde erschaffen• 1.Licht/Dunkelheit• 2.Firmament• 3.Erde/Wasser, Pflanzen• 4.Sonne, Mond und Sterne• 5.Vögel und Fische• 6.Landtiere und Menschen• 7.Ruhe

Was sagen die Griechen?

• 1.Lebensraum: Wasser

• Entstehen durch verdunstete Feuchtigkeit

• Menschen wurden von Fischen hervorgebracht

Was sagt Lamarck?

• Niedere Formen des Lebens entstehen ständig aus unbelebter Materie

• Streben nach Komplexität

• Gesteuert durch sich verändernde Umwelt

• Gebrauch und Nichtgebrauch übertragen sich auf nächste Generation: Giraffe/Schmied

Warum Lamarck oft (zu Unrecht) belächelt wird:

• Kraft o.ä. sind Merkmale, die den Phänotyp, aber nicht den Genotyp verändern, demnach nicht vererbbar sind

• Organismen bilden sich nicht aus toter Materie

UNIFORMITARISMUS

• Dieselben Prozesse sind sowohl für vergangene als auch für gegenwärtige Ereignisse verantwortlich

Warum gerade Darwin die Evolutionstheorie entwickeln konnte• Ausbildung: Bereits in Schule und Studium hatte er sich

mit Meeresbiologie, Vögeln und Käfern beschäftigt

• Lamarck bekannt

• Verschiedene Werke

• Weltreise mit der Beagle

• Dadurch Weltoffenheit und anderes Bewusstsein als Zeitgenossen

• Insgesamt: Bildungsvoraussetzungen durch Abhandlungen und Welterfahrenheit

Die Evolutionstheorie von DARWIN

• Beobachtung 1: Alle Arten weisen ein derart hohes Fortpflanzungspotenzial auf, dass ihre Populationsgröße exponentiell zunehmen würde, wenn alle Individuen, die geboren werden, sich erfolgreich fortpflanzten.

• Beobachtung 2: Die meisten Populationen sind normalerweise mit Ausnahme saisonaler Schwankungen in ihrer Größe stabil.

• Beobachtung 3: Die natürlichen Ressourcen sind begrenzt• Folgerung 1: Die Produktion von mehr Nachkommen, als die Umwelt tragen

kann, führt unter den Individuen einer Population zu einem Kampf ums Überleben, wobei in jeder Generation nur ein Bruchteil des Nachwuchses überlebt.

• Beobachtung 4: Die Individuen einer Population variieren enorm in ihren Merkmalen; keine zwei Individuen sind genau gleich.

• Beobachtung 5: Ein Großteil dieser Variabilität ist erblich.• Folgerung 2: Das Überleben im Existenzkampf beruht nicht auf Zufall,

sondern hängt unter anderem von den Erbanlagen der überlebenden Individuen ab. Die durch ihre ererbten Merkmale am besten an die Umwelt angepassten Individuen hinterlassen wahrscheinlich mehr Nachkommen als weniger gut angepasste.

• Folgerung 3: Die ungleichen Überlebens. Und Fortpflanzungsfähigkeiten von Individuen führen zu einem graduellen Wandel in einer Population, wobei sich vorteilhafte Merkmale im Laufe der Generationen anhäufen.

Was besagt das Hardy-Weinberg-Gesetz?

• Das Hardy-Weinberg-Gesetz besagt, dass die Allelfrequenzen in Parental-und Filialgeneration gleich bleiben.

• Darwin stimmt trotzdem, da Hardy-Weinberg die Selektion nicht in Betracht zieht!

Veränderungsmöglichkeiten der Allelfrequenzen

• Genetische Drift (Flaschenhalseffekt, Gründereffekt): Zufallsereignisse bedeutender weil Genpool kleiner

• Genfluss: Austausch zwischen Populationen (Migration)

• Mutation

• Nichtzufällige Paarung: Inzucht, phänotypisch bedingte Partnerwahl

• Natürliche Selektion: unterschiedlicher Fortpflanzungserfolg

Formen der Selektion

• Stabilisierende Selektion: merzt extreme Varianten aus

• Gerichtete Selektion: In Richtung eines Extrems verschoben

• Disruptive Selektion: Begünstigung beider Extreme

Mutationen

• Genmutation: Mutation im Gen• Auslöser: MUTAGENE (Gift; Strahlung

[radioaktiv/Röntgen], Chemikalien HNO², HNO³, 2-Propenal, Dioxin, Methyl-Bromid)

Substitution: eine Base ersetzt durch eine andere Deletion: „Löschen“ einer Base Insertion: „Hinzufügen“ einer Base Inversion: Umdrehen Inversion (II): Einbau an anderer Stelle: DER ZEH MIR

TUT WEH

Präadaption

• Prädispositionen (Präadaptionen) sind Merkmale, die vererbbar sind und erst bei Veränderung der Lebensbedingungen einen Vorteil für den Fortpflanzungserfolg bieten (Bsp. Penicillinresistenz)

Variabilitätsursachen

Modifikat. Treten meist zusammen auf genetisch

• Entsteht durch Umwelteinflüsse wie Bodenfeuchte, Licht

• Innerhalb eines Genotyps gibt es Merkmale, die gleitende Übergänge besitzen: Größe, Farbe, Form

• Gehen stets mit dem Tod des Individuums verloren

• Immer dann vorhanden, wenn Individuen keine Klone sind

• Variation aller Individuen einer Population untereinander

• Unterschiede genetischer Natur

• Entsteht durch Mutation in Keimzellen, Rekombination

• vererbbar

Was ist Fitness?

• Die Darwin-Fitness ist der relative Beitrag eines Individuums zum Genpool der nächsten Generation

• Die höhere Fitness heißt 1; eine andere Sorte, die z.B. 80% dieser Fortpflanzungsrate hat, hat die relative Fitness 0,8

Fortpflanzungsbarrieren

• Präzygotische Barrieren: Habitatisolation, Verhaltensisolation (keine Anziehung), zeitliche Isolation

• PAARUNG• Mechanische Isolation (Geschlechtsorgane passen nicht);

gametische Isolation: keine Erkennungsmechanismen (Lockstoffe funktionieren nicht)

• BEFRUCHTUNG• Bastardsterblichkeit: keine Entwicklung oder Geschlechtsreife

nicht erreicht• Bastardsterilität: keine funktionsfähigen Gameten• Bastardzusammenbruch: Nachkommen nur eingeschränkt

lebensfähig oder fruchtbar

Allopatrische Artbildung

• Geographische Isolation für einen Zeitraum

• Wen sich beide weiterhin ungehindert kreuzen können und fruchtbare Nachkommen hervorbringen, sind sie wieder sympatrisch

• Wenn sie sich zu stark verändert haben, hat eine Artbildung stattgefunden

Drosophila

• Obwohl sich die Individuen aus verschiedenen Gläsern weniger gern paaren, ist dies noch möglich. Es hat keine Artbildung stattgefunden

Artkonzepte

• Morphologisches Artkonzept: Nach Aussehen werden verschiedene Arten voneinander unterschieden. Problem: Ente/Erpel unterschiedlicher als t.w. verschiedene Tierarten

• Biologisches Artkonzept: Fortpflanzungsfähige Nachkommen

• Ökologisches Artkonzept: Individuen, die dieselbe ökologische Nische besitzen.

Was ist Sympatrische Artbildung?

• Pflanzen: spontane Polyploidie

• Phytophage&Parasitoide: selbes Gebiet, andere Wirtspflanze bzw. Wirtstier

• Chromosomenfusionen

• Spontane genetische Isolation einzelner Individuen innerhalb einer Population

Was versteht man unter adaptiver Radiation?

• Entstehung neuer, spezialisierter Arten aus einem wenig spezialisierten Vorfahren innerhalb eines eher kurzen Zeitraums

• Vorraussetzungen:

• 1) Vorhandensein von Lebensräumen, in denen eine entsprechende Diversifikation möglich ist (z.B. keine Konkurrenz)

• 2) geographische Isolation (Insel, zuflussloser See)

Wer ist Archaeopteryx? Was sind Unterschiede/Gemeinsamkeiten

mit Vögeln?

• Archaeopteryx ist der „Urvogel“• Er und die Vögel scheinen aus einem

gemeinsamen Vorfahren entstanden zu sein

Vögel Reptilien Archaeopteryx

Kein Schwanz Langer Wirbels L.Wirbelschwan

Vogelbecken Saurierbecken Saurierbecken

Keine Zähne Zähne Zähne

Brustbein Gastralrippen Kein Brustbein

Laufen 2 Beine Laufen 4 Beine Laufen 2 Beine

Keine getr. MFK g.Mittelfußkno. Getrennte MFK

Federn Schuppen Federn

Wie konnte das Auge entstehen

• Computersimulationen erschaffen in 1829 Schritten ein Auge (1225* 200Jahre)

• Lichtempfindlichkeit ausschlaggebend

Grundbegriffe der Kladistik

• Apomorphie: Neues Merkmal

• Synapomorphie: neues Merkmal, das alle Mitglieder einer monophyletischen Gruppe

• Plesiomorphie: Schon lange bekanntes Merkmal; nicht relevant um verwandte Gruppen zu entdecken (Alter Hut)

• Monophyletische Gruppe: Ausgangsart + ALLE Abkömmlinge

• Paraphyletisch: Vorfahr+ einige aber nicht alle Nachfolger

• Polyphyletisch: Taxon umfasst nicht den gemeinsamen Vorfahren

Was ist der Außengruppenvergleich?

• Der Merkmalszustand, der bei der nächst verwandten Art auftritt, die nicht zur monophyletischen Gruppe gehört, ist plesiomorph.

Was besagt die Biogenetische Grundregel?

• Die Keimesentwicklung (Ontogenese) verläuft wie eine kurze, schnelle und unvollständige Wiederholung der Stammesgeschichte (Phylogenese)

• Heißt: An den Kiemenspalten menschlicher Embryonen lässt sich zeigen, dass unsere Vorfahren im Wasser lebten. Der Embryo ist aber von Anfang an menschlich. Die Gene, die für Merkmale wie Fell und Kiemen verantwortlich sind, werden später in der Entwicklung ausgeschaltet

Rezept: Stammbäume

• 1. Merkmalsmatrix• Apomorphien/Plesiomorphien ermitteln

durch biogenetische Grundregel, Fossilien, Außengruppenvergleich

• Erstellen einer Stammbaumhypothese durch Synapomorphien

• Kritische Beurteilung: kann das so sein?/Prinzip der Sparsamkeit

Probleme beim Erstellen von Stammbäumen

• Festlegung/Definition eines Merkmals

• Entwicklungsrichtung

• Unabhängige Entwicklung von Merkmalen?

• Welche Merkmale sind wichtig für den Stammbaum?

• Apomorphie oder Plesiomorphie?

• Verschiedene Hypothesen

Konvergente Entwicklungen

• Lebensräume mit ähnlichen Anforderungen konvergenten Entwicklungen

• In Gestalt und Funktion übereinstimmende Organe (analoge Organe)

Homologiekriterien

• Kriterium der Lage: gleiche Lage in einem vergleichbaren Gefügesystem (Mund etc.)

• Spezifische Qualität: besondere Einzelheiten des Aufbaus stimmen überein

• Stetigkeit: es gibt eine Reihe von Zwischenformen

• Aus Homologien lassen sich Entwicklungsreihen erstellen

Neurobiologie

Nerven

Reflexe

• Sensorische Rezeptoren nehmen einen Reiz wahr

• Sensorische Neurone leiten den Reiz weiter zum Rückenmark

• Ohne Weiterleitung ins Gehirn gelangt der Reiz über Interneuronen zu den Motoneuronen die den Effektor reizen

Das Membranpotenzial

• In der Zelle ist KCl, außerhalb NaCl• Kalium diffundiert durch ständig offene Kanäle

nach außen aufgrund osmotischer Kräfte; Natrium kann aber nicht nach innen gelangen

• Der Ausgleich zwischen osmotischer Kraft und Spannung sorgt für gleichbleibende Konzentrationen, dem Ruhepotenzial (-30 bis –100 mV)

Die Nervenzelle

• Bestandteile der Nervenzelle:

• Dendriten, Zellkern, Zellkörper (Soma), Axonhügel, Axon, Myelinscheide, synaptische Endigungen, Ranvier-Schnürringe, Schwannsche Zellen

Das Aktionspotenzial

• Das Öffnen von Na+-Kanälen führt zur Depolarisation

• Wird die Zelle bis zum Schwellenpotenzial depolarisiert, öffnen sich viele zusätzliche Na+-Kanäle

• Es kommt zu einem Aktionspotenzial• Nach dem Aktionspotenzial werden die

Natriumkanäle während der Refraktärzeit deaktiviert

Reizweiterleitung

• Wird an Stelle n eines Axons ein Aktionspotenzial erreicht, gibt es an der Zellaußenseite einen Elektronenüberschuss. Diese wandern zur Stelle n+1 weiter; die Stelle n-1 befindet sich noch in der Refraktärzeit. Depolarisation bis zum Schwellenwert (n+1) führt zu einem neuen AP Weiterleitung des Reizes

Geschwindigkeit der Reizweiterleitung

• Höhere Frequenz der AP führt zur schnelleren Auslösung des Effektors

• Myelinisierte Axone leiten besser (saltatorische Leitung: AP „hüpft“ von einem Schnürring zum nächsten)

• Je größer der Durchmesser der Faser, desto schneller die Reizweiterleitung

• Verschiedene Tierarten versch. Geschw.

Reizstärke

• Die Reizstärke wird durch die Frequenz kodiert

• Je mehr Hertz, also je höher die Frequenz, desto stärker ist der Reiz

Natrium-Kalium-Pumpe

• Obwohl die Natriumkanäle geschlossen sind diffundieren ständig Natriumionen in die Zelle

• Die Natrium-Kalium-Pumpe besteht aus Proteinen und befindet sich in der Membran

• Außen: Zwei Bindungsstellen für K+, innen drei Bindungsstellen für Na+

• Innen: Dockstelle für ATP (weil es hier viel davon gibt)

• außen: Bindungsstelle für Ouabain, hemmt die Pumpe

Der Sprung von einer Zelle in die Nächste

• Das ankommende AP bewirkt das Öffnen von Calciumkanälen im synaptischen Endknöpfchen

• Synaptische Bläschen verbinden sich mit der präsynaptischen Membran, Acetylcholin wir in den synaptischen Spalt entleert

• Acetylch. besetzt Rezeptoren; Na+-Kanäle in der postsynaptischen Membran sind geöffnet

• Acetylch. wird von der Cholinesterase gespalten• Das AP wird in der Folgezelle ausgelöst

Nervengifte

• Blockade der Acetylcholinrezeptoren (Curare: Pfeilgift der Indianer, Atropin: Tollkirsche)

• Wirkung wie Acetylcholin aber kein Abbau durch Cholinesterase (Nikotin, Fliegenpilz)

• Hemmung der Cholinesterase (Insektenvertilgungsmittel)

• Hemmung der Acetylcholinausschüttung (Botulinumgift: verderbendes Fleisch)

• Schlagartige Entleerung der synaptischen Bläschen (a-Latroxin, schwarze Witwe)

Verschaltung von Nervenzellen

• Man benötigt mehrere ankommende Aktionspotenziale, um eine Reizweiterleitung auszulösen

• Erregende Axone führen zu einer Addition der Reize weitergehende Depolarisation

• Durch hemmende Axone mit Aktionspotenzialen wird das Membranpotenzial wieder hyperpolarisiert

Netzhaut: Aufbau

• Etwa 6 Millionen Zapfen (Farben) + 120 Millionen Stäbchen (Hell-Dunkel)

• Dort, wo Licht auf die Zelle trifft, ist die Zelle in Lamellen gespalten in denen Rhodopsin liegt

• Ansonsten ist der Aufbau der Lichtsinneszelle ähnlich dem der Nervenzelle

Was passiert bei Lichteinfall?

Und was, wenn‘s dunkel ist?

Laterale Inhibition

• Bedeutet Kontrastverstärkung

• In der Netzhaut trifft in den Horizontalzellen der Eindruck je einer Zelle und ihrer Nachbarzellen zusammen

• Hier wird der Eindruck verrechnet

Modell zur Kontrastverstärkung

Recommended