9
Folie 1 §10 Vektorraum. Definition und Beispiele (10.1) Definition: Ein Vektorraum über dem Körper K ist eine additive abelsche Gruppe V, also für alle x,y,z aus V : Wir wiederholen (vgl. auch 2.3) : Der Begriff des Vektorraumes wurde in den letzten Paragrafen entwickelt. 1 o (x + y) + z = x + (y + z) 2 o Es gibt 0 (Nullvektor) mit: x + 0 = x = 0 + x . 3 o Zu jedem x aus V existiert -x aus V mit x+(-x) = 0. 4 o x + y = y + x , zusammen mit einer Skalarmultiplikation , rv v) (r, V, V K so dass für alle x,y aus V und alle r,s aus K : 5 o 1x = x . 6 o r(x + y) = rx + ry . 7 o (r + s)x = rx + sx . 8 o (rs)x = r(sx) .

§10 Vektorraum. Definition und Beispiele

  • Upload
    silas

  • View
    17

  • Download
    0

Embed Size (px)

DESCRIPTION

zusammen mit einer Skalarmultiplikation. so dass für alle x,y aus V und alle r,s aus K :. 5 o 1x = x. 6 o r(x + y) = rx + ry. 7 o (r + s)x = rx + sx. 8 o (rs)x = r(sx). §10 Vektorraum. Definition und Beispiele. - PowerPoint PPT Presentation

Citation preview

Page 1: §10 Vektorraum. Definition und Beispiele

Folie 1

§10 Vektorraum. Definition und Beispiele

(10.1) Definition: Ein Vektorraum über dem Körper K ist eine additive abelsche Gruppe V, also für alle x,y,z aus V :

Wir wiederholen (vgl. auch 2.3) : Der Begriff des Vektorraumes wurde in den letzten Paragrafen entwickelt.

1o (x + y) + z = x + (y + z)2o Es gibt 0 (Nullvektor) mit: x + 0 = x = 0 + x .3o Zu jedem x aus V existiert -x aus V mit x+(-x) = 0.

4o x + y = y + x ,zusammen mit einer Skalarmultiplikation , rvv)(r, V,VK so dass für alle x,y aus V und alle r,s aus K :

5o 1x = x .6o r(x + y) = rx + ry .7o (r + s)x = rx + sx .8o (rs)x = r(sx) .

Page 2: §10 Vektorraum. Definition und Beispiele

Folie 2

Kapitel II, §10

1o r(0) = 0 (0 ist der Nullvektor.)

Wie für Untergruppen (vgl. 8.11) haben wir den Satz:

(10.2) Bemerkungen: Sei V eine Vektorraum über K. (V wird auch kurz K-Vektorraum genannt.) Dann gilt für all x aus V und all r aus K:

3o (-1)x = -x .

2o 0x = 0 (Linke Seite: 0 ist die Null im Körper K; rechte Seite: 0 ist der Nullvektor.)

4o (-1)(-1) = 1 und 0r = 0 im Körper K.

(10.3) Definition: Sei V eine Vektorraum über K. Ein Untervektor-raum ist eine Menge U in V, die bezüglich der auf V gegebenen Addition und Skalarmultiplikation ein Vektorraum über K ist.

(10.4) Satz: Sei V eine Vektorraum über K. Eine nichtleere Menge U in V ist genau dann ein Untervektorraum, wenn für alle x,y in U und alle r aus K gilt: x+y, -y und rx liegen in U .

Page 3: §10 Vektorraum. Definition und Beispiele

Folie 3

Kapitel II, §10

Weitere Beispiele von Vektorräumen:

3o {(r,s,0) : r,s aus K} ist ein Untervektorraum von K3 .

4o Sind U und W Untervektorräume von V, so ist auch der Durchschnitt eine Untervektorraum. WU

5o Für die Vereinigung gilt das in der Regel nicht.

1o F ist ein Vektorraum über R bezüglich der komponentenweise Addition und Multiplikation.

2o Fb := {x aus F: x ist beschränkt} ist ein Untervektorraum von F.

(10.6) Folgenräume: Es geht zunächst um Folgen in der Analysis. Sei F die Menge aller Folgen x = (x0, x1, x2, ... ) reeller Zahlen xk .

1o {0} und V sind Untervektorräume von V.(10.5) Beispiele: Sei V eine Vektorraum über K.

2o Sei v aus V\{0} . Dann ist die Menge Kv := {rv : r aus K} ein Untervektorraum von V .

Page 4: §10 Vektorraum. Definition und Beispiele

Folie 4

Kapitel II, §10

3o Fk := {x aus F: x ist konvergent} ist ein Untervektorraum von Fb.

4o F0 := {x aus F: x ist Nullfolge} ist Untervektorraum von Fk.

5o Fhp := {x aus F: x hat einen Häufungspunkt in R} ist kein Untervektorraum von F.

6o Fe := {x aus F: {xk : k aus N} ist endlich} ist ein Untervektorraum von Fk.

7o Fc := {x aus F: x ist konstant ab einem Index m} ist ein Untervektorraum von Fk und Fe , und zwar der Durchschnitt dieser beiden Untervektorräume.

8o Definition: Eine Folge x = (xk) aus F heißt absolut summier- bar, wenn die Reihe mit dem allgemeinen Glied |xk| konvergiert.

F0 wird meistens mit c0 bezeichnet.

1 := {x aus F: x ist absolut summierbar} ist ein Untervektorraum von c0 .

Page 5: §10 Vektorraum. Definition und Beispiele

Folie 5

Kapitel II, §10

Zu 3o und 4o: Eine komplexe Zahlenfolge zk = xk + iyk ist genau dann konvergent mit Grenzwert z = x + iy , wenn (xk) gegen x und (yk) gegen y konvergieren, dh. wenn |zk - z| gegen 0 konvergiert.

9o Definition: Eine Folge x = (xk) aus F heißt quadratsummier- bar, wenn die Reihe mit dem allgemeinen Glied |xk|2 konvergiert.

2 := {x aus F: x ist quadratsummierbar} ist ein Untervektorraum von c0 .

(10.7) Räume komplexer Zahlenfolgen: Entsprechend hat man den Raum aller komplexen Zahlenfolgen und die zu 10.6 analogen Untervektorräume:

Zu 2o benötigt man den Betrag in C , gegeben als |z| := für z = x + iy , x,y aus R .22 yx

Zu 5o, 8o und 9o: Analog überträgt man die Definition von Häufungspunkt, absolut summierbar und quadratsummierbar auf komplexe Zahlenfolgen zk = xk + iyk .

Page 6: §10 Vektorraum. Definition und Beispiele

Folie 6

Kapitel II, §10

(f+g)(m) := f(m) + g(m) ,

(10.8) Räume von Abbildungen: Sei K ein Körper und M eine Menge. Die Menge der Abbildungen Abb(M,K) = KM ist in natürlicher Weise ein K-Vektorraum bezüglich:

(rf)(m) := rf(m) für f,g aus KM , Für alle m aus M und r aus K .

Bemerkungen:1o Der in 10.6 (bzw. in 10.7) beschriebene Folgenraum ist

RN (bzw. CN). Allgemeinere Folgenräume (Folgen von Körperele-menten aus K) sind die KN.

2o Auch der Standardraum Kn ist als Abbildungsraum aufzufassen, es handelt sich um KM für M = {1,2, ... ,n} .

3o Für einen Vektorraum V über K ist auch VN , der Raum der Folgen in V, ein Vektorraum von Abbildungen.

Page 7: §10 Vektorraum. Definition und Beispiele

Folie 7

Kapitel II, §10

4o Für einen Vektorraum V über K ist ganz allgemein VM ein K-Vektorraum.

5o Die meisten Vektorräume von Bedeutung in der Analysis sind Untervektorräume von KM für K = R oder K = C .

(10.9) Räume von Abbildungen mit endlichem Träger: Der Träger einer Abbildung x aus Abb(M,K) = KM ist nach Definition die Menge T = T(x) := {m aus M : x(m) ist nicht Null} .

. am M,m für 0 : (m) und 1 : (a) aa

KM hat als Untervektorraum den Raum K(M) := {x : x aus Abb(M,K) mit endlichem Träger} .

Sei für a aus M die Abbildung durch K M:a Bemerkung:

Offensichtlich ist ein Element von K(M) . aEs gilt: Jedes Element x aus K(M) hat eine eindeutige Darstellung als endliche Summe der Form:

Page 8: §10 Vektorraum. Definition und Beispiele

Folie 8

Kapitel II, §10

Den K-Vektorraum der Polynome mit Koeffizienten schreibt man auch als K[T] .

mit geeigneten von Null verschiedenen xk aus K und ak aus M .

, x ... xxx n21 ana2a1

(10.10) Polynome: Die Folgen mit endlichem Träger in einem Körper, also die Vektoren aus K(N) , lassen sich auch als Polynome mit Koeffizienten aus K auffassen:

Die für n aus N schreibe man als Tn , dann hat nach dem Vorangehenden ein Element p aus K(N) stets die Form:

n

, Tp ... TpTpTp p n

n

2

2

1

1

0

0

mit den Koeffizienten pk aus K (hier dürfen einige der pk Null sein).

Ein Polynom p der Form bestimmt eine Abbildung von K nach K, die zugehörige Polynomabbildung, die folgendermaßen definiert ist:

Tp ... TpTpTp p n

n

2

2

1

1

0

0

Page 9: §10 Vektorraum. Definition und Beispiele

Folie 9

Kapitel II, §10

(10.11) Stetige und differenzierbare Abbildungen: I sei ein Intervall in R . Dann ist C(I) := {f : f ist aus RI und f ist stetig} ein Untervektorraum von RI .Ferner ist Ck(I) := {f : f ist aus RI und f ist k-mal stetig differenzierbar} ein Untervektorraum von Ck-1(I) .

In diesem Sinne ist K[T] ein Untervektorraum von KK .

n

n

2

210 xp...xpxpp p(x) x,K K :p

Zurück zu den affinen Räumen, mit denen wir den Begriff des Vektorraumes motiviert haben: Es sei V ein Vektorraum über K .

Setze A = A(V) := V , T = T(V) := V und t(P,Q) := Q – P für P,Q aus A . Dann ist

(A(V), T(V), t)ein affiner Raum !

R[T] als Raum von Polynomabbildungen von R nach R lässt sich als Untervektorraum von Ck(I) auffassen.