39
27.06.22 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity pattern Hendrik SCHUBERT - Inst. Biol. Sci., University of Rostock, Germany Sergei О. SKARLATO- Institute of Cytology, RAS, St. Petersburg, Russia Irena V. TELESH - Zoological Institute, RAS, St. Petersburg, Russia

11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Embed Size (px)

Citation preview

Page 1: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN

Life in the salinity gradient Discovering mechanisms behind a new biodiversity pattern

Hendrik SCHUBERT - Inst. Biol. Sci., University of Rostock, Germany Sergei О. SKARLATO - Institute of Cytology, RAS, St. Petersburg, RussiaIrena V. TELESH - Zoological Institute, RAS, St. Petersburg,

Russia

Page 2: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 2

Life in the salinity gradient

Remane‘s concept

Contents

Database analysed Synthesis and outlookConclusions for plankton

Remane‘s concept

Results & conclusions for planktonic protists

Database analysed

Synthesis and outlook for other taxa

Page 3: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 3

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Spatial heterogeneity in species richness is an obvious feature of the natural world. The reasons for this are Spatial heterogeneity in species richness is an obvious feature of the natural world. The reasons for this are numerous, but in any case site-specific (e.g. climatic long-term stability, ressource availability, area…..)numerous, but in any case site-specific (e.g. climatic long-term stability, ressource availability, area…..)

For brackish water ecosystems, Remane’sFor brackish water ecosystems, Remane’s ArtenminimumArtenminimum (“species minimum”) concept (“species minimum”) concept is probably is probably the best known description of biodiversity pattern. This concept argues that taxonomic diversity of the best known description of biodiversity pattern. This concept argues that taxonomic diversity of organisms is the lowest at salinities 5-8 PSU (“horohalinicum” or “critical salinity”).organisms is the lowest at salinities 5-8 PSU (“horohalinicum” or “critical salinity”).

Adolf Remane 1898-1976

From: Remane, 1934

Page 4: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 4

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Revisiting in 1934 the applicability of a small-scale study of Johannsen (1918) conducted in the Revisiting in 1934 the applicability of a small-scale study of Johannsen (1918) conducted in the Randersfjord for larger salinity gradients he came to the conclusion, that for macrozoobenthos a Randersfjord for larger salinity gradients he came to the conclusion, that for macrozoobenthos a general minimum in species richness exist between 5-8 psugeneral minimum in species richness exist between 5-8 psu

Combining his own data with the ones of Johannsen, he constructed the conceptual drawing Combining his own data with the ones of Johannsen, he constructed the conceptual drawing best known in it’s 1971 versionbest known in it’s 1971 version

Page 5: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 5

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Combining his own data with the ones of Johannsen, he constructed the Combining his own data with the ones of Johannsen, he constructed the conceptual drawing best known in it’s 1971 versionconceptual drawing best known in it’s 1971 version

Page 6: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 6

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

For brackish water ecosystems, Remane’sFor brackish water ecosystems, Remane’s ArtenminimumArtenminimum (“species minimum”) concept (“species minimum”) concept is probably is probably the best known description of biodiversity pattern. This concept argues that taxonomic diversity of the best known description of biodiversity pattern. This concept argues that taxonomic diversity of organisms is the lowest at salinities 5-8 PSU (“horohalinicum” or “critical salinity”).organisms is the lowest at salinities 5-8 PSU (“horohalinicum” or “critical salinity”).

Combining his own data with the ones of Johannsen, he constructed the Combining his own data with the ones of Johannsen, he constructed the conceptual drawing best known in it’s 1971 versionconceptual drawing best known in it’s 1971 version

This concept was of such a striking plausibility and, moreover, supported by This concept was of such a striking plausibility and, moreover, supported by several later investigations that it went soon into the textbooksseveral later investigations that it went soon into the textbooks

Page 7: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 7

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Explanations for the species minimum: Explanations for the species minimum:

First, the Baltic Sea is a geologically young water body (Lass & Matthäus, 2008) First, the Baltic Sea is a geologically young water body (Lass & Matthäus, 2008) where the where the nichnichee-occupation process is still going on-occupation process is still going on. This process is. This process is particularly well illustrated by the particularly well illustrated by the high rate of unintentional biological invasions (Paavola et al.high rate of unintentional biological invasions (Paavola et al. ,, 2005; 2005; Schiewer, 2008; Telesh et al., Schiewer, 2008; Telesh et al., 2008b; Telesh et al., 20092008b; Telesh et al., 2009)). .

Second, the average surface water salinity in the Baltic Sea proper is 5-8 PSU which Second, the average surface water salinity in the Baltic Sea proper is 5-8 PSU which corresponds to the critical salinity level (Khlebovich, 1969), or the horohalinicum (Kinne, 1971). corresponds to the critical salinity level (Khlebovich, 1969), or the horohalinicum (Kinne, 1971). This salinity range provides unfavorable osmotic conditions for aquatic organisms of both This salinity range provides unfavorable osmotic conditions for aquatic organisms of both freshwater and marine origin. It is impeding high species diversity since hypo- and freshwater and marine origin. It is impeding high species diversity since hypo- and hyperosmotic adjustments are required within this zone (Telesh & Khlebovich, 2010). hyperosmotic adjustments are required within this zone (Telesh & Khlebovich, 2010).

Page 8: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 8

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

But even in it’s latest version, only a few planktonic But even in it’s latest version, only a few planktonic groups are represented in the database…………groups are represented in the database…………

AmphipodaAmphipoda – 36 – 36 sppspp Amphineura – 3 Amphineura – 3 Anthozoa – 12Anthozoa – 12Archiannelida – 12 Archiannelida – 12 AscidiaeAscidiae – 16 – 16 CumaceaCumacea – 19 – 19 DecapodaDecapoda – 49 – 49 EchinodermataEchinodermata – 27 – 27 HydropolypsHydropolyps – 49 – 49 Lamellibranchia – 69 Lamellibranchia – 69 MysidaceaMysidacea – 9 – 9 Nemertini – 25 Nemertini – 25 Ophistobranchia – 23 Ophistobranchia – 23 Polychaeta > 100 Polychaeta > 100 PoriferaPorifera – 15 – 15 Scyphozoa – 8 Scyphozoa – 8 Ctenophora – 3 Ctenophora – 3

TOTAL: TOTAL: са. 400 са. 400 sppspp

Page 9: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 9

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

for example ZOOPLANKTON:for example ZOOPLANKTON:

The Baltic zooplankton in Remane’ times was poorly studied, just ca. 40 species were known The Baltic zooplankton in Remane’ times was poorly studied, just ca. 40 species were known (Remane, 1934; Hernroth & Ackefors, 1979), and this number fitted well to the species-minimum (Remane, 1934; Hernroth & Ackefors, 1979), and this number fitted well to the species-minimum notion developed for macrozoobenthos.notion developed for macrozoobenthos.

Checklists for the Baltic zooplankton were lacking in the Remane’ time.Checklists for the Baltic zooplankton were lacking in the Remane’ time.

So already in 1950-ies Baltic biologists assumed that the real diversity of the Baltic Sea might So already in 1950-ies Baltic biologists assumed that the real diversity of the Baltic Sea might be higher if the smallest, microscopic organisms of plankton and meiobenthos are taken into be higher if the smallest, microscopic organisms of plankton and meiobenthos are taken into account (Remane, 1958; Ackefors,account (Remane, 1958; Ackefors, 1969 1969; Jansson, 1972; Jansson, 1972))..

In 1986-2009, we revised the zooplankton diversity in the Baltic Sea and gained new vast In 1986-2009, we revised the zooplankton diversity in the Baltic Sea and gained new vast knowledge, also on microzooplankton.knowledge, also on microzooplankton.

Page 10: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 10

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

2002

2004

20082008

20092009

Page 11: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 11

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Main Questions:Main Questions:

1. Is plankton of the Baltic Sea really 1. Is plankton of the Baltic Sea really poor in speciespoor in species??

2. Is the ‘species-minimum concept’ 2. Is the ‘species-minimum concept’ applicable to other applicable to other groups of organismsgroups of organisms in the Baltic Sea? in the Baltic Sea?

Page 12: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 12

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

To answer this, in addition to the above mentioned To answer this, in addition to the above mentioned Zooplankton data the following databases were Zooplankton data the following databases were

included in the reviews:included in the reviews: 1515--years long data base on phytoplankton of the Baltic Sea (years long data base on phytoplankton of the Baltic Sea (Sagert et al.Sagert et al.,, 2008) 2008);;

Annotated check-list of phytoplankton species in the Baltic Sea (Hällfors, 2004)Annotated check-list of phytoplankton species in the Baltic Sea (Hällfors, 2004);;

Check-lists from long-term studies of zooplankton in the Baltic estuaries (Telesh & Heerkloss, 2002Check-lists from long-term studies of zooplankton in the Baltic estuaries (Telesh & Heerkloss, 2002, 2004, 2004; ; Telesh, 2004; Telesh et al., 2008a)Telesh, 2004; Telesh et al., 2008a);;

Revision of zooplankton species richness in the open Baltic Sea (Mironova et al., 2009) and the North SeaRevision of zooplankton species richness in the open Baltic Sea (Mironova et al., 2009) and the North Sea (Lindley & Batten, 2002). (Lindley & Batten, 2002).

Distributional index of the benthic macroalgae of the Baltic Sea area (Nielsen et al. 1995)Distributional index of the benthic macroalgae of the Baltic Sea area (Nielsen et al. 1995)

Species and synonym list of German marine macroalgae (Schories et al. 2009) Species and synonym list of German marine macroalgae (Schories et al. 2009)

Page 13: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 13

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Baltic Sea PLANKTONBaltic Sea PLANKTON Number of speciesNumber of species Data source Data source CYANOCYANOBACTERIABACTERIA 190190 Hällfors, 2004Hällfors, 2004

PHYTOPLANKTON PHYTOPLANKTON 26662666 Hällfors, 2004Hällfors, 2004

HeterokontophytaHeterokontophyta 19041904 ibid.ibid.ChlorophytaChlorophyta 383383 ibid.ibid.

DinophytaDinophyta 232232 ibid.ibid.

HaptophytaHaptophyta 7272 ibid.ibid.

EuglenophytaEuglenophyta 4646 ibid.ibid.

CryptophytaCryptophyta 2929 ibid.ibid.

ZOOPLANKTON ZOOPLANKTON 12001200 Telesh et al., 2011aTelesh et al., 2011a

CiliophoraCiliophora 814814 Mironova et alMironova et al., 2009., 2009; ; Telesh et al., 2009Telesh et al., 2009

Rotifera Rotifera 178178 Telesh & Heerkloss, 2002; Telesh et al., 2009Telesh & Heerkloss, 2002; Telesh et al., 2009

Cladocera Cladocera 108108 Telesh & Heerkloss, 2004; Telesh et al., 2009Telesh & Heerkloss, 2004; Telesh et al., 2009

CopepodaCopepoda 6565 Telesh & Heerkloss, 2004; Telesh et al., 2009Telesh & Heerkloss, 2004; Telesh et al., 2009

CnidariaCnidaria, , CtenophoraCtenophora, , Copelata, Copelata, ChaetognathaChaetognatha, , Turbellaria Turbellaria

3535 Telesh et al., 2009Telesh et al., 2009

PLANKTON TOTALPLANKTON TOTAL 40564056 Telesh et al., 2011aTelesh et al., 2011a

Page 14: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 14

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

So with respect to the first question:So with respect to the first question:

Is plankton of the Baltic Sea really Is plankton of the Baltic Sea really poor in speciespoor in species??

The answer clearly is NO!The answer clearly is NO!

the number of taxa known to exist in the Baltic Sea area is comparable to numbers known from the number of taxa known to exist in the Baltic Sea area is comparable to numbers known from other Seas as, e.g. North Sea (1500 phytoplankton species; Hoppenrath 2004) or Australian other Seas as, e.g. North Sea (1500 phytoplankton species; Hoppenrath 2004) or Australian coastal water bodies etc……the same held true for small Zooplankton speciescoastal water bodies etc……the same held true for small Zooplankton species

However, this finding even underlines the importance of the question about possible salinity However, this finding even underlines the importance of the question about possible salinity patterns because “species richness” might be due to addition of freshwater taxa naturally not patterns because “species richness” might be due to addition of freshwater taxa naturally not present in regular Seas….present in regular Seas….

In the Baltic for example phytoplankton species richness have been shown to be highest in the In the Baltic for example phytoplankton species richness have been shown to be highest in the Bay of Finland – which is most probably an effect of taxonomic skills or sample processing Bay of Finland – which is most probably an effect of taxonomic skills or sample processing rather than biodiversity patternrather than biodiversity pattern

Page 15: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 15

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Number of PHYTOPLANKTON taxa in the Western and Eastern Baltic Sea

Data for 0 PSU Eastern Baltic: Telesh et al., 2008a,

Data for 5 PSU Eastern Baltic: Olenina & Olenin, 2002

Western Baltic (0-29 PSU): Sagert et al., 2008

Solid line: reconstructed cumulative Remane curve

All columns are mainly (> 85%) species-based but still contain genera and family data in cases of difficult and problematic groups

From: Telesh et al., 2011a

Page 16: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 16

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Species numbers of common phytoplankton groups at different salinities along the German Baltic coast

columns (right Y-axis): number of samples with a given salinity

Telesh, Schubert & Skarlato (2011b). MEPS 432: 293-297 (OA)Protistan diversity does peak in the horohalinicum of the Baltic Sea: Reply to Ptacnik et al. (2011)

Page 17: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 17

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

The horohalinicum occupies major area

of the Baltic Sea

Salinity calculated for 2006 – 2009

(Feistel et al., 2010)

From: Telesh et al., 2011a

Page 18: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 18

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Number of ZOOPLANKTON species in the salinity gradient of the Baltic Sea

(Telesh & Heerkloss, 2002, 2004; Telesh et al., 2009)

0

50

100

150

200

250

300

350

400

0 3 6 9 12 15 18 21 24 35

Salinity (PSU)

Nu

mb

er

of

sp

ec

ies

Crustacea Rotifera Ciliophora Remane curve

From: Telesh et al., 2011a

Page 19: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 19

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

UnicellularUnicellular protists: protists:phytoplankton, heterotrophic nanoflagellates, phytoplankton, heterotrophic nanoflagellates, planktonic and bentho-pelagic ciliatesplanktonic and bentho-pelagic ciliates (* - (* - regions where data on ciliates were lackingregions where data on ciliates were lacking))

UNICELLULAR PLANKTON (PROTISTA)

y = -131,3x2 + 691,3x - 149,6

R2 = 0,75

0

200

400

600

800

1000

0 6 12 18* 24*

Salinity

Nu

mb

er

of

sp

ec

ies

MULTICELLULAR ZOOPLANKTON(METAZOOPLANKTON)

y = 497,8e-0,36x

R2 = 0,90

0

50

100

150

200

250

300

350

400

0 6 12 18* 24*

Salinity

Nu

mb

er

of

sp

ec

ies

MulticellularMulticellular zooplankton zooplankton

From: Telesh et al., 2011a

Page 20: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 20

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Page 21: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 21

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

CHARACTERISTICS OF PROTISTS

Planktonic mode of life => Transfer with water masses =>Low stress in salinity gradient

Fast reproduction, large genetic diversity, high adaptability => cosmopolitanism

Broad range of salinity tolerance,fast recovery after stress

Specific osmoregulation mode (e.g. contractile vacuole)

Ability to form cysts in unfavorable conditions

ESTABLISHED HYPOTHESES

The body-size dependency of the evolution rate (Fenchel & Finlay, 2004)

Small body size of protists => fast evolution

Taxa-area relationship(Fenchel & Finlay, 2004; Fuhrman, 2009)

Large area of the Baltic Sea => high protistan diversity

The Intermediate Disturbance Hypothesis (Grime, 1973; Connell, 1978)

Moderate disturbance by low salinity => highest protistan diversity

Page 22: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 22

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

For this, we’ll look for even smaller and faster ones – Bacterioplankton

And for the other group of sessile and slow ones - Makrophytobenthos

But working with field samples you would immediately protest!Counting a marine sample is much more time-consuming than a central Baltic Sea one!

Now we have to follow two different directions:

First to follow the trail – looking for species minima in other groups of organisms

After this, we’ll continue trying to solve the field vs. pooled data problem above

Page 23: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 23

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Herlemann et al., 2011Herlemann et al., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME J.. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME J.

Page 24: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 24

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

No decrease in BACTERIAL DIVERSITY (OTUs) in the Baltic horohalinicum was observed, nor did No decrease in BACTERIAL DIVERSITY (OTUs) in the Baltic horohalinicum was observed, nor did the the Shannon diversity indexShannon diversity index change markedly (Herlemann et al., 2011). change markedly (Herlemann et al., 2011).

Empty triangles are observed number of OTUs; black triangles are Shannon index values.Empty triangles are observed number of OTUs; black triangles are Shannon index values.

Page 25: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 25

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

The field sites II – salinity and climatic gradient

The field case / own results

Page 26: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 26

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

Results – species number

The field case / own results

y = 1,5406x + 5,1438R

2 = 0,8983

0 5 10 15 20 25 30

Salzgehalt

f = 580

20

10

30

50

40

Page 27: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 27

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

Comparison with known data

The field case / own results

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

salinity (psu)

sp

ec

ies

nu

mb

er

Data from REMANE (1957, Makrozoobenthon) and Nielsen et. al. (1995, Makrophytobenthon)

Page 28: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 28

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

So we find another „general picture“ for Macrophytes?

The field case / own results

R2 = 0,8543

R2 = 0,8085

R2 = 0,473

0

5

10

15

20

25

30

0 5 10 15 20 25 30Salinity

Nu

mb

er

of

sp

ec

ies

Chlorophyta

Phaeophyceae

Rhodophyta

Page 29: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 29

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

Not really, because if we include higher plants, the Remane-picture comes back:

The field case / own results

0,0

0,1

0,2

0,3

0,4

0,5

0 5 10 15 20 25 30

Salinity

Ra

tio

ES

G I

/ E

SG

II

But the reason is different – osmotically higher plants are different because of their turgor, the picture above rather reflects evolutionary constraints with respect to anchoring in the habitat. Only a few algae are able to anchor in soft substrates, a kind of habitat rare under marine conditions but prevailing in the limnetic biome...

Page 30: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 30

Functional diversity of macrophytes

General motivation Synthesis and outlookConcepts & History

Results – similarity of species composition of neighboured sites

The field case / own results

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20 25 30

Salinity

Jaccard Index

Sörensen Index

This is also reflected in community composition, where the drop around the „critical salinity“ is caused by the disappaerance of habitat builders, i.e. large perennial brown algae species („kelp“-species)

Page 31: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 31

Life in the salinity gradient

1. The Baltic Sea is not poor in plankton species (as thought earlier).1. The Baltic Sea is not poor in plankton species (as thought earlier).

2. Remane’s Artenminimum (species-minimum) concept is valid for 2. Remane’s Artenminimum (species-minimum) concept is valid for macrozoobenthos, but cannot be extrapolated to other major ecological macrozoobenthos, but cannot be extrapolated to other major ecological groups of aquatic organisms in the Baltic Sea. groups of aquatic organisms in the Baltic Sea.

3. The protistan species richness peaks in the horohalinicum 3. The protistan species richness peaks in the horohalinicum giving giving grounds to the novel ‘protistan species-maximum grounds to the novel ‘protistan species-maximum concept’.concept’.

4. Field investigations proved restricted applicability of Remane’s species-minimum concept to macrophytes.

German Partners:German Partners: University of RostockUniversity of Rostock

Leibniz-Institute for Baltic Sea Leibniz-Institute for Baltic Sea Research (IOW)Research (IOW)

Russian Partners

Institute of Cytology, Institute of Cytology, Russian Academy of Russian Academy of Sciences Sciences

Zoological Institute, Russian Zoological Institute, Russian Academy of SciencesAcademy of Sciences

Page 32: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

But the field vs. pooled data problem?

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 32

Page 33: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Number of taxa per sample

So the feeling was right – there is a problem: brackish samples are „species poor“ – how does it comes to the „species maximum“ of pooled samples?

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 33

Page 34: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

But the field vs. pooled data problem?

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 34

Hypotheses:

1. There is a difference in size - smaller and therefore faster evolving unicellular organisms dominate in the horohalinicum, so the observed maximum number of protistan species in the critical salinity zone is caused by a pronounced seasonality within the horohalinicum, caused by a shift in composition of phytoplankton community towards dominance of small-sized species with rather narrow optima

2. The protistan species maximum in the horohalinicum is caused by between-sample variation in highly changeable brackish waters rather than by within-sample diversity

Both hypotheses are closely inter-related. Between-sample variation in plankton species richness may be caused by the regional differences in sampling sites with the same salinity due to high water mobility and the consequent heterogeneity of the pelagic environment. Alternatively, this variability may be driven by the seasonality in plankton species composition, the latter being clearly related to the size of the organisms.

Page 35: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Seasonality of mean size per sample

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 35

0

5

10

15

20

25

30

35

1.0 - 2.9 3.0 - 4.9 5.0 - 7.9 8.0 - 9.9 10.0 - 11.9 12.0 - 18.0

salinity

size

(µm

)

No significant difference in mean size per sample between salinity classes

But differences with respect to seasonality of the mean sizes?

Page 36: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Seasonality of mean size per sample

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 36

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

month

siz

e (

µm

)

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

month

siz

e (

µm

)

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

month

siz

e (

µm

)

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

month

siz

e (

µm

)

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

month

siz

e (

µm

)

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12

months

ize

m)

Salinity 1.0-2.9 Salinity 3.0-4.9 Salinity 5.0-7.9

Salinity 8.0-9.9 Salinity 10.0-11.9 Salinity 12.0-18.0

Indeed, differences with respect to seasonality of the mean sizes between the salinity classes…

Page 37: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Between sample vs. within sample diversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 37

Ks-values, representing the number of samples needed to detect half of the species found in the respective salinity classes are lowest at the horohalinikum (grey bars)

Page 38: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

Pronounced seasonality in the horohalinikum Higher between-sample diversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 38

But the field vs. pooled data problem?

Page 39: 11.10.2015 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN Life in the salinity gradient Discovering mechanisms behind a new biodiversity

21.04.23 UIVERSITÄT ROSTOCK | FAKULTÄT FÜR MATHEMATIK UND NATURWISSENSCHAFTEN 39

Life in the salinity gradient

Remane‘s concept Database analysed Synthesis and outlookConclusions for plankton

Thank you for your attention

There are numerous people to thank for active contributions during the field work as well by struggling trough the results:

“field workers” “think tank”Peter Feuerpfeil Jochen KrauseDirk Schories Sigrid SagertChristian Blümel Mandy BahnwartManfred Schubert Uwe Selig

Active support, tipps, discussions & amendements:

Pauline Snoeijs, Hans Kautsky, Georg Martin, Irmgard Blindow, Christian P