32
4. Komplexe 4.7. Komplexe in wässriger Lösung 4.7.2. Stufenweise Komplexbildung Der schrittweise Austauschprozess der Wassermoleküle in einem Aquakomplex [M z+ (aq)] mit einem neutralen (oder geladenen) Liganden L (oder X y– ) heisst stufenweise Komplexbildung. Er führt zur Bildung von Komplexen des Typs [ML n (OH 2 ) 6-n ] z+ (oder [MX n (OH 2 ) 6-n ] (z-ny)+ ) ausgehend von [M(OH 2 ) 6 ] z+ und den Liganden L (oder X y– ). Dabei handelt es sich um Ligandensubstitutions-Gleichgewichte. 17 Cd 2+ (aq) + Br CdBr + (aq) K 1 = 37 CdBr + (aq) + Br CdBr 2 (aq) K 2 = 3.4 CdBr 2 (aq) + Br CdBr 3 (aq) K 3 = 3.1 CdBr 3 (aq) + Br CdBr 4 2– (aq) K 4 = 1.0 Beispiel: Man betrachte die Bildung von Bromokomplexen des Cd 2+ -Ions in einer KBr-Lösung. Folgende Gleichgewichte stellen sich ein: Gesucht sind die Gleichgewichtskonzentrationen der verschiedenen Komplexe in Abhängigkeit von den totalen Konzentrationen des Metallions und des Liganden. Wie verteilt sich das Metallion auf die verschiedene Komplexe? Siehe: Housecroft & Constable, Chemistry, 4 th Ed., Ch. 23.7, p. 849.

4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

4. Komplexe 4.7. Komplexe in wässriger Lösung4.7.2. Stufenweise Komplexbildung

Der schrittweise Austauschprozess der Wassermoleküle in einem Aquakomplex [Mz+(aq)] mit einem neutralen (oder geladenen) Liganden L (oder Xy–) heisst stufenweise Komplexbildung. Er führt zur Bildung von Komplexen des Typs [MLn(OH2)6-n]z+ (oder [MXn(OH2)6-n](z-ny)+) ausgehend von [M(OH2)6]z+ und den Liganden L (oder Xy–).

Dabei handelt es sich um Ligandensubstitutions-Gleichgewichte.

17

Cd2+(aq) + Br– CdBr+(aq) K1 = 37

CdBr+(aq) + Br– CdBr2(aq) K2 = 3.4

CdBr2(aq) + Br– CdBr3–(aq) K3 = 3.1

CdBr3–(aq) + Br– CdBr4

2–(aq) K4 = 1.0

Beispiel: Man betrachte die Bildung von Bromokomplexen des Cd2+-Ions in einer KBr-Lösung.

Folgende Gleichgewichte stellen sich ein:

Gesucht sind die Gleichgewichtskonzentrationen der verschiedenen Komplexe in Abhängigkeit von den totalen Konzentrationen des Metallions und des Liganden. Wie verteilt sich das Metallion auf die verschiedene Komplexe?

Siehe: Housecroft & Constable, Chemistry, 4th Ed., Ch. 23.7, p. 849.

Page 2: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 3: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Es zeigt sich, dass Bruttostabilitätskonstanten (β) zur Berechnung der Gleichgewichtskonzentrationen besser geeignet sind als die individuellen Konstanten K1,....,K4.

18

β1 = K1 =[CdBr+]

[Cd2+][Br– ]= 37

β2 = K1 ⋅K2 =[CdBr2 ]

[Cd2+][Br– ]2= 126

β3 = K1 ⋅K2 ⋅K3 =[CdBr3

– ][Cd2+][Br– ]3

= 398

β4 = K1 ⋅K2 ⋅K3 ⋅K4 =[CdBr4

2– ][Cd2+][Br– ]4

= 398

Cd2+(aq) + Br– CdBr+(aq)

Cd2+(aq) + 2 Br– CdBr2(aq)

Cd2+(aq) + 3 Br– CdBr3–(aq)

Cd2+(aq) + 4 Br– CdBr42–(aq)

Es gelten ferner die Erhaltungssätze:

[Cd]tot = [Cd2+] + [CdBr+] + [CdBr2 ] + [CdBr3– ] + [CdBr4

2– ] = [Cd]zugegeben

[Br]tot = [Br– ] + [CdBr+] + 2 [CdBr2 ] + 3 [CdBr3– ] + 4 [CdBr4

2– ] = [Br]zugegeben

(1)

(2)

(3)

(4)

(5)

(6)

Sechs nichtlineare Gleichungen für sechs Unbekannte ([Cd2+], [CdBrn(2–n)+] mit n = 1 bis 4

und [Br–]), lösbares System aber kompliziert.

⇒ [CdBrn(2−n)+ ] = βn[Cd2+][Br– ]n

Page 4: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 5: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Das System vereinfacht sich falls der Ligand Br– im Überschuss vorliegt, was auch der Festlegung von experimentellen Bedingungen entspricht:

19

Dann ergibt sich:

Verteilungskoeffizient

Falls nun [Br]tot und [Cd]tot bekannt sind, können durch Einsetzen in Gleichungen (1) – (5) die Konzentrationen der einzelnen Spezies berechnet werden. Sei [Br]tot = 1 M und [Cd]tot = 0.01 M, dann ergeben sich mit [Br–] ≈ [Br]tot:

α L = 1+ βn[Br– ]n

n=1

4

α L = 1+ βn[Br– ]n

n=1

4

∑ = 960

[Cd2+] = 1.04 ⋅10–5M (0.1% des gesamten Cd)[CdBr+] = 3.9 ⋅10–4M (3.9%)[CdBr2 ] = 1.3⋅10–3M (13.1%)[CdBr3

– ] = 4.1⋅10–3M (41.5%)[CdBr4

2– ] = 4.1⋅10–3M (41.5%)

Praktisch-methodische Überlegungen:

Die totale Metallkonzentration kann eingestellt werden und ist bekannt.Das gilt auch für den Liganden, der in der Regel in grossem Überschuss vorliegt.Relevante Komplexe werden nur mit dem Liganden gebildet.Keine oder geringe pH-Abhängigkeit, ausser bei hohen pH-Werten (Bildung von Metallhydroxiden).

[CdBrn(2−n)+ ] = βn[Cd2+][Br– ]n ⇔ [Cd]tot = [Cd2+] + βn[Cd2+][Br– ]n

n=1

4

[Br– ] n ⋅n=1

4

∑ [CdBrn(2−n)+ ]

⇔ [Cd]tot = [Cd2+] ⋅ 1+ βn[Br– ]n

n=1

4

∑ ⎫⎬⎭

⎧⎨⎪

⎩⎪

Page 6: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 7: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

4. Komplexe 4.7. Komplexe in wässriger Lösung

4.7.3. Stufenweise Komplexbildung mit basischen Liganden

Es gibt Liganden, welche auch basisch und somit protonierbar sind, z. B. NH3. Bei entsprechenden Komplexbildungsreaktionen gilt die Protonierung des Liganden als Konkurrenzreaktion und die Komplexbildung wird somit pH-abhängig.

20

HL+ L MLnz+ KomplexbildungsreaktionenProtonierung

Komplexbildungsreaktionen (allgemein, in Kurzform formuliert):

M + L ML

MLn-1 + L MLn

K1 =[ML][M][L]

Kn =[MLn ]

[MLn-1][L]

L + H+ HL+

Protonierung von L:

K = [HL+ ][H+ ][L]

= 1Ka(HL+)

Erhaltungssatz für M:

[M]tot = [M] + [ML] + [ML2 ] + ... + [MLn ] + ... + [MLN ] (N max. KZ)

[M]tot = [M]⋅ 1+ βn[L]n

n=1

N

∑ ⎫⎬⎭

⎧⎨⎪

⎩⎪1+ βn[L]n

n=1

N

∑ = α L Verteilungskoeffizient

βn = K1 ⋅K2 ⋅... Kn

logβn = Knn∑

Page 8: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 9: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Die Bildung von Cu(+II)-Komplexen mit Ammoniak – Amminkomplexe – wird als Beispiel betrachtet. Dabei treten folgende Spezies auf :

21

[Cu(OH2)6]2+ [Cu(NH3)(OH2)5]2+ [Cu(NH3)2(OH2)4]2+ [Cu(NH3)3(OH2)3]2+ [Cu(NH3)4(OH2)2]2+

ML ML2 ML3M ML4

Individuelle Komplexbildungskonstanten für Cu-Amminkomplexe:

K1 = 2⋅104 K2 = 5⋅103 K3 = 1⋅103 K4 = 2⋅102

log Kn 4.3 3.7 3.0 2.3

log βn 4.3 8.0 11.0 13.3

Prinzipiell sind folgende Gleichgewichtskonzentrationen gesucht:

[M], [ML], [ML2 ], [ML3], [ML4 ], [L], [HL+ ], [H+ ] und [OH– ]

⇒ 9 Unbekannte ⇒ 9 Gleichungen:

4 Gleichungen Komplexbildung Kn (βn) 1 Gleichung Protonierung von L Ka

1 Gleichung Autoprotolyse Kw

3 Gleichungen Erhaltungssätze [M]tot, [L]tot, [H+]tot

ML5 bildet sich erst bei sehr hohen NH3-Konzentrationen und ML6 bildet sich nicht.

Page 10: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 11: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Das System ist lösbar, Vereinfachungen sind aber gesucht. Man arbeitet meistens mit einem Überschuss L und im Puffergebiet von L, d.h. bei einem bekannten pH.Somit ergibt sich:

22

[M]tot, zugegeben [L]⇒ [L]tot = [L] + [HL+ ] + n[MLn ]

n∑

pH = pKa + log [L][HL+]

= pKa + log [L][L]tot -[L]

⇒ [L] = [L]tot10(pH-pKa )

1+10(pH-pKa )

Anhand dieser Gleichungen / Rechnungen können nun die Konzentrationen der einzelnen Spezies ermittelt und graphisch in Verteilungsdiagrammen dargestellt werden.

Praktisch-methodische Überlegungen:

Die totale Metallkonzentration kann eingestellt werden und ist bekannt.Das gilt auch für den Liganden, der in der Regel in grossem Überschuss vorliegt.Relevante Komplexe werden nur mit dem Liganden gebildet.Grosse pH-Abhängigkeit, der pH muss in der Regel mit einem Puffer eingestellt werden.

Aus [M]tot = [M]⋅ 1+ βn[L]n

n=1

N

∑ ⎫⎬⎭

= [M]⋅α L ⎧⎨⎪

⎩⎪

folgt [M] = [M]tot

α L

und aus [MLn ] = βn ⋅[M]⋅[L]n

folgt [MLn ] = [M]tot

α L⋅βn ⋅[L]n

Page 12: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 13: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

23

1) Verteilungsdiagramm der Cu(+II)-Amminkomplexe:Inertelektrolyt NH4NO3, Ionenstärke I = 2.0, 18°C(p[NH3] = –log [NH3], A = NH3)

Quelle: W. Schneider, Einführung in die Koordinationschemie, Springer, Berlin, 1968, S. 56.

2) Verteilungsdiagramm der Cd(+II)-Chlorokomplexe:Ionenstärke I = 3.0, 25°C

Quelle: J.M. Butler, D.R. Cogley, Ionic Equilibrium, Wiley, New York, 1998, S. 243.

Beispiele von Verteilungsdiagrammen

Page 14: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 15: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

24

3) Verteilungsdiagramme einiger Metallamminkomplexe (Existenzbereiche):Inertelektrolyt NH4NO3, Ionenstärke und T, wie angegeben(p[NH3] = –log [NH3], A = NH3)

Interpretation:Cu+ und Ag+ bilden nur ML- und ML2-Komplexe.Hg2+ und Zn2+ bilden MLn- Komplexe mit n bis 4.Cu2+ bildet ML5 erst bei sehr hohen NH3-Konzentrationen.ML6-Komplexe werden von Mg2+, Co2+ und Ni2+ erst bei sehr hohen NH3-Konzentrationen gebildet.Co3+ bildet die stabilsten ML6-Komplexe, vollständige Überführung zu ML6 bereits bei [NH3] ≈ 10–3 M.

Quelle: W. Schneider, Einführung in die Koordinationschemie, Springer, Berlin, 1968, S. 56.

Page 16: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 17: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

4. Komplexe 4.7. Komplexe in wässriger Lösung

4.7.4. Löslichkeit und Komplexbildung

Bei schwerlöslichen Metallsalzen kann die Konzentration der Mz+(aq)-Ionen im Gleichgewicht mit dem festen Salz MXn(s) sehr gering sein. In solchen Fällen kann eine Komplexbildung die Löslichkeit(1) signifikant beeinflussen und somit bewirken, dass sich der Anteil an Metallionen in Lösung in Form von Komplexen drastisch erhöht.

25

(1) CRC Handbook of Chemistry and Physics, 92th Ed., Aqueous Solubility of Inorganic Compounds at Various Temperatures(2) CRC Handbook of Chemistry and Physics, 92th Ed., Solubility Product ConstantsKSO: SO steht für "solubility"; SP, für "solubility product" wird auch verwendet.

Das Löslichkeitsprodukt

Man betrachte Silberchlorid (AgCl) als Beispiel für ein schwerlösliches Salz. Ausgehend von festem AgCl(s) kann ein Gleichgewicht für den Lösevorgang formuliert werden:

KSO ist das sogenannte Löslichkeitsprodukt für AgCl, ist eine Gleichgewichtskonstante und verknüpft die maximal erreichbare Konzentration der entsprechenden Ionen in Lösung im Gleichgewicht mit dem Festkörper. Aus der Stöchiometrie des Lösevorgangs und aus KSO ergibt sich beim Lösen von AgCl in Wasser:

Ag+(aq) + Cl–(aq)AgCl(s) KSO = [Ag+(aq)][Cl–(aq)] ≈ 10–10

[Ag+(aq)] = [Cl– (aq)] = KSO =10–5M

m Mz+(aq) + n X(mz/n)–(aq)MmXn(s) KSO = [Mz+(aq)]m⋅[X–(aq)]n

Allgemeine Formulierung des Löslichkeitsprodukts:

Page 18: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 19: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Gleichgewichtsbedingungen für das System AgCl(s) und KCl in Wasser

26

Ag+(aq) + Cl– AgCl

Ag+(aq) + 2 Cl– AgCl2–

Ag+(aq) + 3 Cl– AgCl32–

Ag+(aq) + 4 Cl– AgCl43–

β1 = K1 =[AgCl]

[Ag+][Cl– ]= 2.5 ⋅103

β2 = K1 ⋅K2 =[AgCl2

– ][Ag+][Cl– ]2

= 3⋅105

β3 = K1 ⋅K2 ⋅K3 =[AgCl3

2– ][Ag+][Cl– ]3

= 1.6 ⋅105

β4 = K1 ⋅K2 ⋅K3 ⋅K4 =[AgCl4

3– ][Ag+][Cl– ]4

= 3⋅105

In diesem System sind folgende Spezies vorhanden: Ag+(aq), AgCl, AgCl2–, AgCl32–, AgCl43–, AgCl(s)

Lösung festePhase

Erhaltungssatz für gelöste Ag-haltige Spezies:

[Ag]tot,gelöst = [Ag+] + [AgCl] + [AgCl2– ] + [AgCl3

2– ] + [AgCl43– ]

[Ag]tot,gelöst = [Ag+] + βnn∑ [Ag+][Cl– ]n = [Ag+]⋅ 1+{ βn [Cl– ]n} = [Ag+]⋅α L α L = 1+ βn[Cl

– ]n

[AgCln ] = βn ⋅[Ag+]⋅[Cl– ]n

Falls AgCl in 1 M KCl gelöst wird ([Cl–(aq)] = 1 M), ergibt sich aus dem KSO [Ag+(aq)] = 10–10 M. Eine Messung zeigt aber, dass die totale Konzentration von gelösten Ag+-Spezies ca. 10–4 beträgt.Grund: Die hohe Cl–-Konzentration führt zur Bildung von löslichen Silberchloro-Komplexen.

Page 20: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 21: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

27

Aus dem Erhaltungssatz und dem Löslichkeitsprodukt erhält man:

[Ag]tot,gelöst = [Ag+]⋅α L und [Ag+] = KSO

[Cl– ] ⇒ [Ag]tot,gelöst =

KSO

[Cl– ]⋅α L

und durch Einsetzen in die Gleichgewichtsbedingungen lassen sich die Konzentrationen der einzelnen Komplexe als Funktion von KSO, βn und [Cl–] berechnen. Diese Situation ist von besonderer Bedeutung, falls Cl– im Überschuss vorliegt ([Cl–] >> [Ag]tot,gelöst)

Aus diesen Beziehungen ergeben sich z. B. doppelt logarithmische Verteilungsdiagramme (vgl. Sillén-Diagramme bei Säuren und Basen), die zur Beurteilung der Existenzbereiche der einzelnen Spezies herangezogen werden können.

Praktisch-methodische Überlegungen:

Die totale Metallkonzentration ist nicht a-priori bekannt, Metallionen werden erst aus dem schwerlöslichen Salz durch Komplexbildung herausgelöst.Der Ligand muss in der Regel in grossem Überschuss vorliegen.Relevante Komplexe werden nur mit dem Liganden gebildet.Keine oder geringe pH-Abhängigkeit, ausser bei hohen pH-Werten (Bildung von Metallhydroxiden).

[AgCln ] = βn ⋅[Ag+]⋅[Cl– ]n ⇒ [AgCln ] = βn ⋅KSO ⋅[Cl– ]n-1

Page 22: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 23: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

4. Komplexe 4.8. Der Chelateffekt

[Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+

[Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+

Man vergleiche die Ligandensubstitutions-Gleichgewichte z. B. an Ni2+ mit NH3 bzw. mit dem bidentaten Liganden en (H2N-CH2-CH2-NH2, 1,2-Diaminoethan):

Man stellt fest, dass bei den Ligandensubstitutionen von 2, 4, bzw. 6 Wassermolekülen die Differenzen der entsprechenden (Brutto)Gleichgewichtskonstanten für die zwei Komplextypen

Chel* = log K1(en) – log β2(NH3) = 2.5log β2(en) – log β4(NH3) = 6log β3(en) – log β6(NH3) = 9.5

positiv sind. Der chelierende Ligand führt zu höheren Komplex-Bildungskonstanten.

Komplexe mit chelierenden Liganden sind in der Regel thermodynamisch stabiler als entsprechende Komplexe mit (vergleichbaren) monodentaten Liganden.

*Die Bezeichnung "Chel" sowie der Begriff "Chelateffekt" wurden von G. Schwarzenbach (LAC/ETH) eingeführt.

28

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 (1) (2) (3)

n

logKn / logβn

logKn(NH3)

logKn(en)

logβn(NH3)

logβn(en)

Page 24: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 25: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

4. Komplexe 4.9. Grundzüge der Valenz-Elektronenkonfiguration von Übergangsmetallkomplexen

Valenzelektronen zählen (!) bei Übergangsmetallen

Die Anzahl Valenzelektronen eines Metalls entspricht der Gruppennummer im PeriodensystemBeispiel: Mn gehört der Gruppe 7 und hat 7 VE, Pt gehört der Gruppe 10 und hat 10 VE.

Die Metallatome in ihrem Grundzustand haben eine Elektronenkonfiguration, die vom Aufbauprinzip gegeben ist (siehe ACIPC). Hier gibt es aber Unregelmässigkeiten, z. B. in der Gruppe 10:Ni: [Ar]4s23d8; Pd: [Kr]5s04d10; Pt: [Xe]4f146s15d9

Bei Übergangsmetallionen werden die verbleibenden Valenzelektronen den fünf d-Orbitalen zugeschrieben (die Energieniveaus der nd-Orbitale liegen unter dem des (n+1)s-Orbitals). Beispiel: Ni(+II) / Ni2+: [Ar]3d8; Pd(+II) / Pd2+: [Kr]4d8; Pt(+II) / Pt2+: [Xe]4f145d8

Man spricht also bei Ni(+II), Pd(+II)

und Pt(+II) von d8-Zentren.

29

Siehe: Housecroft & Constable, Chemistry, 4th Ed., Ch. 23, pp. 819-877.

L

M

LL L

L L

z

y

x

dxy

dz2

dx2−y2

dxzdyz

dxy

dz2

dx2−y2

dxzdyz

Page 26: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 27: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Die Kristallfeld/Ligandenfeld-Aufspaltung der d-Orbitale bei Übergangsmetallen

Die Kristallfeldtheorie ist ein rein elektrostatisches Modell.

Die d-Orbitale im isolierten (d.h. nicht wechselwirkenden) Übergangsmetallatom oder -Ion sind energetisch entartet (gleiches Energieniveau).

Betrachtet man nun ein solches Ion oder Atom eingebettet in einer Ligandensphäre so stellt man fest, dass diese Entartung (teilweise) aufgehoben wird.

Je nach Anzahl und Anordnung der Liganden ergeben sich verschiedene Aufspaltungen der Energieniveaus der d-Orbitale.

Hier werden nur die oktaedrische, tetraedrische bzw. quadratisch-planare Aufspaltung in Betracht gezogen.

30

dyzdxy dxz

dz2dx2−y2

dx2−y2

dxy

dz2

dxz dyz

dyzdxy dxz

dz2dx2−y2

E

oktaedrischtetraedrisch quadratisch-planar

Für eine detaillierte Behandlung siehe Vorlesung AC 1 (3. Semester)

Δokt

sphärischesLigandenfeld

Page 28: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 29: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

Der Ausmass der Aufspaltung der d-Orbitale (Ligandenfeldaufspaltung, z. B. Δokt für einen oktaedrischen Komplex) ist vom Metallzentrum und von der Natur der Liganden abhängig.

Diese Aufspaltung nimmt von der ersten zur dritten Übergangsreihe, mit der Ladung des Metallzentrums

31

d-O

rbita

lene

rgie

ligandenfreies Ion

sphärischesLigandenfeld

eg-Zustände

t2g-Zustände

oktaedrischesLigandenfeld

!!"" #$% !!"#$%&'!() *+, "-(" +(+,).+)&+./0+( *"#!#'1(*+ +.(+# #+(',%&%'23# 2*+, ".2(# .( 45+. +(+,").+6+,#/0.+*+(+ *"$,!$$+( .3 27'%+*,.#/0+( %.)%(*+("+&*!" &6)&' (.)' )*+,'

#$%&'!() !!# -. /8 01()' 62( *+, 0%'!, #2520& *+, 123$&+94+(',+( %&# %!/0 123$&+9"&.)%(*+( %: &*%,-:+, 0.(%!# #$.+&' *.+ #%0& !(* )+23+',.#/0+ !(2,*(!() *+, %.)%(*+( !0.+, #+/0#2 27'%+*,.#/0 ! +.(+ 32&&+,'

123$&+94+(',+(' 4+. "#"#$#%#% !&"'%(#% !(* )&+./0+,59.*%'.2(##'!"+ *+,6:+,)%()#3+'%&&+#.(* *.+ 7(*+,!()+( 62( !! .((+,0%&: +.(+, "$#)"'%"*+#,'--#$#)&.(# "#)&%"2 &%%#)/'-$ #&%#)"$#)"'%"*+#,'--#%)011# $#'2/,-&2/' 8(* 45%, 6+,0%&'+( #./0 *.+ !!"9+,'+ *+, +,#'+(2 45+.'+(!(* *,.''+( 6:+,)%()#$+,.2*+ :+. 6+,)&+./0:%,+( 122,*.(%'.2(#6+,:.(*!()+( +'5% 5.+- : -'; : )' <.' 5%/0#+(*+, 59.*%'.2(##'!"+ *+# #+(',%&3+'%&&# +,0;0' #./0 !! +:+("%&&# #'%,7&4'4' :+.3 6:+,)%() =,#$&*%, ! <(&$&*%, !3 ;.>,2 *% .( )&+./0+, 3./0'!() *.+ %.")%(*+( 5+)+( *+, #'1,7+,+( +&+7',2#'%'.#/0+( !(4.+0!() (10+, %( *%#<+'%&&4+(',!3 0+,%("7233+(252*!,/0 *.+ ?';,!() *+, *"5,:.'%&+ *!,/0 *%# %.)%(*+("+&* #'+.)'' /.+3+.0+("2&)+5%/0#+(*+, 5,:.'%&+(+,).+%!"#$%&'!() +.(.)+, <+'%&&+ .( 5./0'.)+( 59.*%'.2(##'!"+( *!,/0+.( :+#'.33'+# %.)%(*+("+&* &22*1#3,).2/#+&*2/# &#&/# (#) '#,'--&.%#%@@, .#' )+)+:+( *!,/0:

<(#$$0.#$$=2#$$(+#$$A#$$(+&$$=,&$$A&$$=2&$$B.&$$3!#$$<(%$$<2&$$30&$$3!&$$C*%$$D,&$$3+%$$C'%$ '

%.)%(*+(' 4+. "#"#$#%#+ (#%,)'-+#,'-- 01()' *.+ E(+,).+%!"#$%&'!() !!.( #'%,7+3 <%F+

62( *+, !,' *+, %.)%(*+( %:' 8(* 45%, +,0;0' #./0 !!2 5+(( 3%( :+. )+)+:+(+3 123"$&+94+(',!3 +.(+( %.)%(*+( *+, (%/0"2&)+(*+( 3+.0+ &%&'()*+,-'.!%,-' &'!-' .3 +()+,+(?.((G 22*1#3,).2/#+&*2/# &#&/# (#) !&"'%(#%@@, *!,/0 +.(+( ,+/0'# *%62( #'+0+(*+( %.)%(*+(3.' #'1,7+,+3 %.)%(*+("+&* +,#+'4':

D'$4,'$?#'$?=0'$=&'$0'& $('$0=5'$5H'$'05'$29#'$H#5$(=?'$(='$$<$0H&$+($*.$<$$0+($(5'# $)05'$=0'$=5'

/.+ .( *+, 3+.0+ &.(7# #'+0+(*+( %.)%(*+( +,4+!)+( 3.'0.( +.( *2/4'2/#* !&"'%(#%5#-(2 *.+,+/0'# #'+0+(*+( %.)%(*+( +.( *,')3#* !&"'%(#%5#-('

/.+ 4+4+./0(!() 22*1#3,).2/#+&*2/# &#&/#@@ ,-0,' *%0+,2 *%## 3%( *.+ $,;F+ !!4'4' %!# #$+7',2#72"

$.#/0+( E,)+:(.##+( %:&+.'+( 7%((' ?2 %:#2,:.+,' +'5% *%# B.'%("D2( B.&$ &+.( *"E&+7',2(, .3 123$&+9(B.&H#5,")&$ :+. 4+#',%0&!() 3.' #./0':%,+3 %./0' C02'2(+( *+, E(+,).+ 0!!!

!2 *.+ 4!3 22H+:+(@@

*+# *"E&+7',2(# 623 +(+,).+1,3+,+( '#"" .( *+( +(+,).+,+./0+( +""#!#'%(* *.+(+(' /.+# ).:'A+,%(&%##!()

4! +.(+, !:#2,$'.2(#:%(*+ .3 #./0':%,+( 4+,+./0 *+# ?$+7',!3# &+I. (3").J.. /3'!,2 *.+ "-, *.+6&.-#,,# )')$# *+# D2(# 6+,%('52,'&./0 .#' !(* +.(+, !!"#$%&'!()#+(+,).+ !

!62( )+J 7K=32& +('#$,./0'2

%&#2 +.(+,E(+,).+ 62( *+,$,;F+(2,*(!() /0+3.#/0+,4.(*!()#+(+,).+(' /.+B%'#%/0+2 *%## *%# /#--$-'0#1!$"+,&DD,"#!&"%' &!:#2,$'.2(#3%9.3!3 :+. *.. (3"-);.. /3'!, :+.3 !!L;#+( .( !332(.%7 ,&#5#$-'0 &!:#2,$'.2( :+. M.. (3" -MM.. /3'!, !(* :+.3 E('51##+,( 5')$-.* 5.,* &!:#2,$'.2( :+.

)' 4.(*!()#32*+&&+ *+, 6:+,)%()#3+'%&&723$&+9+ -J;N

d-O

rbita

lene

rgie

ligandenfreies Ion

sphärischesLigandenfeld

eg-Zustände

t2g-Zustände

oktaedrischesLigandenfeld

!!"" #$% !!"#$%&'!() *+, "-(" +(+,).+)&+./0+( *"#!#'1(*+ +.(+# #+(',%&%'23# 2*+, ".2(# .( 45+. +(+,").+6+,#/0.+*+(+ *"$,!$$+( .3 27'%+*,.#/0+( %.)%(*+("+&*!" &6)&' (.)' )*+,'

#$%&'!() !!# -. /8 01()' 62( *+, 0%'!, #2520& *+, 123$&+94+(',+( %&# %!/0 123$&+9"&.)%(*+( %: &*%,-:+, 0.(%!# #$.+&' *.+ #%0& !(* )+23+',.#/0+ !(2,*(!() *+, %.)%(*+( !0.+, #+/0#2 27'%+*,.#/0 ! +.(+ 32&&+,'

123$&+94+(',+(' 4+. "#"#$#%#% !&"'%(#% !(* )&+./0+,59.*%'.2(##'!"+ *+,6:+,)%()#3+'%&&+#.(* *.+ 7(*+,!()+( 62( !! .((+,0%&: +.(+, "$#)"'%"*+#,'--#$#)&.(# "#)&%"2 &%%#)/'-$ #&%#)"$#)"'%"*+#,'--#%)011# $#'2/,-&2/' 8(* 45%, 6+,0%&'+( #./0 *.+ !!"9+,'+ *+, +,#'+(2 45+.'+(!(* *,.''+( 6:+,)%()#$+,.2*+ :+. 6+,)&+./0:%,+( 122,*.(%'.2(#6+,:.(*!()+( +'5% 5.+- : -'; : )' <.' 5%/0#+(*+, 59.*%'.2(##'!"+ *+# #+(',%&3+'%&&# +,0;0' #./0 !! +:+("%&&# #'%,7&4'4' :+.3 6:+,)%() =,#$&*%, ! <(&$&*%, !3 ;.>,2 *% .( )&+./0+, 3./0'!() *.+ %.")%(*+( 5+)+( *+, #'1,7+,+( +&+7',2#'%'.#/0+( !(4.+0!() (10+, %( *%#<+'%&&4+(',!3 0+,%("7233+(252*!,/0 *.+ ?';,!() *+, *"5,:.'%&+ *!,/0 *%# %.)%(*+("+&* #'+.)'' /.+3+.0+("2&)+5%/0#+(*+, 5,:.'%&+(+,).+%!"#$%&'!() +.(.)+, <+'%&&+ .( 5./0'.)+( 59.*%'.2(##'!"+( *!,/0+.( :+#'.33'+# %.)%(*+("+&* &22*1#3,).2/#+&*2/# &#&/# (#) '#,'--&.%#%@@, .#' )+)+:+( *!,/0:

<(#$$0.#$$=2#$$(+#$$A#$$(+&$$=,&$$A&$$=2&$$B.&$$3!#$$<(%$$<2&$$30&$$3!&$$C*%$$D,&$$3+%$$C'%$ '

%.)%(*+(' 4+. "#"#$#%#+ (#%,)'-+#,'-- 01()' *.+ E(+,).+%!"#$%&'!() !!.( #'%,7+3 <%F+

62( *+, !,' *+, %.)%(*+( %:' 8(* 45%, +,0;0' #./0 !!2 5+(( 3%( :+. )+)+:+(+3 123"$&+94+(',!3 +.(+( %.)%(*+( *+, (%/0"2&)+(*+( 3+.0+ &%&'()*+,-'.!%,-' &'!-' .3 +()+,+(?.((G 22*1#3,).2/#+&*2/# &#&/# (#) !&"'%(#%@@, *!,/0 +.(+( ,+/0'# *%62( #'+0+(*+( %.)%(*+(3.' #'1,7+,+3 %.)%(*+("+&* +,#+'4':

D'$4,'$?#'$?=0'$=&'$0'& $('$0=5'$5H'$'05'$29#'$H#5$(=?'$(='$$<$0H&$+($*.$<$$0+($(5'# $)05'$=0'$=5'

/.+ .( *+, 3+.0+ &.(7# #'+0+(*+( %.)%(*+( +,4+!)+( 3.'0.( +.( *2/4'2/#* !&"'%(#%5#-(2 *.+,+/0'# #'+0+(*+( %.)%(*+( +.( *,')3#* !&"'%(#%5#-('

/.+ 4+4+./0(!() 22*1#3,).2/#+&*2/# &#&/#@@ ,-0,' *%0+,2 *%## 3%( *.+ $,;F+ !!4'4' %!# #$+7',2#72"

$.#/0+( E,)+:(.##+( %:&+.'+( 7%((' ?2 %:#2,:.+,' +'5% *%# B.'%("D2( B.&$ &+.( *"E&+7',2(, .3 123$&+9(B.&H#5,")&$ :+. 4+#',%0&!() 3.' #./0':%,+3 %./0' C02'2(+( *+, E(+,).+ 0!!!

!2 *.+ 4!3 22H+:+(@@

*+# *"E&+7',2(# 623 +(+,).+1,3+,+( '#"" .( *+( +(+,).+,+./0+( +""#!#'%(* *.+(+(' /.+# ).:'A+,%(&%##!()

4! +.(+, !:#2,$'.2(#:%(*+ .3 #./0':%,+( 4+,+./0 *+# ?$+7',!3# &+I. (3").J.. /3'!,2 *.+ "-, *.+6&.-#,,# )')$# *+# D2(# 6+,%('52,'&./0 .#' !(* +.(+, !!"#$%&'!()#+(+,).+ !

!62( )+J 7K=32& +('#$,./0'2

%&#2 +.(+,E(+,).+ 62( *+,$,;F+(2,*(!() /0+3.#/0+,4.(*!()#+(+,).+(' /.+B%'#%/0+2 *%## *%# /#--$-'0#1!$"+,&DD,"#!&"%' &!:#2,$'.2(#3%9.3!3 :+. *.. (3"-);.. /3'!, :+.3 !!L;#+( .( !332(.%7 ,&#5#$-'0 &!:#2,$'.2( :+. M.. (3" -MM.. /3'!, !(* :+.3 E('51##+,( 5')$-.* 5.,* &!:#2,$'.2( :+.

)' 4.(*!()#32*+&&+ *+, 6:+,)%()#3+'%&&723$&+9+ -J;N

und entlang der sog. spektrochemischen Reihe der Liganden zu:

Beispiele von Elektronenkonfigurationen bei oktaedrischen Komplexen:

d4-low-spin d4-high-spin d5-low-spin d5-high-spin d6-low-spin d6-high-spin

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

dyzdxy dxz

dz2

dx2−y2

d7-low-spin d7-high-spin

Page 30: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche
Page 31: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche

32High- und Low-spin-Komplexe

High- und low-spin-Konfigurationen sind bei d4- bis d7-Zentren von Bedeutung.

High-spin heisst, dass zuerst jedes Orbital mit je einem Elektron mit gleichgerichtetem Spin besetzt wird (Hund'sche Regel), weitere Elektronen werden durch Elektronenpaarung hinzugefügt (Pauli-Prinzip). Somit wird die maximale Spin-Multiplizität erreicht (möglichst viele ungepaarte Elektronen).

Low-spin heisst, umgekehrt, eine möglichst niedrige Spin-Multiplizität (möglichst wenige ungepaarte Elektronen). Das wird durch die möglichst vollständige Besetzung aller energetisch tiefer liegenden d-Orbitale erreicht.

Ob eine low- oder high-spin-Konfiguration bevorzugt vorliegt, hängt von der Ligandenfeldaufspaltung ab. Eine grosse Ligandenfeldaufspaltung fördert eine low-spin-Konfiguration, eine kleine Ligandenfeldaufspaltung fördert eine high-spin-Konfiguration.

Beispiele:

d5: [Mn(OH2)6]2+, high-spin; [Mn(CN)6]4–, low-spin;

[Fe(OH2)6]3+, high-spin; [Fe(NH3)6]3+, low-spin;

d6: [Co(OH2)6]3+, low-spin; [CoF6]3–, high-spin

kleine/großeAufspaltung

(d )2,3

kleine/großeAufspaltung

(d )8,9

kleine großeAufspaltung

(d )4,5

kleine großeAufspaltung

(d )6,7

oo

oooooo

o o o o

HSHS LSLSLS

!!"" #$% !!"#$%&'"()#"*+,-$()') .()!'-,##/')-+')0$- /1'$ 2$3 )'*) 4$%#'5-+()') $0 (5-,'4+$3%&')&$",)4')6'#4 '()#&$"&$37$)* &)# #(1$37$)+,

4'+ '+3-') -2'+",)"37'+$(4' ! "#$% &' ($%)"$%*+ !&,"+-*+.*/- 01"23&($% "#(($%/&*"/&$% &+-*1 /4)#(0&+#$41' "#.,.$' *)-'+3%&$'4#$%&' 4$%#'5-+()')5()#"*+,-$() 2''$)/*33- ),-*+"'080 4$' $%"&'(!)*+'&

&!"'&)*+%,('& 4'+ 2'-+'1')4') "(07#'9'2 4, 4'+ 3,+,0,")'-$30*3 .() 4'+2$)4*)"') 0$-4'+ 5,&# *)"'7,,+-'+ %#'5-+()') 18%&3- '), 6766+, 8'$ 3%&1,%&'+ ')'+"'-$3%&'+ 9*637,#-*)"4'+ 4$:+2$-,#' '"+!0'+'5,&# *)"'7,,+-'+%#'5-+()')+ '+&8#-0,) 4,&'+"(07#'9'0$- "+(0'0%#'5-+()')37$) '22%&,%#(0&+$;;"(07#'9'+2 2'$ 3-,+5'+ ')'+"'-$3%&'+ 9*637,#-*)" '3,,+*)" *)$"'7,,+-'+ %#'5-+()')+ "(07#'9' 0$- 5#'$)'0 )7$) '22/4)#(0&+$;;"(07#'9'+, ($)3$%&-#$%& 4'+5,&# *)"'7,,+-'+ "(07#'9$%#'5-+()') *)4 4'0 4,0$- .'+2*)4')') 3,+,0,")'-$30*3 4'+"(07#'9' 5(00') &$'+2'$ 4$' &$",)4')6'#4$<&'(+$' *)4 4$' 4,#')/3-+*5-*+$<&'(+$' '."#,<,2, 6==2 ), 6>?>+ $)3"'3,0- /* .'+"#'$%&2,+') %+"'2)$33'),

&$",)4') ,0 9)6,)" 4'+ 37'5-+(%&'0$3%&') @'$&' '3%&1,%&' &$",)4')6'#4'++ '+/'*"') &$"&$37$)$2&$",)4') ,0%)4' 4'+@'$&' '3-,+5'&$",)4')6'#4'++ #(1$37$)$"(07#'9' .()!'-,##') 4'+ 6,-2'+",)"3$+'$&', ($'+),%& 2$#4') 2'$ "'"'2')'0!'-,## /,8, 4$' &$",)4') 22(,#("')(;;2 22(:4+(9(;;2 22A$-+$-(;; *)4229;*,;; 2'.(+/*"- &$"&$37$)$2 4$' &$",)4') 22B,+2():#;;2 22B:,)(;;2 22A$-+(;; *)4 22900$);; 2'.(+/*"-#(1$37$)$"(07#'9', .,2'$ '+6(#"- 4'+ -2'+",)" .(0 &$"&$ /*0 #(1$37$)$"(07#'9 !&! 6<+ &$",)4')$))'+&,#2 4'+ 37'5-+(%&'0$3%&') &$",)4')+'$&' +'#,-$. 6+<& '378-+2 1')) 4,3!'-,##/')-+*0 ,0 9)6,)"',0 %)4'+ 4'+ 37'5-+(%&'0$3%&') !'-,##$()')+'$&' 3-'&-, )( 2$#4'- '-1, 4,3 ,0 9)6,)" 4'+ @'$&' 3-'$&')4' 22/1'$1'+-$"' !,)",);; !)"# '6<)6 4$%#'5-()')+ $) 4'+ @'"'# &$"&$37$)$"(07#'9'2 1'$# 3'$)'C()')#,4*)" .() =5 5'$)' 3-,+5') &$",)4')6'#4'+ '+/'*"- '5#'$)'3 !

!+ *)4 3'$)' %#'5-+()')5()#"*$

+,-$() '&,#22'3'-/-' 4$D)-'+3%&,#'+ *)-'+ ,##') 0!"#$%&') %#'5-+()')2'3'-/*)"') 4$' "+!0-' )7$)7,,$

=, 8$)4*)"30(4'##' 4'+ -2'+",)"30'-,##5(07#'9' 6>?E

Siehe: A.F. Holleman, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Aufl., de Gruyter, Berlin 2007, Kapitel XX, S. 1358-60.

Page 32: 4. Komplexen.ethz.ch/~nielssi/download/1. Semester/Allgemeine Chemie...Der Chelateffekt [Ni(OH2)6]2+ + n NH3 [Ni(OH2)6-n(NH3)n]2+ [Ni(OH2)6]2+ + n en [Ni(OH2)6-2n(en)n]2+ Man vergleiche