32
A Quartz Cherenkov Detector for Polarimetry at the ILC. Jenny List, Annika Vauth Mainz, 13.02.2014 Spin-Optimierung polarisierter Leptonstrahlen an Beschleunigern (BMBF-Verbundforschungsprojekt mit UHH, Mainz, Bonn) Teil-Projekt "Spin-Umsetzung": Erreichbare Genauigkeit von Compton-Polarimetern

A Quartz Cherenkov Detector for Polarimetry at the ILC

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

A Quartz Cherenkov Detector forPolarimetry at the ILC.Jenny List, Annika Vauth Mainz, 13.02.2014

Spin-Optimierung polarisierter Leptonstrahlen an Beschleunigern

(BMBF-Verbundforschungsprojekt mit UHH, Mainz, Bonn)

Teil-Projekt "Spin-Umsetzung":

Erreichbare Genauigkeit von Compton-Polarimetern

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC

Quarz detector design

Detector application

Summary and Outlook

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 0/19

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC

Quarz detector design

Detector application

Summary and Outlook

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 1/19

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC.

Polarisation at the ILC: P(e+) & 30%, P(e−) ≈ 80%Goal for ILC polarimetry: per mille level precision by combining

1650m

150m

e⁻ e⁺

e⁺e⁻collisions

③upstreampolarimeter

downstreampolarimeter

①spin tracking②

1 Compton polarimeter measurements upstream anddownstream of the e+e− interaction point

2 Spin tracking studies to relate these measurements to thepolarization at the e+e− interaction point

3 Long-term average determined from e+e− collision data asabsolute scale calibration

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 1/19

ILC Polarimetry Design Application Conclusion

Compton polarimeters.

ä O(103) Compton scatterings/bunch

ä Energy spectrum of scattered e+/e− depends on polarisation

ä Magnetic chicane:energy distibution→ spacial distribution (∼ 20 cm wide)

⇒ Measure number of e+/e− per detector channel

24 cm

45.6 GeV

Laser IP

Dipole Dipole

DipoleDipole

total length: ~75 m

IPe⁺/e⁻

Čerenkov detector

250 GeV

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 2/19

ILC Polarimetry Design Application Conclusion

Measurement principle.

Compton rate asymmetry is proportional to the beam polarisation:

0 50 100 150 200 2500.0

1.0

2.0

3.0

4.0

5.0σ

Energy of the Compton−scattered electrons [GeV]

[mba

rn/G

eV]

Com

pton

λ Pe = +1(same)

λ Pe = −1(opposite)

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 3/19

ILC Polarimetry Design Application Conclusion

Measurement principle.

Compton rate asymmetry is proportional to the beam polarisation:

0 50 100 150 200 2500.0

1.0

2.0

3.0

4.0

5.0σ

Energy of the Compton−scattered electrons [GeV]

[mba

rn/G

eV]

Com

pton

λ Pe = +1(same)

λ Pe = −1(opposite)

P ∝ Asymmetry

A = N+−N−N++N−

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 3/19

ILC Polarimetry Design Application Conclusion

Detector requirements.

Requirements for the Compton electron detector behind themagnetic chicane:

ä read out signals of 1000-2000 Compton electrons(25-250 GeV) every bunch crossing

ä either very linear response or “counting“ electrons

ä alignment to ∼ 100 µm and ∼ 1 mrad

ä suppression of background from low energetic particles

Simple, robust, fast: Cherenkov detectors

ä Cherenkov light emission proportional to number of electrons

ä independent of electron energy (once relativistic)

ä successfully used in best polarimeter so far at SLC

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 4/19

ILC Polarimetry Design Application Conclusion

Detector options.

Goal: total uncertainty ∆P/P ≈ 0.25 %, of which

ä laser: 0.1 %

ä analysing power (i.e. asymmetry at P = 1 ): 0.2 %⇒ Cherenkov detector design

ä detector linearity: 0.1 % ⇒ photodetector calibration

Gas Cherenkov detector

2-channel prototype:tilt alignment of 0.1° reached[JINST 7, P01019 (2012)]

e⁻ beam

Čerenkovphotons

Photomultiplier

LED calibration system

gas-filled Al-channel

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 5/19

ILC Polarimetry Design Application Conclusion

Detector options.

Goal: total uncertainty ∆P/P ≈ 0.25 %, of which

ä laser: 0.1 %

ä analysing power (i.e. asymmetry at P = 1 ): 0.2 %

⇒ Cherenkov detector design

ä detector linearity: 0.1 % ⇒ photodetector calibration

LED driver developed for

differential calibration method

→ fulfils requirements

[thesis B. Vormwald]

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 5/19

ILC Polarimetry Design Application Conclusion

Detector options.

Goal: total uncertainty ∆P/P ≈ 0.25 %, of which

ä laser: 0.1 %

ä analysing power (i.e. asymmetry at P = 1 ): 0.2 %⇒ Cherenkov detector design

ä detector linearity: 0.1 % ⇒ photodetector calibration

In the scope of the BMBF spin optimisation project:

Alternate detector concept studied:Quartz as Cherenkov material.

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 5/19

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC

Quarz detector design

Detector application

Summary and Outlook

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 6/19

ILC Polarimetry Design Application Conclusion

Why quartz? Self-calibrationg detector.

For a large enough number of photons per Compton electron,e.g. for 15 e− per detector channel: & 200 photons per e−

resolution of single peaks possible⇒ self-calibration!

PMT gain

detector signal

num

ber

of e

vent

s

N⁻ N⁺

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 6/19

ILC Polarimetry Design Application Conclusion

Why quartz? Self-calibrationg detector.

For a large enough number of photons per Compton electron,e.g. for 15 e− per detector channel: & 200 photons per e−

resolution of single peaks possible⇒ self-calibration!

a) less Compton electrons: smaller channelsb) higher light yield: quartz as Cherenkov material

Properties of fused silicaI refractive index n≈1.45 (for comparision: n(C4F10) = 1.0014)

I Cherenkov angle θc ≈ 46◦

I Cherenkov threshold Ethr ≈ 0.9 MeV

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 6/19

ILC Polarimetry Design Application Conclusion

GEANT4 Simulation.

Multiple quartz bars / channels(rotated→ more space for photomultipliers and read-out)

e⁺/e⁻

e⁺/e⁻

PMTSide view

top view

PMT

Implementation in GEANT4:

I Fused silica blocksI photomultiplier (PMT)

window and cathodeI coupled with optical

greaseI different surface

properties

Cherenkov photons

quartz block

PMT

e⁺/e⁻beam angle

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 7/19

ILC Polarimetry Design Application Conclusion

GEANT4 Simulation.

Multiple quartz bars / channels(rotated→ more space for photomultipliers and read-out)

e⁺/e⁻

e⁺/e⁻

PMTSide view

top view

PMT

Implementation in GEANT4:

I Fused silica blocksI photomultiplier (PMT)

window and cathodeI coupled with optical

greaseI different surface

properties

Cherenkov photons

quartz block

PMT

e⁺/e⁻beam angle

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 7/19

ILC Polarimetry Design Application Conclusion

Detector geometry.

Simulation of different incident angles, channel dimensions, ...

Number of photon hits on PMT with different detector geometries(length, height and angle chosen so that distance between electrons and PMT is 3 cm):

quarz halflength [mm]0 20 40 60 80 100 120 140

30

35

40

45

50

55

60

0

500

1000

1500

2000

2500

photon hits for different simulated geometries

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 8/19

ILC Polarimetry Design Application Conclusion

Quartz prototype.

Quartz prototype with four channels:

I channels: quartz bars(5 mm× 18 mm× 100 mm)

I using photomultipliers with fouranodes (two per quartz bar)

I angle w.r.t. beam axis:adjustable in 0.5° steps

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 9/19

ILC Polarimetry Design Application Conclusion

Quartz prototype.

Quartz prototype with four channels:

⇒ DESY II Testbeam 22.04. - 05.05.2013

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 9/19

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC

Quarz detector design

Detector application

Summary and Outlook

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 10/19

ILC Polarimetry Design Application Conclusion

DESY Testbeam 2013.

Goals for the testbeam:

◮ Test detector signal for single

electrons

◮ Compare light output to

expectations

◮ Study detector response for

different angles and positions

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 10/19

ILC Polarimetry Design Application Conclusion

DESY Testbeam: Setup.

I Angle of the quartz bars: controlled with stepping motorI Movement of the whole detector: used testbeam x-y table

Beam

Trigger

ScintillatorsTrigger Logic Unit

Pulse Generator z x

y

QDCDelay

Signal

Gatex-y table

I Trigger: coincidence of four scintillatorsI Generate QDC (charge digitizer) gate on trigger signalI Delay photomultiplier signal long enough to fall inside gate

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 11/19

ILC Polarimetry Design Application Conclusion

Number of photons (data).

Cherenkov photons

e⁻

Anode 2

Anode 1

run 0875

With the gain / HV settings used:1 photon ≈ 1.5 QDC binsPredicted by simulation: ∼ 40 photons per anode

QDC bins above pedestal

50 100 150 200

even

ts

0

500

1000

1500

2000

Example: QDC signal for both anodes on one quartz channel

top anode

bottom anode

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 12/19

ILC Polarimetry Design Application Conclusion

X-position scan (data).

Cherenkov photons

e⁻

Anode 2

Anode 1

detector x-position [mm] 60 70 80 90 100

sign

al e

vent

s

0

100

200

300

310×

I x=5 mm wide channelsI scan across x-direction→ determine beam spot size

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 13/19

ILC Polarimetry Design Application Conclusion

X-position scan (data).

Cherenkov photons

e⁻

Anode 2

Anode 1

detector x-position [mm] 60 70 80 90 100

sign

al e

vent

s

0

100

200

300

310×

35 mm~13 mm

varied in simulation:→ beam profile with

σ ≈ 4.7 mm

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 13/19

ILC Polarimetry Design Application Conclusion

Angle scan (simulation).

Cherenkov photons

e⁻

Anode 2

Anode 1

Use two anodes per channel for alignment?

0

350

700

combined

anode 2

anode 1

angle to incident electron

phot

on h

its

30 40 50 60

Ratio between anodes of a channel angle dependent

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 14/19

ILC Polarimetry Design Application Conclusion

Angle scan (data).

Cherenkov photons

e⁻

Anode 2

Anode 1

Qualitatively similar behaviour as in the simulation

angle to incident electron30 40 50 60

6el

ectr

ons

/ 10

50

100

150

Anode 2

Anode 1

Combined

→ Comparison with simulation to determine tilts/shifts of detector:work in progress

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 15/19

ILC Polarimetry Design Application Conclusion

Multi-electron spectra (simulation).

How many Compton electrons per channel would be possible?

Simulation with 200 detected photons per Compton electron(from Compton electrons to spectrum at the charge-to-digital converter (QDC))

QDC bin0 500 1000 1500 2000 2500

entr

ies

0

50

100

150

200

input: 14 Compton electrons100 photons per C. e⁻

fitted: 14.01 ± 0.01 C. e⁻

→ for ≤20 electrons majority of single peaks can be separated

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 16/19

ILC Polarimetry Design Application Conclusion

Comparison to requirements (simulation).

Simulated polarisation measurement:(80 % polarsation, 3 mm wide detector channels)

detector channel0 20 40 60

mea

n el

ectr

ons

/ eve

nt

0

10

20

Simulation:60 channels3 mm width80% polarisation

laser left

laser right

→ nearly all channels ≤20 electrons.

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 17/19

ILC Polarimetry Design Application Conclusion

Polarimetry at the ILC

Quarz detector design

Detector application

Summary and Outlook

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 18/19

ILC Polarimetry Design Application Conclusion

Summary and Outlook (1).

Quartz detector:

◮ Option for polarimeter detector: quartz as Cherenkov medium

◮ Prototype designed, constructed & and tested at DESY II testbeam:

◮ Test detector signal for single electrons 2�◮ Compare light output to expectations �(2)◮ Study detector response for different angles

and positions �(2)Qualitative agreement with simulation, more detailed

alignment work in progress

Outlook:

◮ Study application on full polarisation measurement

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 18/19

ILC Polarimetry Design Application Conclusion

Summary and Outlook (2).

Compton polarimetry at ILC:

Precision goal for ILC polarimetry: ∆P/P ≈ 0.25%

Needs combination of:I scale calibration from e+e− collision dataI spin tracking and understanding of collision effectsI upstream (UP) and downstream (DP) polarimeters

I UP: time resolutionI DP: collision effectsI combined: cross-check, lumi-weighted polarisation @ IP

Outlook:I site specific studiesI detectors: prototypes→ full-scale, DAQ, ...

Quartz Detector for ILC Polarimetry | A. Vauth | Mainz, 13.02.14 | 19/19