20
Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2 Aerodynamic optimization of low pressure axial fans with OpenFOAM Heiko Winterberg 1 , Max Hasenzahl 1 , Prof. Dr.-Ing. Jens Friedrichs 2 1 Volkswagen AG (Cooling Development) 2 Institute of Jet Propulsion and Turbomachinery, TU Braunschweig

Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

Aerodynamic optimization of low pressure axial fans with OpenFOAM Heiko Winterberg1, Max Hasenzahl1, Prof. Dr.-Ing. Jens Friedrichs2

1 Volkswagen AG (Cooling Development) 2 Institute of Jet Propulsion and Turbomachinery, TU Braunschweig

Page 2: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

Optimization of low pressure axial fans Outline

1 Introduction

2 Optimization with Optimus® and OpenFOAM

3 Some results

4 Summary and outlook

2

Page 3: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

1 Introduction Objective and Motivation

3

• Axial fans are typically used to pump air through the car underhood

• Cooling fans belong to the highest electrical consumers in conventional cars (up to ~1200 W)

• While the needed vol. flowrate is quite high (> 2500 m³/h), the needed pressure rise is rather low (< 300 Pa)

Aim

Lower max. power consumption or

Increase vol. flowrates at specific operating points

Page 4: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

1 Introduction Design Principle of Axial Fans

4

Development of a MATLAB™-program for axial fan design

Fan Designer

Boundary conditions / operating

point

Mathematical description of

the airflow Empirical

models and cascade

correlations

𝜕𝜕𝑐𝑐𝑥𝑥2

𝜕𝜕𝜕𝜕 +1𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕 𝜕𝜕𝑐𝑐𝑢𝑢 2 + 2𝑇𝑇

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 =

2𝜌𝜌𝜕𝜕𝑝𝑝0𝜕𝜕𝜕𝜕

Page 5: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Overview

5

Parameterset Optimus / Matlab

Preprocessing Matlab / ANSA / OpenFOAM

3D-CFD OpenFOAM

Postprocessing OpenFOAM / (EnSight) / Optimus

Page 6: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Design of Experiments

6

• Optimus® used to generate the DoE (Latin Hypercube)

• Input parameters: 4 x 2 + 1 = 9

• No. of experiments: > 56

4 La

yers

Page 7: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Preprocessing (3D-CAD generation)

7

Development of an interface between Fan Designer and ANSA™ using the Python API

Page 8: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Preprocessing (Meshing with shm)

8

Pressure Outlet Velocity Inlet

MRF

~5 … 15 million cells

Page 9: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Preprocessing (Meshing with shm)

9

Page 10: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization 3D-CFD

10

• Solver: simpleFoam

• steady state

• frozen rotor (MRF) approach

• kOmegaSST (optional: kklOmega) turbulence model

• Running parallel on 64 cores

• Automatic case setup using a python-script

• Runtime max. 10 h

Page 11: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Postprocessing

11

• Fully automatic postprocessing using the OpenFOAM toolbox coupled with a python script

• Export of the integral results (�̇�𝑉,Δ𝑝𝑝, 𝜂𝜂, …) into *.txt, *.PPTX and *.XLSX

• Import and storage of the results in Optimus®

Page 12: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Strategy

12

1. Parameter variation based on DoE (Latin Hypercube)

2. Response Surface Model (RSM) using the DoE-data

3. Find the global optimum of the RSM

4. Validation of the best fan-setup (3D-CFD)

Page 13: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Response Surface Model

13

RSM using a Second Order Taylor Polynomial:

𝑦𝑦 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 + �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2 + � � 𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖<𝑖𝑖=2

𝑘𝑘

𝑖𝑖=1

𝑘𝑘

𝑖𝑖=1

+ 𝜖𝜖

= 𝛽𝛽0 + 𝒙𝒙′𝜷𝜷 + 𝒙𝒙′𝑩𝑩𝒙𝒙 + 𝜖𝜖

Where:

𝒙𝒙 =𝑥𝑥1⋮𝑥𝑥𝑘𝑘

, 𝜷𝜷 =𝛽𝛽1⋮𝛽𝛽𝑘𝑘

, 𝑩𝑩 =

𝛽𝛽11 𝛽𝛽12 2⁄ ⋯ 𝛽𝛽1𝑘𝑘 2⁄ 𝛽𝛽22 ⋯ 𝛽𝛽2𝑘𝑘 2⁄ ⋱ ⋮

sym. 𝛽𝛽𝑘𝑘𝑘𝑘

𝜷𝜷 is obtained by the method of least-squares.

Page 14: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

2 Optimization Optimization-Algorithm

14

Objective function: min𝒙𝒙∈Ω

𝐹𝐹 𝒙𝒙 = 1 − (𝜂𝜂1 𝒙𝒙 , … , 𝜂𝜂𝑚𝑚 𝒙𝒙 )′

Where Ω is the chosen parameter space, 𝒙𝒙 = (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘)′ and 𝜂𝜂𝑚𝑚 represents the efficiency for 𝑚𝑚 different OPs

Constraints:

• Operating Point (�̇�𝑉op,𝛥𝛥𝑝𝑝op ± 𝜀𝜀), or

• Power consumption (�̇�𝑉 ⋅ 𝛥𝛥𝑝𝑝/𝜂𝜂 = 𝑐𝑐 ± 𝜀𝜀)

Optimization algorithm:

• Normal boundary intersection method

Page 15: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

3 Some results Pareto-Front

15

• The optimization returns the Pareto-Optimal geometries

Every point represents a fan-geometry, where objective function (OF) 1 can’t be increased without lowering OF 2

Obj

ectiv

e fu

nctio

n: η

2

Objective function: η1

Pareto-Front

Page 16: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

3 Some results Fan curve

16

(mom

entu

m x

vel

ocity

) /

(diss

ipat

ed e

nerg

y)

η

stat

ic p

ress

ure

rise

dp

vol. flow rate V

Reference dp

Optimized dp

Reference η

Optimized η

Qualitative comparison to a chosen reference fan

Fan curve in terms of OPs optimized

Maximum efficiency increased

Partial load region with decreased efficiency

Page 17: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

4 Summary and outlook

17

• Development of a tool for the purpose of accurate fan design

• Setup of a DoE-process using Optimus® coupled with Fan Designer, ANSA and OpenFOAM

• Response Surface Model of the DoE-Data using a 2nd order Taylor Polynomial

• RSM-Model based optimization to find the best design

Page 18: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

4 Summary and outlook

18

Next Steps:

Further Robust Design Analysis (fan curve optimization)

Influence no. of experiments on RSM

Benchmarking of different optimization algorithms

Further validation of the process

Page 19: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

Contact: Heiko Winterberg Volkswagen AG, Wolfsburg [email protected]

Special thanks to: Prof. Jens Friedrichs (IFAS, TU BS)

Page 20: Aerodynamic optimization of low pressure axial fans with … · 2017. 5. 3. · Optimization of low pressure axial fans EAFK/2 22.03.2017 4 Summary and outlook 17 • Development

Aggregate Fahrzeugintegration Antrieb Kühlungsentwicklung - Berechnung

Heiko Winterberg Optimization of low pressure axial fans 22.03.2017 EAFK/2

Backup