35
AVL Central Research Coordination, Peter Prenninger 1 Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen IEA Workshop Brennstoffzellen: Markteinführung, Markthemmnisse und F&E-Schwerpunkte 27. Februar 2014, Graz Peter Prenninger AVL List GmbH

Brennstoffzellen-Systeme von der Forschung zur ... · AVL Central Research Coordination, Peter Prenninger 1 Brennstoffzellen-Systeme – von der Forschung zur Kommerzialisierung:

Embed Size (px)

Citation preview

AVL Central Research Coordination, Peter Prenninger 1

Brennstoffzellen-Systeme – von der Forschung zur Kommerzialisierung: Integration – Simulation – Testen IEA Workshop Brennstoffzellen: Markteinführung, Markthemmnisse und F&E-Schwerpunkte 27. Februar 2014, Graz

Peter Prenninger

AVL List GmbH

AVL Central Research Coordination, Peter Prenninger 2 2

SOFC TECHNOLOGY – EFFICIENCY ENABLER

5-10 kW 100-500 kW 1-5 MW

Power Range

E

ffic

iency

30 %

50 %

7

0 %

ICE Technology

SOFC Technology High efficient fuel gas generation from NG, methanol, Diesel and all Biofuels (80-99%)

High efficient energy conversion in SOFC (>50%)

Best suited for combined SOFC-GT cycles

SOFC & GT Technology

AVL Central Research Coordination, Peter Prenninger 3

Challenges in:

• Systems Engineering

• Virtual System Development

• Component Analysis and Optimization

• System Integration

• Validation and Commercialization

AVL Central Research Coordination, Peter Prenninger 4 4

Portable power out of diesel fuel without noise and emissions! Other markets:

Camping

Marine

Military

Anode blower

APU Stack Module

Air blower

Gas processing unit

Incl. reformer, start-burner, off-gas cleaning, heatexchange, manifolding

Valves

Fuel pumps

Design Targets:

3kW electrical power

10kW thermal power

el. efficiency ~35%

Fuel: road diesel (< 15 ppm S)

80L, 75kg

~ 55dB(A) noise

8000h lifetime

300/3000 cold/warm cycles

PRODUCT REQUIREMENTS

AVL Central Research Coordination, Peter Prenninger 5

PRODUCT REQUIREMENTS – SIMULATION SUPPORT

AVL Central Research Coordination, Peter Prenninger 6

• Idling Time per Week: 30, 40, 50 & 57.83 h

• Diesel price: 3.9 – 5.0 $/gal (3.9 $/ga l= 0.79 €/l)

• Fuel Consumption (Idling):

o Truck: 0.75 gal/h (2.84 l/h)

o ICE APU: measured, improved map

o SOFC APU: expected efficiency 2016

• Sales price SOFC APU 12.000 $ (9.230 €)

• Sales price ICE APU 10.000 $ (7.700 €)

CUSTOMER AND MARKET ASPECTS

AVL Central Research Coordination, Peter Prenninger 7

Comparison Truck Idling vs. SOFC APU

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

3.9 $ 4.25 $ 4.5 $ 5 $

Years

Diesel price

Pay back period

• 3,9 $: 1,62 years

• 4,25 $: 1,50 years

• 4,5 $: 1,41 years

• 5 $: 1,27 years

FULFILMENT OF CUSTOMER EXPECATIONS

AVL Central Research Coordination, Peter Prenninger 8

Challenges in:

• Systems Engineering

Very mature rivals (costs, reliability…)

Extremely high customer expectations

Fairly unknow load cycles – no field experience

AVL Central Research Coordination, Peter Prenninger 9

Challenges in:

• Systems Engineering

• Virtual System Development

• Component Analysis and Optimization

• System Integration

• Validation and Commercialization

AVL Central Research Coordination, Peter Prenninger 10

VIRTUAL SYSTEM LAYOUT

Air

POX-Air

Fuel

Bypass-Air

Exhaust

Fuel Cell StackOxidation Catalyst

Reformer

Pipe Heat ExchangerPlate Heat Exchanger

Burning Chamber Isolation

AVL Central Research Coordination, Peter Prenninger 11 11

Vehicle cooling circuit

Air supply and filter

ICE exhaust from TC

Power electronics, Batteries

Air conditioning circuit

ICE…Internal Combustion Engine

TC…Turbocharger

VIRTUAL SYSTEM LAYOUT

AVL Central Research Coordination, Peter Prenninger 12

650mm

Specifications:

• 3kW electrical power

• 10kW thermal power

• el. efficiency >35%

• Fuel: road Diesel (max 15ppm sulfur)

• 80L/70kg

• < 55dB(A) noise

Technology:

• Solid Oxide Fuel Cell

• metal-supported stacks

• anode recirculation

• auto thermal reforming

• highly efficient radial-blowers for media supply

• system internal regeneration approaches

VIRTUAL SYSTEM LAYOUT

AVL Central Research Coordination, Peter Prenninger 13

Challenges in:

• Virtual System Development

Systems engineering approach needed

System integration aspects

Model development based on „unknows“

AVL Central Research Coordination, Peter Prenninger 14

Challenges in:

• Systems Engineering

• Virtual System Development

• Component Analysis and Optimization

• System Integration

• Validation and Commercialization

AVL Central Research Coordination, Peter Prenninger 15 15

Detailed investigation of performance of critical components by means of numerical

simulation – boundary condition for linked components (e.g. insulation, air

management, control functions …)

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 16 16

Solid oxide fuel cell domains with transport across domain interfaces and reactions

Requested results:

Electronic (e-) potential in electrodes and interconnect

Ionic (O2-) potential in electrolyte

Electrochemical reaction rates at TPB, chemical reaction rates in anode domain

Velocity, pressure and species mass fractions in channels and electrodes

Temperature in all domains

Example 3D+ CFD simulation of cells and stacks

2

2 Oe2O2/1

e2OHOH 2

2

2

222

22pmn

HCOOHCO

H2/mpnCOnOHpnOHC

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 17 17

Interconnect

Channels

Nickel mesh

Glass sealing

Electrodes, electrolyte

Model validation

Comparison to experimental results

CFD mesh: 1.3 mio. cells

Active area: 127 cm2

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 18 18

Test cell: voltage and power density vs. current density, fitted result

[1] Kim J.W., Virkar A.V., Fung K.Z., Mehta K., Singhal S.C., Polarization Effects in Intermediate Temperature, Anode-

Supported Solid Oxide Fuel Cells, Journal of The Electrochemical Society 146, 69-78, 1999.

Model validation

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 19 19

Temperature (K) of cathode interconnect

Var.2 ( = 1.25) Ref. ( = 1.333) Var.1 ( = 1.667)

Model validation

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 20 20

AVL Schrick FC Blowers

COMPONENTS & SUB-SYSTEMS

Very focused development of

particular „key enabling“

technologies & components

Air and Gas Management

AVL Central Research Coordination, Peter Prenninger 21

• 1 kW SOFC APU Proof-of-concept

• SOFC stack from research partner

• High dynamics in „self-sustained“ mode

• Control concept for transient mode incl. AVL

stack-monitoring technique „AVL-THDA“

• System efficiency > 35%

• Successful full hot box system integration

current SP

cathode HEX

temperature SP

power demand

(load cycle)

p1/p2

m_dot,air

T1

Vstack

V_low_limit

demand current

+

+compressor

model

min

min

max

&

cell diagnosis

power controller

PID

+

+

m_dot,air

SPair utilisation

stack temperature

demand temperature min

max

maxPID

f(I,)

current demand

thermal management controller SP = set point

feedback loop

current SP

cathode HEX

temperature SP

power demand

(load cycle)

p1/p2

m_dot,air

T1

Vstack

V_low_limit

demand current

+

+compressor

model

min

min

max

&

cell diagnosis

power controller

PID

+

+

m_dot,air

SPair utilisation

stack temperature

demand temperature min

max

maxPID

f(I,)

current demand

thermal management controller SP = set point

current SP

cathode HEX

temperature SP

power demand

(load cycle)

p1/p2

m_dot,air

T1

Vstack

V_low_limit

demand current

+

+compressor

model

min

min

max

&

cell diagnosis

power controller

PID

+

+

m_dot,air

SPair utilisation

stack temperature

demand temperature min

max

maxPID

f(I,)

current demand

thermal management controller SP = set point

feedback loop

COMPONENTS & SUB-SYSTEMS

AVL Central Research Coordination, Peter Prenninger 22

Challenges in:

• Component Analysis and Optimization

Availability of high quality tools

Non-existing development environment

Very little know how on supplier level

Premature components & subsystems

AVL Central Research Coordination, Peter Prenninger 23

Challenges in:

• Systems Engineering

• Virtual System Development

• Component Analysis and Optimization

• System Integration

• Validation and Commercialization

AVL Central Research Coordination, Peter Prenninger 24 24

TEST ENVIRONMENT FOR SYSTEM INTEGRATION

Christoph Kügele, Tomas Dehne

25

Test of single components, subsystems,

stacks at operating temperature and complete

systems on 1D & 2D vibration test rigs

Random noise tests

Frequency sweep tests

Test of bad-road truck vibration profiles

TEST ENVIRONMENT FOR SYSTEM INTEGRATION

AVL Central Research Coordination, Peter Prenninger 26 26

Experimental results 1 stack systems:

~2.2kW gross power output

~1.8kW net power output

29% electrical efficiency

start up time ~1h

operation completely without lab

infrastructure (inert gas,…)

very reasonable degradation

~2000h of operation with Gen 0

(stopped) and with Gen I

50 cold starts / 100 warm starts

<55dB(A) noise level

SYSTEM TESTING

AVL Central Research Coordination, Peter Prenninger 27 27

AVL APU Generations

Sep. 2011

Gen. 1.0

first AVL System with full

functionality

Oct. 2012

Gen. 1.1

first vehicle integration

May 2013

Gen. 2

2 stack design -25% in size

nominated for Austrian national prize 2013

CONTINUOUS SYSTEM IMPROVEMENT

AVL Central Research Coordination, Peter Prenninger 28

Challenges in:

• System Integration

Simultaneous establishment of test infrastructure

Parallel basic research and contiuous improvement

System development based on premature components

AVL Central Research Coordination, Peter Prenninger 29

Challenges in:

• Systems Engineering

• Virtual System Development

• Component Analysis and Optimization

• System Integration

• Validation and Commercialization

AVL Central Research Coordination, Peter Prenninger 30 30

Synergies SOFC CHP System (Components, Control …)

Front

19

30

900

Rear

Hotbox

BoP

ADDITIONAL MARKET OPPORTUNITIES

AVL Central Research Coordination, Peter Prenninger 31

Invest:

Assumptions for System OEM/Tier 1

• Series development, validation, certification 15.6 Mio $

• Build up manufacturing line 2.6 Mio $

• Sales Price: 12.000 $

• Sales Volume (3 Scenarios):

Lot size

Year

Year Cons. Balanc. Aggr.

1 3.000 5.000 8.000

2 3.500 7.000 15.000

3 4.500 11.000 20.000

4 6.500 16.000 22.000

5 8.500 19.000 22.000

6 10.000 20.000 22.000

SUPPORT OF COMMERCIALIZATION

AVL Central Research Coordination, Peter Prenninger 32

Production Cost incl. licence fee, sales & admin. overhead

Assumptions

Year Low Average High

1 8.190$ 9.100$ 10.010$

2 7.605$ 8.450$ 9.295$

3 7.020$ 7.800$ 8.580$

4 6.727$ 7.475$ 8.223$

5 6.482$ 7.202$ 7.922$

6 6.482$ 7.202$ 7.922$ 0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6

$

Year

3 Scenarios:

SUPPORT OF COMMERCIALIZATION

AVL Central Research Coordination, Peter Prenninger 33

Break Even vs. Production cost / Sales scenarios

OEM/Tier 1 Scenarios

0

0,5

1

1,5

2

2,5

Agressive Balanced Conservative

Bre

al

Ev

en

[years

]

Low Prod. Cost

Avg. Prod. Cost

High Prod. Cost

SUPPORT OF COMMERCIALIZATION

AVL Central Research Coordination, Peter Prenninger 34

Challenges in:

• Validation and Commercialization

High market inertia – low early market volume

High dependence on „outer boundary conditions“ (legislation, energy prize, …)

OEM expectation: „mature“ prototypes – RoI as „conventional“ products

AVL Central Research Coordination, Peter Prenninger 35

Brennstoffzellen-Systeme – von der Forschung zur Kommerzialisierung: Integration – Simulation – Testen IEA Workshop Brennstoffzellen: Markteinführung, Markthemmnisse und F&E-Schwerpunkte 27. Februar 2014, Graz

Peter Prenninger

AVL List GmbH

Acknowledgement:

The results presented are based on research

projects funded by

the Austrian Ministry of Transport, Innovation

and Technology (a3/a3plus-Projects SOFC

APU I & II and ASys1)

as well as the European Union FP7 (DESTA).