Chap Radtrans

Embed Size (px)

Citation preview

  • 8/12/2019 Chap Radtrans

    1/66

    Radiative Transfer:

    Interpretingthe observed light

    ?

  • 8/12/2019 Chap Radtrans

    2/66

    References:

    A standard book on radiative processes inastrophysics is: Rybicki & Lightman RadiativeProcesses in Astrophysics Wiley-Interscience

    For radiative transfer in particular there aresome excellent lecture notes on-line by RobRutten Radiative transfer in stellaratmosphereshttp://www.astro.uu.nl/~rutten/Course_notes.html

  • 8/12/2019 Chap Radtrans

    3/66

    Radiation as a messenger

    I,in I,out

    Spectra

    van Kempen et al. (2010)

    Images

    Hubble ImageOne image is wortha 1000 words...

    One spectrum is wortha 1000 images...

  • 8/12/2019 Chap Radtrans

    4/66

    Radiative quantities

    Basic radiation quantity: intensity

    I ( , ) erg

    s cm 2 Hz ster

    Definition of mean intensity

    J ( ) 14

    I ( , )d 4

    ergs cm 2 Hz ster

    Definition of flux

    r

    F ( ) I ( , )r

    d 4

    ergs cm 2 Hz

  • 8/12/2019 Chap Radtrans

    5/66

    Thermal radiationPlanck function:

    In dense isothermal medium, the radiation field is in thermodynamicequilibrium. The intensity of such an equilibrium radiation field is:

    I

    B (T )

    2h 3 /c 2

    [exp( h /kT ) 1](Planck function)

    Wien Rayleigh-Jeans

    In Rayleigh-Jeans limit (h

  • 8/12/2019 Chap Radtrans

    6/66

    Thermal radiation

    Blackbody emission:

    An opaque surface of a given temperature emits a fluxaccording to the following formula:

    F B (T )

    Integrated over all frequencies (i.e. total emitted energy):

    F F d 0 B (T )d 0

    If you work this out you get:

    F T 4 5.67 10 5 erg/cm 2/K 4 /s

  • 8/12/2019 Chap Radtrans

    7/66

    Radiative transferIn vaccuum: intensity is constant along a ray

    Example: a star

    A B

    F A

    r

    B

    2

    r A

    2 F

    B

    A r B

    2

    r A2

    B

    F I

    I const

    Non-vacuum: emission and absorption change intensity:dI ds

    S I

    Emission Extinction

    (s is path length)

  • 8/12/2019 Chap Radtrans

    8/66

    Radiative transfer

    dI ds

    (S I )

    Radiative transfer equation again:

    Over length scales larger than 1/ intensity I tends toapproach source function S.

    Photon mean free path: l free, 1

    Optical depth of acloud of size L:

    Ll free, L

    In case of local thermodynamic

    equilibrium: S is Planck function:S B (T )

  • 8/12/2019 Chap Radtrans

    9/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    10/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    11/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    12/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    13/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    14/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    15/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    16/66

    Rad. trans. through a cloud of fixed T

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    17/66

    Formal radiative transfer solution

    Observed flux from single-temperature slab:

    I obs I

    0e (1 e ) B (T )

    B (T )for 1

    I 0 0and

    dI ds

    (S I )

    Radiative transfer equation again:

    L

  • 8/12/2019 Chap Radtrans

    18/66

    Emission vs. absorption lines

    Line Profile:

    K e 2 / 2

    line

    line1

    c

    2kT

    (for thermal broadning)

    line

  • 8/12/2019 Chap Radtrans

    19/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    20/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    21/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    22/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    23/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    24/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    25/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    26/66

    Emission vs. absorption lines

    I,bg I,out

    Tcloud

    cloud

    Tbg =6000 K

  • 8/12/2019 Chap Radtrans

    27/66

    Emission vs. absorption lines

    Hot surface layer 1

    1

    Flux

    Cool surface layer

    Flux

    I obs I

    0e (1 e ) B (T )

  • 8/12/2019 Chap Radtrans

    28/66

    Example: The Suns photosphere

    Spectrum of the sun:

    Fraunhofer lines = absorption lines

    What do we learn?

    Temperature of thegas goes downtoward the suns surface!

  • 8/12/2019 Chap Radtrans

    29/66

    Example: The Suns corona

    X-ray spectrum of the sun using CORONAS-F

    Sylwester, Sylwester & Phillips (2010)

    What do we learn?

    There must be veryhot plasma hoveringabove the suns surface! And thisplasma is opticallythin!

  • 8/12/2019 Chap Radtrans

    30/66

    Suns temperature structure

    Model by Fedun, Shelyag, Erdelyi (2011)

  • 8/12/2019 Chap Radtrans

    31/66

    Example: Protoplanetary Disks

    Spitzer Spectra of T Tauri disks by Furlan et al. (2006)

    What do we learn?The surface layersof the disk must bewarm compared tothe interior!

  • 8/12/2019 Chap Radtrans

    32/66

    How a disk gets a warm surface layer

    Literature: Chiang & Goldreich (1997), DAlessio et al. (1998), Dullemond & Dominik (2004)

  • 8/12/2019 Chap Radtrans

    33/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    The energies

  • 8/12/2019 Chap Radtrans

    34/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 g6=2

    g5=1g4=1

    g3=3g2=1g1=4

    E n e r g y

    Level degeneracies

  • 8/12/2019 Chap Radtrans

    35/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Polulating the levels

  • 8/12/2019 Chap Radtrans

    36/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Spontaneous

    radiative decay(= line emission)

    [sec -1]Einstein A-coefficient (radiative decay rate):

    A4,3

  • 8/12/2019 Chap Radtrans

    37/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Line absorption

    Einstein B-coefficient (radiative absorption coefficient): B

    3,4 B3,4 J 3,4 [sec-1]

    J 3,4 14 I ( , ) 3,4 ( ) d d

  • 8/12/2019 Chap Radtrans

    38/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Stimulated emission

    Einstein B-coefficient (stimulated emission coefficient): B

    4,3 B4,3 J 3,4 [sec-1]

    J 3,4 14 I ( , ) 3,4 ( ) d d

  • 8/12/2019 Chap Radtrans

    39/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Einstein relations:

    B4,3 A4,3c 2

    2h 3 B4,3

    g 3 g

    4

    B3,4

  • 8/12/2019 Chap Radtrans

    40/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Spontaneous

    radiative decay(= line emission)can be from anypair of levels,provided the transitionobeys selection rules

  • 8/12/2019 Chap Radtrans

    41/66

    Lines of atoms and molecules

    4

    3

    Example:a fictive 6-level atom.

    21

    56 E6

    E5 E4

    E3 E2 E1=0

    E n e r g y

    Ecollision Collisional excitation

    Our atom

    free electron

  • 8/12/2019 Chap Radtrans

    42/66

  • 8/12/2019 Chap Radtrans

    43/66

    Example: Protoplanetary Disks

    Carr & Najita 2008

    What do we learn?

    Organic moleculesexist already duringthe epoch of planetformation. Modelsof chemistry can tellus why. Models ofrad. trans. tell us

    Tgas and gas .

  • 8/12/2019 Chap Radtrans

    44/66

  • 8/12/2019 Chap Radtrans

    45/66

    Lines of atoms and molecules

    Partition function:(usually available on databaseson the web in tabulated form)

    How to determine the absolute populations?

    Z (T ) g ie E i / kT

    i

    If we know total number of atoms: N

    ...then we can compute the nr ofatoms N i in each level i : N i

    N Z (T ) g ie

    E i / kT

    Note: Works only under LTE conditions (high enough density)

  • 8/12/2019 Chap Radtrans

    46/66

    Using multiple lines for finding T gas

    van Kempen et al. (2010)

  • 8/12/2019 Chap Radtrans

    47/66

    Using excitation diagrams to infer T gas

    Martin-Zaidi et al. 2008

    What do we learn?

    There are clearlytwo componentswith different gastemperatures: Onewith T=56 K andone with T=373 K.

    0 1000 2000 3000 4000Energy [K]

    l o g

    ( N / g )

  • 8/12/2019 Chap Radtrans

    48/66

    Lines of atoms and molecules

    Radiative transfer in lines:

    j h 4

    n i Aik ik ( )

    h 4

    (n k Bki n i Bik ) ik ( )

    dI ds j

    I

    extinction stimulated emission

    ( ) 1

    exp ( 0 )

    2

    2

    ...where the lineprofile function is:

  • 8/12/2019 Chap Radtrans

    49/66

    Beware of non-LTE! In this lecture we focused on LTE conditions ,

    where the level populations can be derivedfrom the temperature using the partitionfunction.

    In astrophysics we often encounter non-LTEconditions when the densities are very low

    (like in the interstellar medium). Then linetransfer becomes much more complex ,because then the populations must be

    computed together with the rad. trans.

  • 8/12/2019 Chap Radtrans

    50/66

    Using doppler shift to probe motion

    ( ) 1

    exp ( 0 )2

    2

    Line profile withoutdoppler shift:

    Line profile withdoppler shift:

    ( , ) 1

    exp ( 0 0

    u

    /c)2

    2

  • 8/12/2019 Chap Radtrans

    51/66

    Example: Position-velocity diagramsMotion of neutral hydrogen gas in the Milky Way

    Kalberla et al. 2008

    l l h l

  • 8/12/2019 Chap Radtrans

    52/66

    Example: Velocity channel maps

    From: Alyssa Goodman (CfA Harvard), the COMPLETE survey

    Viewing the Omega Nebula (M17) at different velocity channels

    b d

  • 8/12/2019 Chap Radtrans

    53/66

    Continuum emission/extinction by dust

    Atoms in dust grains do not produce lines.They produce continuum + broad features.

    From lectureEwine vanDishoeck

    CO ice

    CO ice+gas

    CO gas

    solid CO 2 CO gas

    CO gas+ice

    CO ice

    D i i E l ili

  • 8/12/2019 Chap Radtrans

    54/66

    Dust opacities. Example: silicateOpacity of amorphous silicate

    E l B68 l l l d

  • 8/12/2019 Chap Radtrans

    55/66

    Example: B68 molecular cloud

    Credit: European Southern Observatory

    E l Th l d i i M51

  • 8/12/2019 Chap Radtrans

    56/66

    Example: Thermal dust emission M51

    Made with theHerschel SpaceTelescope:

  • 8/12/2019 Chap Radtrans

    57/66

    Using radiative transfer modelsto interpret observational data

    F d d li M d l fi i

  • 8/12/2019 Chap Radtrans

    58/66

    I,in I,out

    ?

    Modelcloud

    Radiative transfer program

    Forward modeling: Model fitting

    van Kempen et al. (2010)

    F d d li M d l fi i

  • 8/12/2019 Chap Radtrans

    59/66

    I,in I,out

    ?

    Model cloud

    Radiative transfer program

    Forward modeling: Model fitting

    van Kempen et al. (2010)

    F d d li M d l fitti

  • 8/12/2019 Chap Radtrans

    60/66

    I,in I,out

    ?

    Model cloud

    Radiative transfer program

    Got it!

    Forward modeling: Model fitting

    van Kempen et al. (2010)

  • 8/12/2019 Chap Radtrans

    61/66

    A t t d fitti g

  • 8/12/2019 Chap Radtrans

    62/66

    Automated fitting

    Then we need a procedure to scan model-parameter space:

    Brute force method

    Pontoppidan et al. 2007

    2-contours

    A t t d fitti g

  • 8/12/2019 Chap Radtrans

    63/66

    Automated fitting

    Then we need a procedure to scan model-parameter space:

    Brute force method

    Pontoppidan et al. 2007

    2-contours

    But strongdegeneracy

    Best fit

    Automated fitting

  • 8/12/2019 Chap Radtrans

    64/66

    Automated fitting

    Then we need a procedure to scan model-parameter space:

    For large parameter spaces, better use one of these:

    Simulated annealing Amoeba MCMC Genetic algorithms

    ...

  • 8/12/2019 Chap Radtrans

    65/66

    Some useful radiative transfer codes

  • 8/12/2019 Chap Radtrans

    66/66

    Some useful radiative transfer codes...

    Infrared and submillimeter lines: RADEXhttp://www.sron.rug.nl/~vdtak/radex/radex.php RATRANhttp://www.strw.leidenuniv.nl/~michiel/ratran/ SIMLINEhttp://hera.ph1.uni-koeln.de/~ossk/Myself/simline.html

    Stellar atmosphere codes: TLUSTYhttp://nova.astro.umd.edu/ PHOENIXhttp://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html More codes on: http://en.wikipedia.org/wiki/Model_photosphere