40
References Chapter General D’Ans-Lax: Taschenbuch für Chemiker und Physiker, Bd 1: Makroskopische phy- sikalisch-chemische Eigenschaften, 3. Auflage, Springer (1967) DECHEMA Chemistry Data Series, Dechema Frankfurt, Bände 1-15 Gmehling, J.; Kolbe, B.: Thermodynamik, 2. Auflage, VCH Weinheim (1992) International Critical Tables Vol. IV, Mc-Graw-Hill, New York (1933) Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 6. Auflage, Springer Laskowski, J. S.; Ralston, J. (editors): Colloid Chemistry in Mineral Processing, Vol. 12, Elsevier (1992) Linke, W. F.: Solubilities: Inorganic and metal-organic compounds; a compilation of solubility data from the periodical literature; a revision and continuation, origin. by Seidell, A. and Linke, W.F., Am.Chem.Soc. Washington (1958) Band 1 and (1965) Band 2 Baehr, H. D.: Thermodynamik, 7. Auflage, Springer (1989) © Springer-Verlag Berlin Heidelberg 2011 A. Mersmann et al., Thermal Separation Technology: Principles, Methods, Process Design, VDI-Buch, DOI 10.1007/978-3-642-12525-6, 635 2 Chapter 1 Romm, J. J.: Der Wasserstoff Boom, Wiley-VCH, Weinheim 2006 Kreysa, G.: Methan – Chance für eine klimaverträgliche Energieversorgung, Chem.-Ing.-Techn. 80 (2008) 7, 901-908 CRC Handbook of Chemistry and Physics 2010 – 2011; ed. by William M. Haynes, 91st ed. Taylor & Francis (2010) Engineer’s. Handbook, 8th ed. New York McGraw-Hill (2008) Green, W. D.; Perry, R. H.: Perry’s Chemical

Chapter 1 - link.springer.com978-3-642-12525-6/1.pdf · the Adsorption Isotherms of Gases on Acti ve Carbon under pressures of 1 to 7 atm, Acta Chim. Hung. 35 (1963), p. 53/60 Mersmann,

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

References

Chapter

General

D’Ans-Lax: Taschenbuch für Chemiker und Physiker, Bd 1: Makroskopische phy-sikalisch-chemische Eigenschaften, 3. Auflage, Springer (1967)

DECHEMA Chemistry Data Series, Dechema Frankfurt, Bände 1-15

Gmehling, J.; Kolbe, B.: Thermodynamik, 2. Auflage, VCH Weinheim (1992)

International Critical Tables Vol. IV, Mc-Graw-Hill, New York (1933)

Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie,Geophysik und Technik, 6. Auflage, Springer

Laskowski, J. S.; Ralston, J. (editors): Colloid Chemistry in Mineral Processing,Vol. 12, Elsevier (1992)

Linke, W. F.: Solubilities: Inorganic and metal-organic compounds; a compilationof solubility data from the periodical literature; a revision and continuation, origin.by Seidell, A. and Linke, W.F., Am.Chem.Soc. Washington (1958) Band 1 and(1965) Band 2

Baehr, H. D.: Thermodynamik, 7. Auflage, Springer (1989)

© Springer-Verlag Berlin Heidelberg 2011

A. Mersmann et al., Thermal Separation Technology: Principles, Methods, Process Design, VDI-Buch, DOI 10.1007/978-3-642-12525-6,

635

2

Chapter 1

Romm, J. J.: Der Wasserstoff Boom, Wiley-VCH, Weinheim 2006

Kreysa, G.: Methan – Chance für eine klimaverträgliche Energieversorgung, Chem.-Ing.-Techn. 80 (2008) 7, 901-908

CRC Handbook of Chemistry and Physics 2010 – 2011; ed. by William M. Haynes, 91st ed. Taylor & Francis (2010)

Engineer’s. Handbook, 8th ed. New YorkMcGraw-Hill (2008)Green, W. D.; Perry, R. H.: Perry’s Chemical

Walas, S. M.: Phase Equilibria in Chemical Engineering, Butterworth (1985)

Special

Abrams, D. S.; Prausnitz, J. M.: Statistical Thermodynamics of Liquid Mixtures: ANew Expression for the Excess Gibbs Energy of Partly or Completely MiscibleSystems, AIChE J. 21 (1975), p. 116/128

Bosnjakovic, F.: Technische Thermodynamik Tl. 2, 4. Auflage, Steinkopff, Dres-den (1965), p. 114

Brunauer, S.; Deming L. S.; Deming, E.; Teller, E.: On a Theory of the van derWaals Adsorption of Gases, J. Am. Chem. Soc. 62 (1940), p. 1723/1732

Cerofolini, G. F.: Adsorption and Surface Heterogeneity, Surface Science 24(1971), p. 391/403

Cerofolini, G. F.: On the Choice of the Condensation Pressure in the CondensationApproximation, Surface Science 47 (1975), p. 469/476

Eiden, U.: Über die Einzel- und Mehrstoffadsorption organischer Dämpfe aufAktivkohle, Ph.D. Thesis Universität Karlsruhe (1989)

References636

Prausnitz, J.; Lichtenthaler, R.; Gomes, E.: Molecular Thermodynamics of fluid-phase equilibria, PTR Prentice-Hall (1986)

VDI-Wärmeatlas: / Hrsg.: VereinVerfahrenstechnik und Chemieingenieurwesen (GVC), 10. Auflage, Springer (2006)

Deutscher Ingenieure; VDI-Gesellschaft

and VDI-Heat Atlas, Ed. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieur-wesen (GVC), 2. Edition (2010)

Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P.: The properties of gases and liquids, 5. ed., McGraw-Hill (2007)

Springer Materials – The Landolt-Börnstein Database: electronic resource, www.springermaterials.com

Stephan, P.; Schaber, K.; Stephan, K., Mayinger F.: Thermodynamik Vol. 1 (2009) and Vol. 2 (2010), Springer

Wagner, W.: Cryogenics, August 1973, 470-482

Akgün, U.: Prediction of Adsorption Equilibria of Gases, PhD Thesis, Technical University Munich, Germany (2007)

Mayinger, F.; Stephan, K.: Thermodynamik - Grundlagen und technische Anwen-dungen, Bd. 1 & 2, Springer (1992)

Markmann, B.: Zur Vorhersagbarkeit Adsorptionsgleichgewichten mehrkom-ponentiger Gasgemische, Ph.D. Thesis, TU München (1999)

Matschke, D. E.; Thodos, G.: Vapor-Liquid Equilibria for the Ethane-Propane Sys-tem, J. Chem. Eng. Data 7 (1962), No. 2, p. 232/234

Maurer, S.: Prediction of Single-Component Adsorption Equilibria, Ph.D. Thesis,TU München (2000) (Herbert Utz, Wissenschaft, München, 2000)

Mersmann, A.; Fill, B.; Maurer, S.: Single and Multicomponent Adsorption Equilibriaof Gases, VDI Fortschrittsbericht Reihe 3 No. 735, VDI Verlag, Düsseldorf (2002)

Mersmann, A.; Akgün, U.: A Priori Prediction of Adsorption Equilibria of Arbit-rary Gases on Microporous Adsorbents, VDI-Fortschrittsberichte Reihe 3, No.906, VDI Verlag, Düsseldorf (2009)

Moon, H.; Tien, C.: Further Work on Multicomponent Adsorption Equilibria Calcul-ations based on the Ideal Adsorbed Solution Theory, Ind. Chem. Res. 26 (1987), p. 2042

References 637

Münstermann, U.: Adsorption von CO aus Reingas und aus Luft am Molekularsieb-2

Einzelkorn und im Festbett, Berücksichtigum von Würmeeffekten und H2O-Prä

Funakubo, E.; Nakada, S.: Jpn. Coal Tar (1950), p. 201

Hasselblatt, M.; Z. Phy. Chem. 83 (1913), p. 1

Hecht, G. et al.: Berechnung thermodynamischer Stoffwerte von Gasen und Flüs-sigkeiten, VEB Dt. Verl. f. Grundstoffind Leipzig (1966), p. 32 and p. 68.

Hougen, O. A.; Watson, K. M.; Ragatz, R. A.: Chemical process principles, 2nded., Vol. 2: Thermodynamics, Wiley, New York (1959)

Kaul, B. K.: Modern Vision of Volumetric Apparatus for Measuring Gas-SolidEquilibrium Data, Ind. Eng. Chem. Res. 26 (1987), p. 928/933

Margules, M.: Sitz.-Ber. Akad. Wiss. (Wien), math. naturwiss. Kl. 104 (1895) p.1243, cit in (Schmidt et al. 1977 ), p. 144

Förg, W.; Stichlmair, J.: Die Gewinnung von Rein-Wasserstoff aus Gemischen mitleichten aliphatischen Kohlenwasserstoffen mit Hilfe tiefer Temperaturen, Kälte-technik-Klimatisierung, 21 (1969) 4, p. 104/110

Fredenslund, A.; Gmehling, J.; Rasmussen, P.: Vapor-liquid equilibria using UNI-FAC, Elsevier, Amsterdam (1977)

adsorption, Ph.D. Thesis TU München 1984

Renon, H.; Prausnitz, J. M.: Local compositions in thermodynamic excess func-tions for liquid mixtures, J. Am. Inst. Chem. Eng 14 (1968), p. 135/144

Rittner; Steiner: Die Schmelzkristallisation von organischen Stoffen und ihre groß-technische Anwendung, Chem.-Ing.-Techn. 57 (1985) 2, p. 91/102

Rudzinsky, W.; Everett, D. H.: Adsorption of Gases on Heterogenous Surfaces,Academic Press, London (1992)

Sakuth, M.: Messung und Modellierung binärer Adsorptionsgleichgewichte, PhDThesis, Universität Oldenburg (1993)

Schildknecht, H.: Zonenschmelzen, Verlag Chemie, Weinheim (1964)

Stephan, P.; Schaber, K.; Stephan, K.; Mayinger, F.; Thermodynamik - Grundlagen

Sievers, W.: Über das Gleichgewicht der Adsorption in Anlagen zur Wasserstoffge-winnung, Ph.D. Thesis, TU München (1993)

Roseboom, H. W. B.: Z. Phys. Chem, Leipzig, 10 (1982), p. 145

References638

und technische Anwendungen Vol. 2: Mehrstoffsysteme und chemische Reaktionen,

15th Ed., Springer-Verlag Berlin Heidelberg , 2010.

Schweighhart, P. J.: Adsorption mehrerer komponenten in biporösen Adsorbentien,Ph.D. Thesis, TU München (1994)

Reinhold, H.; Kircheisen, M.: J. Prakt. Chem. 113 (1926), p. 203 and p. 351

O’Brian, J.; Myers, A. L.: Rapid Calculations of Multicomponent AdsorptionEquilibria from Pure Isotherm data, Ind. Eng. Chem. Process Des. Dev. 24 (1985),p. 1188/1191

Polaczkowa, W. et al.: Preparatyka organiczna, Panstwowe Wydawnictwo Techni-czne, Warschau (1954)

Quesel, U.: Untersuchungen zum Ein- und Mehrkomponentengleichgewichten beider Adsorption von Lösungsmitteldämpfen und Gasen an Aktivkohle und Zeoli-then, Ph.D. Thesis, TH Darmstadt (1995)

Reid, R. C. et al.: The Properties of Gases and Liquids, Singapore; McGraw-HillBook Co. (1988)

O’Brian, J.; Myers, A. L.: Physical Adsorption of Gases on Heterogenous Sur-faces, J. Chem. Soc., Faraday Trans. 1 (1984) 80, p. 1467/1477

Myers, A. L.; Prausnitz, J. M.: Thermodynamics of Mixed-Gas Adsorption, AIChEJ. 11 (1965), p. 121/127

Batchelor, G. K.: The Theory of Homogeneous Turbulence, Cambridge UniversityPress 1953

Brodkey, R. S.: Turbulence in Mixing Operations. Theory and Application toMixing Reaction, Academic Press, New York 1975

Corrsin, S.: The Isotropic Turbulent Mixer: Part II. Arbitrary Schmidt Number,AIChE J. 10 (1964) No. 6, p. 870/877

Hinze, J. O.: Turbulence, McGraw Hill, New York 1975

Kolmogoroff, A. N.: Sammelband zur statistischen Theorie der Turbulenz, Akade-mie-Verlag, Berlin 1958

Special

Brauer, H.: Strömung und Wärmeübergang bei Rieselfilmen, VDI-Forsch.-Heft457, VDI-Verlag, Düsseldorf 1956

Feind, K.: Strömungsuntersuchungen bei Gegenstrom von Rieselfilmen und Gas inlotrechten Rohren, VDI-Forsch.-Heft 481.VDI-Verlag Düsseldorf 1960

Geldart, T.: Types of Gas Fluidization, Powder Technol. 7 (1973), p. 285/292

Haas, U.; Schmidt-Traub, H.; Brauer, H.: Umströmung kugelförmiger Blasen mitinnerer Zirkulation, Chem.-Ing.-Tech. 44 (1972), p. 1060/1067

References 639

Chapter 3

General

Anderson, B.: Pressure drop in ideal fluidization, Chem. Eng. Sci. 15 (1961),p. 276/297

Thiesen: Z. phys. Chem. 107 (1923), p. 65/73, cit. in Große, L.: Arbeitsmappe fürMineralölingenieure, J2, VDI-Verlag Düsseldorf

van Laar, J. J.: Die Thermodynamik einheitlicher und binärer Gemische, Gronin-gen (1935), cit. in (Schmidt et al. 1977 ), p. 144

Wilson, G. M.: J. Amer. Soc. Chem. 86 (1964), p. 127, cit. in (Schmidt et al. 1977 ), p. 144

Watson: Ind. End. Chem. 35 (1943), p. 398, cit. in (Perry und Chilton 1973), p. 239

Szepesy, L.; Illes, V.: Adsorption of Gases and Gas Mixtures, II. Measurement ofthe Adsorption Isotherms of Gases on Active Carbon under pressures of 1 to 7 atm,Acta Chim. Hung. 35 (1963), p. 53/60

Mersmann, A.; Grossmann, H.: Dispergieren im flüssigen Zweiphasensystem.Chem.-Ing.-Techn. 52 (1980), p. 621

Mersmann, A.: Stoffübertragung, Springer Verlag, Berlin 1986

Mersmann, A.; Werner, F.; Maurer, S.; Bartosch, K.: Theoretical prediction of theminimum stirrer speed in mechanically agitated suspensions, Chem. Eng. Process.37 (1998), p. 503/510

Molerus, O.: Interpretation of Geldart’s Type A, B, C and D Powders by Takinginto Account Interparticle Cohesion Forces, Powder Technol. 33 (1982), p. 81/87

Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. VDI-Z. 60 (1916),p. 541/569, cit. in: VDI-Wärmeatlas, 2. Aufl. p. Ja 1, VDI-Verlag, Düsseldorf 1974

Reh, L.: Das Wirbeln von körnigem Gut im schlanken Diffusor als Grenzzustandzwischen Wirbelschicht und pneumatischer Förderung, Ph.D. Thesis TH Karlsruhe1961

Richardson, J. F., Zaki, W. N.: Sedimentation and Fluidization, Part I, Trans. Inst.

Ruszkowski, S.: A Rational Method for Measuring Blending Performance andComparison of Different Impeller Types, Proc. Eighth Europ. Conf. on Mixing,Ichem E Symp. Series No. 136, p. 283/291 (1994)

Rybczynski, W.: Über die fortschreitende Bewegung einer flüssigen Kugel ineinem zähen Medium, Bull. Int. Acad. Sci. Cracovic A (1911), p. 40/46

Schäfer, M.: Charakterisierung, Auslegung und Verbesserung des Makro- und Mik-romischens in gerührten Behältern, Ph.D. Thesis Univ. Erlangen-Nürnberg 2001

Voit, H.; Zeppenfeld, R.; Mersmann, A.: Calculation of Primary Bubble Volume inGravitational and Centrifugal Fields, Chem. Eng. Technol. 10 (1987), p. 99/103

References640

Chem. Eng. 32 (1954), p. 35/5

Mersmann, A.: Volumenanteil der dispersen Phase in Sprühkolonnen sowie Bla-sen- und Tropfensäulen, Verf. Techn. 12 (1978), p. 426/429

Hadamard, J. M.: Mouvement permanent lent d’une liquide et visqueuse dans unliquide visqueux, Compt. Rend. Acad. Sci. Paris 152 (1911), p. 1735 /1738

Mersmann, A.: Auslegung und Maßstabsvergrößerung von Blasen- und Tropfen-säulen, Chem.-Ing. Techn. 49 (1977), p. 679/691

Mersmann, A.; Einenkel, W.-D.; Käppel, M.: Auslegung und Maßstabvergröße-rung von Rührapparaten, Chem.-Ing.-Techn. 47 (1975), p. 953/964

Chapter

General

Baehr, H. D.; Stephan, K.: Wärme- und Stoffübertragung, Springer (2010)

Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport Phenomena, 2nd ed., Wiley(2002)

Cussler, E.: Diffusion -Mass transfer in fluid systems, Cambridge University Press(1997)

Gröber, H.; Erk, S.; Grigull, U.: Die Grundgesetze der Wärmeübertragung,3. Aufl., Springer (1981)

Hausen, H.: Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom,Springer (1976)

Mersmann, A.: Stoffübertragung, Springer (1986)

Schlünder, E. U.; Martin, H.: Einführung in die Wärmeübertragung, 8. Aufl., Vie-weg (1995)

Schlünder, E. U.: Einführung in die Stoffübertragung, 2. Aufl., Vieweg (1996)

Taylor, R.; Krishna, R.: Multicomponent mass transfer, Wiley series in chemicalengineering, Wiley (1993)

VDI-Heat Atlas, Ed.: Verein Deutscher Ingenieure: VDI-Gesellschaft Verfahren-stechnik und Chemieingenieurwesen (GVC), 2nd ed. (2010)

Wesselingh, J. A.; Krishna, R.: Mass transfer, 1. publ, Horwood New-York, (1990)

Special

Bandel, J.; Schlünder, E. U.: Pressure drop and heat transfer by vaporization of boi-ling refrigerants in a horizontal pipe, Int. Symp. Recent Developments in HeatExchangers, Trogir (1972)

References 641

4

Werner, F. C.: Über die Turbulenz in gerührten newtonschen und nicht-newton-schen Fluiden, Ph.D. Thesis TU München 1997

Zehner, P.; Benfer, R.: Modelling fluid dynamics in multiphase reactors, Chem.Engng. Sci. 51 (1996) 6, pp.1735/1744

Haffner, H.: Wärmeübergang an Kältemittel bei Phasenverdampfung, Filmver-dampfung und überkritischem Zustand des Fluids, Bundesminist. f. Bildg. & Wiss.Bonn (1970), p. 70/24, cit. in VDI-Wärmeatlas Ha 1

Hausen, H.: Neue Gleichung für die Wärmeübertragung bei freier oder erzwunge-ner Strömung, Allg. Wärmetech. 9 (1959), p. 75/79

Kast, W.; Krischer, O.; Reinicke, H.; Wintermantel, K.: Konvektive Wärme- undStoffübertragung, Springer (1974)

Krischer, O.; Kast, W.: Die wissenschaftlichen Grundlagen der Trocknungstechnik,3. Aufl. Springer (1978)

Kutateladse, S. S.: Kritische Wärmestromdichte bei einer unterkühlten Flüssig-keitsströmung (russ). Energetika 7 (1959) p. 229/239, cit. in VDI-Wärmeatlas Ha 2

Mersmann, A.; Wunder, R.: Heat transfer between a dispersed system and a verti-cal heating or cooling surface, 6. Int. Heat Transfer Conf. Toronto, Nat. Res.Counc. Canada Vol. 4 (1978), p. 31/36

Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes, VDI-Z. 60 (1916),p. 541/546 und p. 569/575, cit. in VDI-Wärmeatlas A 32

Pohlhausen, E.: Der Wärmeaustausch zwischen festen Körpern und Flüssigkeitenmit kleiner Reibung und kleiner Wärmeleitung, Z. ang. Math. Mech. 1 (1921),p. 115/121

Saunders, O. H.: The effect of pressure upon natural convection in air, Proc. Roy.Soc. London (A) 157 (1936), p. 278/291

Saunders, O. H.: Natural convection in liquids, Proc. Roy. Soc. London (A) 172(1939), p. 55/71

Schmidt, E.; Beckmann, E.: Das Temperatur- und Geschwindigkeitsfeld vor einerwärmeabgebenden senkrechten Platte bei natürlicher Konvektion, Tech. Mech.Thermodyn. 1 (1930), p. 341/349

Schlünder, E. U.: Über eine zusammenfassende Darstellung der Grundgesetze deskonvektiven Wärmeüberganges, Verf.-Tech. (1970), p. 11/60

References642

Chawla, J. M.: Wärmeübergang und Druckabfall in waagrechten Rohren bei derStrömung von verdampfenden Kältemitteln, VDI-Fortschr.-Heft No. 523 (1967)

Chawla, J. M.: Impuls- und Wärmeübertragung bei der Strömung von Flüssigkeits/Dampf-Gemischen, Chem. Ing. Tech. 44 (1972), p. 118/120

Stephan, K.: Beitrag zur Thermodynamik des Wärmeüberganges beim Sieden,Abh. deutsche Kältetech. Verein, No. 18, Karlsruhe, Müller (1964); see also Chem.Ing. Tech. 35 (1963), p. 775/784, cit. in VDI-Wärmeatlas Ha 1

Stephan, K.: Wärmeübergang und Druckabfall bei nicht ausgebildeter Laminar-strömung in Rohren und ebenen Spalten, Chem.-Ing.-Tech. 31 (1959), p. 773/778

Chapter 5

Billet, R.; Schultes, M.: Fluid Dynamics and Mass Transfer in the Total CapacityRange of Packed Columns up to the Flood Point, Chem. Eng. Technol. 18 (1995),p. 371 /379

Billet, R.; Schultes, M.: Prediction of Mass Transfer Columns with Dumped andArranged Packings, Trans IChemE 77 (1999), Part A, p. 498/504

Bravo, J. L.; Fair, J. R.: Generalized Correlation for Mass Transfer in Packed Des-tillation Columns, Ind. Eng. Chem. Process Des. Dev. 21 (1982) No. 1, p. 162/170

Engel, V.: Fluiddynamik in Packungskolonnen für Gas-Flüssig-Systeme, Fort-schritt-Berichte VDI, Reihe 3, Verfahrenstechnik No. 605, VDI-Verlag, Düsseldorf1999

Fair, J. R.: How to predict sieve tray entrainment and flooding, Petro/Chem. Eng.33 (1961), No. 10, p. 45/52

Fair, J. R.: Distillation: King in Separations, Chem. Processing (1990) No. 9, p. 23/31

Fair, J. R.: Gas Absorption and Gas-Liquid System Design, in: Perry, R. H; Green,D. W.: Maloney, J. D.: Perry’s Chemical Engineers’ Handbook, McGraw-Hill,New York 1997, p. 14-1/14-98

Frey, T.; Nierlich, F.; Pöpken, T.; Reusch, D.; Stichlmair, J.; Tuchlenski, A.: Appli-cation of Reactive Distillation and Strategies in Process Design, in: Sundmacher,K.; Kienle, A.: Reactive Distillation, Wiley-VCH, Weinheim 2003

References 643

Wesselingh , J. A.; Bollen, A. M.; Single Particles , Bubbles and Drops: Their Velocities

Billet, R.; Mackowiak. J.: How to use absorption data for design and scale-up of packed columns, Fette, Seifen, Anstrichmittel 86 (1984) No.9, p. 349/358

Schlünder, E. U.: Einführung in die Wärme- und Stoffübertragung, Vieweg (1972)

Schlünder, E. U.: Einführung in die Stoffübertragung, Vieweg (1996)

and Mass Transfer Coefficients, Trans J Chem E, Vol 77, Part A, March (1999) 89-96

Hoek, P. J.; Wesselingh, J. A.; Zuiderweg, F. J.: Small Scale and Large ScaleLiquid Maldistribution in Packed Columns, Chem. Eng. Res. Des. 64 (1986) p.431/449

Kammermaier, F.: Neuartige Einbauten zur Unterdrückung der Maldistribution inPackungskolonnen, VDI Verlag Reihe 3, No. 892 (2008)

Kirschbaum, E.: Destillier and Rektifiziertechnik, 4. Aufl. Berlin, Heidelberg, NewYork, Springer 1969

Kister, H. Z.: Distillation Operation, McGraw-Hill, New York 1989

Kister, H. Z.: Distillation Design, McGraw-Hill, New York 1992

Krishna, R.: Hardware Selection and Design Aspects for Reactive DistillationColumns, in: Sundmacher, K.; Kienle, A.: Reactive Distillation, Wiley-VCH,Weinheim 2003

Landolt-Börnstein, IV, 24c, Springer Verlag, Berlin 1980

Lewis, W. K.: Rectification of binary mixtures, Ind. Eng. Chem. 28 (1936), No. 4,p. 399/402

Lockett, M.-J.: Distillation Tray Fundamentals, Cambridge University Press, Cam-bridge UK 1986

References644

Frey, Th.; Stichlmair, J.: Thermodynamische Grundlagen der Reaktivdestillation,Chem.-Ing.-Tech. 70 (1998) No. 11, p. 1373/1381

Gmehling, J.; Onken, U.: Vapor-Liquid Equilibrium Data Collection, ChemistryData Series, Vol. I ff, Dechema, Frankfurt 1977 ff.

Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K.: Azeotropic Data I and II, Wiley-VCH Weinheim 2004

Klöcker, M.; Kenig, E. Y.; Hoffmann, A.; Kreis, P.; Gorak, A.: Rate-based modeling and simulation of reactive separations in gas/vapor-liquid systems, Chemical Engineering and Processing 44 (2005) p. 617/629 Kolev, N.: Packed Bed Columns. For absorption, desorption, rectification and direct heat transfer, Elsevier Amsterdam 2006

Mersmann, A.: Wann werden alle Löcher einer Siebbodenplatte durchströmt? Chem.-Ing.-Tech. 35 (1963) No.2,p. 103/107

Schmidt, R.: The Lower Capacity Limit of Packed Columns, Instit. Chem. Eng.,Symp. Ser. 56 (1979) No. 2, p. 3.1/1-14

Souders, M.; Brown, G. G.: Design of Fractionating Columns, Ind. Eng. Chem. 26(1934) No. 1, p. 98/1

Spiegel, L.: Packungen in der Prozessindustrie, Process 4 (1994) p. 39/44

Stichlmair, J.: Grundlagen der Dimensionierung des Gas/Flüssigkeit-Kontaktappa-rates Bodenkolonne, Verlag Chemie, Weinheim (1978)

Stichlmair, J.; Bravo, L. J.; Fair, J. R.: General Model for Prediction of PressureDrops and Capacity of Countercurrent Gas/Liquid Packed Collumns, Gas Separa-tion & Purification 3 (1989) No. 3, p. 19/28

References 645

Perry, R. H; Green, D. W.; Maloney, J. D.: Perry’s Chemical Engineers’ Handbook,McGraw-Hill, New York 1997

Ruff, K.; Pilhofer, Th.; Mersmann, A.: Vollständige Durchströmung von Lochbö-den bei der Fluid-Dispergierung, Chem.-Ing.-Tech. 48 (1976) No. 9, p. 759/764

Mersmann, A.: Zur Berechnung des Flutpunktes in Füllkörperschüttungen, Chem.-Ing.-Tech. 37 (1965), p. 218/226

Mersmann, A.: Thermische Verfahrenstechnik, Springer-Verlag, Berlin 1980

Naphtali, L. M.; Sandholm, D. P.: Multicomponent Separation Calculations byLinearization, AIChE J., 17 (1971), p. 148/153

Onda, K.; Takeuchi, H.; Okumoto, Y.: Mass Transfer Coefficients Between Gasand Liquid Phases in Packed Columns, Journal of Chemical Engineering of Japan 1(1968), p. 56/62

Mersmann, A.; Bornhütter, K.: Druckverlust und Flutpunkt in berieselten Packungen, VDI wärmeatlas. VDI-Verlag Düsseldorf 2002 Mersmann, A.; Kind, M.; stichlmair, J.: Thermische Verfahrenstechnik, Grundlagen und Methoden, Springer-Verlag Berlin Heidelberg 2005

Prausnitz, J. M.; Lichtenthaler, R. N.; deAzevdeo, E. G.: Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall Englewood Cliffs 1998

Perry, R. H.; Green, D. W.: Perry’s Chemical Engineer’s Handbook, McGraw-Hill, New York 2008

Blaß, E.: Engineering Design and Calculation of Extractors for Liquid-Liquid Sys-tems, in: Rydberg, J.; Musikas, J.; Choppin, G. R.: Principles and Practices of Sol-vent Extraction, Marcel Dekker, New York 1992, p. 267/313

Blaß, E.; Göttert, W.; Hampe, M. J.: Selection of Extractors and Solvents, in: God-frey, J. C.; Slater, M. J.: Liquid-Liquid Extraction Equipment, John Wiley & Sons,New York 1994, p. 737/767

References646

Stichlmair, J. G.; Fair, J. R.: Distillation - Principles and Practice, Wiley-VCH NewYork 1998

Stichlmair, J.; Frey, Th.: Prozesse der Reaktivdestillation, Chem.-Ing.-Tech. 70(1998) No. 12, p. 1507/1516

Strigle, R. F.: Random Packings and Packed Towers, Design and Applications,Gulf Publishing Company, Houston 1987

Sundmacher, K.; Kienle, A.: Reactive Distillation, Wiley-VCH, Weinheim 2003

Taylor, R.; Krishna, R.: Mulitcomponent Mass Transfer, John Wiley and Sons,New York 1993

Sulzer: Prospekt No. d/22.13.06-v.82-45, Winterthur, Schweiz 1982

Chapter 6

Angelo, J. B.; Lightfoot, E. N.; Howard, D. W.: Generalization of the penetrationtheory for surface stretch: application to forming and oscillating drops, AIChE J.12 (1966), No. 4, p. 751/760

Berger, R.: Einflüsse auf das Verhalten bei der Phasentrennung von nichtlöslichenSystemen organisch-wässrig, Lecture at RWTH Aachen 1987

Blaß, E.; Goldmann, G.; Hirschmann, K.; Milhailowitsch, P.; Pietzsch, W.: Fort-schritte auf dem Gebiet der Flüssig/Flüssig-Extraktion, Chem.-Ing.-Tech. 57(1985), No. 7, p. 565/581

Taylor, R.; Kooijman, H. A.; Hung, J.-S.: A Second Generation Non-equilibrium Model for Computer Simulation of Multi-component Separation Processes, Comp Chem. Eng. 18 (1994) p. 205/217

Hoting, B.: Untersuchungen zur Fluiddynamik und Stoffübertragung in Extrakti-onskolonnen mit strukturierten Packungen, Fortschritt-Berichte VDI, Reihe 3: Ver-fahrenstechnik, No. 439, VDI-Verlag, Düsseldorf 1996

References 647

Brauer, H.: Unsteady state mass transfer through the interface of spherical partic-les, Int. J. Heat Mass Transfer 21 (1978) p. 445/453, 455/465

Clift, R.; Grace, J. R.; Weber, M. E.: Bubbles, drops and particles, Academic Press,New York 1978

Fischer, A.: Die Tropfengröße in Flüssig-Flüssig-Rührextraktionskolonnen, Ver-fahrenstechnik 5 (1971), No. 9, p. 360/365

Garthe, D.: Fluiddynamics and Mass Transfer of Single Particles and Swarms ofParticles in Extraction Columns, Ph.D. Thesis TU München 2006

Godfrey, J. C.; Houlton, D. A.; Marley, S. T.; Marrochelli, A.; Slater, M. J.: Conti-

Chem. Eng. Res. Des. 66 (1988), p. 445/457

Godfrey, J. C.; Slater, M. J.: Liquid-Liquid Extraction Equipment, John Wiley &Sons, New York 1994

Hampe, M.: Flüssig/flüssig-Extraktion: Einsatzgebiete und Lösungsmittelauswahl,Chem.-Ing.-Tech. 50 (1978), p. 647/655

Handlos, A. E.; Baron, T.: Mass and heat transfer from drops in liquid-liquid ext-raction, AIChE J. 3 (1957), p. 127/136

Hansen, C. M.: The Universality of the Solubility Parameter, Ind. Chem. Prod. Res.Dev. 8 (1969), p. 2/11

Haverland, H.: Untersuchungen zur Tropfendispergierung in flüssigkeitspulsiertenSiebboden-Extraktionskolonnen, Ph.D. Thesis TU Clausthal 1988

Henschke, M.: Dimensionierung liegender Flüssig-flüssig-Abscheider anhand dis-kontinuierlicher Absetzversuche, Fortschritt-Berichte VDI, Reihe 3, Verfahrens-technik, No. 379, VDI-Verlag, Düsseldorf 1995

Hildebrand, J. H.; Scott, R. L.: Regular solutions, Englewood Cliffs, Prentice Hall1962

nuous phase axial mixing in pulsed sieve plate liquid-liquid extraction columns,

Kronig, R.; Brink, J.: On the theory of extraction from falling droplets, Appl. Sci.Res. A2 (1950), p. 142/154

Mackowiak, J.: Grenzbelastung von unpulsierten Füllkörperkolonnen bei der Flüs-sig/Flüssig-Extraktion, Chem.-Ing.-Tech. 65 (1993) No. 4, p. 423/429

Mersmann, A.: Zum Flutpunkt in Flüssig/Flüssig-Gegenstromkolonnen, Chem.-Ing.-Tech. 52 (1980) No. 12, p. 933/942

Mersmann, A.: Stoffübertragung, Springer-Verlag, Berlin 1986, p.151/154

Miyauchi, T.; Vermeulen, T.: Longitudinal Dispersion in Two-Phase Continuous-Flow Operations, Ind. Eng. Fund. 2 (1963), p. 133

Newman, A. B.: The drying of porous solids: diffusion and surface emission equa-tions, Trans. AIChE J. 27 (1931), p. 203/220

Olander, D. R.: The Handlos-Baron drop extraction model, AIChE J., 12 (1966) 5,p. 1018/1019

Pilhofer, Th.: Habilitationsschrift, TU München 1978

Postl, J.; Marr, R.: Lecture at GVC-Fachausschuss „Thermische Zerlegung vonGas- und Flüssigkeitsgemischen“ on 8./9.5.1980 in Mersburg

Qi, M.: Untersuchungen zum Stoffaustausch am Einzeltropfen in flüssigkeitspul-sierten Siebboden-Extraktionskolonnen, Ph.D. Thesis TU Clausthal 1992

Richardson, J. F; Zaki, W. N.: Sedimentation and Fluidization, Part I, Trans. Inst.,Chem. Eng. 32 (1954), p. 35/53

Rydberg, J.; Musikas, J.; Choppin, G.R.: Principles and Practices of Solvent Ext-raction, Marcel Dekker, New York 1992

Sorensen, J. M.; Arlt, W.: Liquid-Liquid Equilibrium Data Collection, ChemistryData Series Vol. 5, Parts 1-4, Dechema, Frankfurt 1980ff

Steiner, L.: Mass-transfer rates from single drops and drop swarms, Chem. Ing. Sci.41 (1986), p. 1979/1986

Stichlmair, J.: Leistungs- und Kostenvergleich verschiedener Apparatebauarten fürdie Flüssig/Flüssig-Extraktion, Chem.-Ing.-Tech. 52 (1980) No. 3, p. 253/255

References648

Stichlmair, J.; Steude, H. E.: Abtrennung und Rückgewinnung von Stoffen ausAbwasser und Abfallflüssigkeiten, in: Stofftrennverfahren in der Umwelttechnik,GVC.VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Düsseldorf1990, p. 175/205

Wagner, I.: Der Einfluss der Viskosität auf den Stoffübergang in Flüssig-flüssig-Extraktionskolonnen, Ph.D. Thesis TU München 1999

Widmer, F.: Tropfengröße, Tropfenverhalten und Stoffaustausch in pulsierten Füll-körper-Extraktionskolonnen, Chem.-Ing.-Tech. 39 (1967), No. 15, p. 900/906

Wolf, S.: Phasengenzkonvektionen beim Stoffübergang in Flüssig-flüssig-Syste-men, Fortschritt-Berichte VDI, Reihe 3: Verfahrenstechnik, No. 584, VDI-Verlag,Düsseldorf 1999

Chapter 7

General

Baehr, H. D.; Stephan K.: Wärme- und Stoffübertragung, Springer (2004)

Billet, R.: Evaporation technology -principles applications economics, VCH Wein-heim (1989)

Bosnjakovic, F.: Technische Thermodynamik, Teil 2, 4. Aufl., Steinkopff Dresden(1965)

Hsu, Y. Y.; Graham, R. W.: Transport processes in boiling and two-phase systems:including near-critical fluids, Hemisphere Publ. Cor. Washington (1976)

Müller-Steinhagen, H. (editor): Handbook heat exchanger fouling: mitigation andcleaning technologies, Publico Publ. Essen (2000)

Rant, Z.: Verdampfen in Theorie und Praxis, Aarau Sauerländer (1977)

Schlünder, E. U.; Martin, H.: Einführung in die Wärmeübertragung -für Maschi-nenbauer, Verfahrenstechniker, Chemie-Ingenieure, Physiker, Biologen und Che-miker ab dem 4. Semester, 8. Aufl., Vieweg (1995)

completely revised ed., Wiley-VCH Weinheim (2002) Ullmann’s encyclopedia of industrial chemistry (ed. advisory board: Bohnet, M.),

References 649

VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang / Hrsg.: VereinDeutscher Ingenieure; VDI-Gesellschaft Verfahrenstechnik und Chemieingenieur-wesen (GVC), 9. Aufl., Springer (2002)

Special

Arneth, S.: Dimensionierung und Betriebsverhalten von Naturumlaufverdampfern,Hieronymus Verlag, München, 1999

Arneth, S.; Stichlmair, J.: Characteristics of thermosiphon reboilers, InternationalJournal of Thermal Sciences (2001) Vol. 40, p. 392/399

Bohnet, M.: Influence of the Transport Properties of the Crystal/Heat Transfer Sur-face Interfacial on Fouling Behavior, Chemical Engineering and Technology, Band26, Heft 10 (2003), p. 1055/1060

Fair, J. R.: What You Need to Design Thermosiphon Reboilers, Petroleum Refiner,Vol. 39, No. 2, p. 105/123

Ford, J. D.; Missen, R. W.: On the conditions for stability of falling films subject tosurface tension disturbance, the condensation of binary vapors, Canad. J. Chem.Eng. 46 (1968), p. 308/312

Wettermann, M.; Steiner, D.: Flow boiling heat transfer characteristics of wide-boi-ling mixtures, International Journal of Thermal Sciences, Band 39 (2000) 2, p. 225/235

Zuiderweg, F. F.; Harmens, H.: The influence of surface phenomena in the perfor-mance of destillation colums, Chem. Eng. Sci. 9 (1958), p. 89/103

Chapter 8

General

Arkenbout, G.: Melt crystallization technology, Lancaster Techn. publ. (1995)

Garside, J.; Mersmann, A.; Nyvlt, J.: Measurement of Crystal Growth and Nuclea-tion Rates, 2nd ed., I ChemE (Institution of Chemical Engineers) Rugby (2002)

Hofmann, G.: Kristallisation in der industriellen Praxis, Wiley-VCH Weinheim(2004)

References650

Israelachvili, J. N.: Intermolecular and surface forces, Academic press (1995)

Lacmann, R.; Herden, A.; Meyer, C.: Review -Kinetics of nucleation and crystalgrowth, Chem. Eng. Technol. 22 (1999) 4, p. 279/289

Lyklema, J.: Fundamentals of Interface an Colloid Science, Vol. I & II, AcademicPress (1991)

Mersmann, A.: Crystallization Technology Handbook, 2nd ed., Marcel Dekker,New York (2001)

Mullin, J. W.: Crystallization, 4th ed. Oxford, Butterworth (2004)

Myerson, A. S. (ed): Handbook of Industrial Crystallization, Butterworth-Heine-mann Boston (1993)

Randolph, A. D.; Larson, M. A.: Theory of Particulate Processes, 2nd ed., Acade-mic Press, San Diego (1988)

Söhnel, O.; Garside, J.: Precipitation -basic principles and industrial applications, :Butterworth-Heinemann Oxford (1992)

Tadros, T. F. (ed): Solid/Liquid Dispersions, Academic Press (1987)

Ulrich, J.; Glade, H.: Melt Crystallization -Fundamentals Equipment and Applica-tions, Shaker Aachen (2003)

Wöhlk, W.; Hofmann, G.: Types of crystallizers, Int. Chem. Eng. 24 (1984), p. 419/431

Special

Becker, R.; Döring, W.: Kinetische Behandlung der Keimbildung in übersättigtenDämpfen, Ann. Phys. 24 (5) (1935), p. 719

Berthoud, A.: Théorie de la formation des fases d’un cristal, J. Chim. Phys. 10(1912), p. 624

Burton, J. A.; Prim, R. C.; Slichter, W. P.: Distribution of solute in crystals grownfrom the melt, J. Chem. Phys. 21 (1953), p. 1987

Burton, W. K.; Cabrera, N.; Frank, F. C.: The growth of crystals and the equilib-rium structure of their surface, Phil. Trans. Roy. Soc. London, 243 (1951), p. 299

References 651

David, R.; Villermaux, J.: Crystallization and precipitation engineering III. Adiscrete formulation of the agglomeration rate of crystals in a crystallization pro-cess, Chem. Eng. Sci. 46 (1) (1991), p. 205/213

Derjaguin, B. V.; Landau, L.: Theory of the stability of strongly charged lyophobicsolid and of the adhesion of strongly charged particles in solutions of electrolytes,Acta Physiochim. URRS 14 (1941), p. 633/622

Gahn, C.; Mersmann, A.: Brittle fracture in crystallization processes, Part A, Attri-tion and abrasion of brittle solids, Chem. Eng. Sci. 54 (1999), p. 1273

Fleischmann, W.; Mersmann, A.: Drowning out crystallization of sodium sulphateusing methanol, in Proc. 9th Symp. on Industrial Crystallization (S. J. Janic andE. J. de Jong. eds.) Elsevier, Amsterdam (1984)

Hulburt, H. M.; Katz, S.: Some problems in particle technology, Chem. Eng. Sci.19 (1964), p. 555

Hounslow, M. J.: Nucleation, growth and aggregation rates from steady-state expe-rimental data, AICHE J. 36 (1990), p. 1748

Judat, B.; Kind, M.: Morphology and internal structure of barium sulfate-deriva-tion of a new growth mechanism, Journal of Colloid and Interface Science, Band269 (2004) Heft 2, p. 341/353

Kind, M.; Mersmann, A.: Methoden zur Berechnung der homogenen Keimbildungaus wässrigen Lösungen, Chem. Ing. Techn. 55(1983), p. 270

Kind, M.; Mersmann, A.: On Supersaturation during mass crystallization fromsolution, Chem. Eng. Technol. 13 (1990), p. 50

Liszi, I.; Liszi, J.: Salting out crystallization in KCl-water-methanol system, inProc. 11th Symp. on Industrial Crystallization (A. Mersmann, ed) (1990), p. 515/520

Mersmann, A.: General prediction of statistically mean growth rates of a crystalcollective, J. Cryst. Growth 147 (1995), p. 181

Mersmann, A.; Löffelmann, M.: Crystallization and Precipitation: The optimalsupersaturation, Chem. Ing. Techn. 71 (1999), p. 1240/1244

p. 841Mersmann, A.: Calculation of interfacial tensions, J. Cryst. Growth, 102 (1990),

References652

Nyvlt, J.; Rychly, R.; Gottfried, J.; Wurzelova, J.: Metastable zone width of someaqueous solutions, J. Cryst. Growth 6 (1970), p. 151

Orowan, E.: Fracture and strength of solids, Rep. Progr. Physics 12 (1949), p. 185/232

Schubert, H.: Principles of agglomeration, Int. Chem. Eng. 21 (1981), p. 336/377

Schubert, H.: Keimbildung bei der Kristallisation schwerlöslicher Stoffsysteme,Ph.D. Thesis Technische Universität München (1998)

Schwarzer, H. C.; Peukert, W.: Tailoring particle size through nanoparticle precipi-tation, Chemical Engineering Communications, Band 191 (2004) Heft 4, p. 580

Valeton, J. J. P.: Wachstum und Auflösung der Kristalle, Z. Kristallogr. 59, 135,335 (1923); 60: p. 1 (1924)

Vervey, E. J. W.; Overbeek, J. T. G.: Theory of stability of lyophobic colloids, Else-vier, Amsterdam (1948)

Volmer, M.; Weber, A.: Keimbildung in übersättigten Lösungen, Z. Phys. Chem.119 (1926), p. 277

Wintermantel, K.: Die effektive Trennwirkung beim Ausfrieren von Kristallschich-ten aus Schmelzen und Lösungen: Eine einheitliche Darstellung, Chem.-Ing.-Tech.58 (1986), p. 498/499

Wintermantel, K.; Wellinghoff, G.: Layer Crystallization and Melt Solidification inIndustrial Crystallization, ed. A. Mersmann, Marcel Dekker (2001)

Wirges, H. P.: Beeinflussung der Korngrößenverteilung bei Fällungskristallisatio-nen, Chem. Ing. Techn. 58(7) (1986), p.586/587

Zacher, U.; Mersmann, A.: The influence of internal crystal perfection on growthrate dispersion in a continuous suspension cristallizer, J. Crystal Growth 147(1995), p. 172

Chapter

General

Do, D. D.: Adsorption Analysis: Equilibria and Kinetics, Imperial College Press,London 1998

9

References 653

Guiochon, G.; Felinger, A.; Shirazi, D.G.; Katti, A.M.: Fundamentals of Prepara-tive and Nonlinear Chromatography, 2nd ed Elsevier, Amsterdam 2006

Holland, C. D.; Liapis, A. I.: Computer Methods for Solving Dynamic SeparationProblems, McGraw-Hill, New York 1983

Kast, W.: Adsorption aus der Gasphase, VCH Verlagsgesellschaft, Weinheim 1988

Mersmann, A.: Adsorption, in: Ullmann’s Encyclopedia of Industrial ChemistryVol. B3, VCH Verlagsgesellschaft, Weinheim 1988, p. 9-1/9-52

Mersmann, A.; Fill, B.; Maurer, S.: Single and Multicomponent Adsorption Equili-bria of Gases, Fortschritt-Bericht VDI, Reihe 3, No. 735, VDI Verlag, Düsseldorf2002

Mersmann, A.; Akgün, U.: A Priori Prediction of Adsorption Equilibria of Arbit-rary Gases on Microporous Adsorbents, Fortschritt-Bericht VDI, Reihe 3, No. 906,VDI Verlag Düsseldorf 2009

Perry, R. H.; Green, W. D.: Chemical Engineers Handbook, 6th ed., McGraw HillNew York 1984

Rudzinski, W.; Everett, D. H.: Adsorption of Gases on Heterogeneous Surfaces,Academic Press, London 1992

Ruthven, D. M.: Principles of Adsorption and Adsorption Processes, John Wileyand Sons, New York 1984

Seidel-Morgenstern, A.; Kessler, L. C.; Kaspereit, M.: Neue Entwicklungen aufdem Gebiet der simulierten Gegenstromchromatographie, Chem.-Ing.- Techn. 80(2008) No. 6, p. 726/740

Valenzuela, D. P.; Myers, A. L.: Adsorption Equilibrium Data Handbook, PrenticeHall, Englewood Cliffs, USA 1989

Special

Fritz, W.: Konkurrierende Adsorption von zwei organischen Wasserinhaltsstoffenauf Aktivkohlekörnern, Ph.D. Thesis TH Karlsruhe 1978

Akgün, U.: Prediction of Adsorption Equilibria of Gases, Ph.D. Thesis TU München 2007

Brandani, F. et al.: Measurement of Adsorption Equilibria by the Zero Length Column (ZLC) Technique, Part A: Single-Component Systems. Industrial & engineering chemistry research 42(7), pp 1451/1461 (2003)

References654

Glueckauf, E.: Theory of Chromatography, Trans Faraday Soc. 51 (1955), p. 1540/1551

Hartmann, R.: Untersuchungen zum Stofftransport in porösen Adsorbentien, Ph.D.Thesis TU München 1996

Harlick, P. J. E.; Tezel, F. H.: Use of Concentration Pulse Chromatography for Deter-mining binary Isotherms: comparison with Statistically Determined Binary Iso-therms, Adsorption 9 (2003), p. 275/286

Harlick, P. J .E.; Tezel, F. H.: An Experimental Adsorption Screening Study for CO2

Removal from N2, Microporous and Mesoporous Materials 76 (2004) p. 71/79

Jüntgen, H.; Knoblauch, K.; Mayer, F.: Die Entschwefelung von Abgasen nachdem Verfahren der Bergbau-Forschung, gwf-gas/erdgas 113 (1972), p. 127/131

Kajszika, H. W.: Adsorptive Abluftreinigung und Lösungsmittelrückgewinnungdurch Inertgasregenerierung, Ph.D. Thesis TU München 1998

Kaul, B. K.: Modern Version of Volumetric Apparatus for Measuring Gas-SolidEquilibrium Data, Ind. Eng. Res. 26 (1987), p. 928/933

Laukhuf, W. L. S.; Plan, K. C. A.: Adsorption of Carbon Dioxide, Acetylene, Ethaneand Propylene on Charcoal Near Room Temperatures, J. Chem. Eng. Data 14(1969), p. 48/51

Markmann, B.: Zur Vorhersagbarkeit von Adsorptionsgleichgewichten mehrkom-ponentiger Gasgemische, Ph.D. Thesis TU München 1999

Maurer, S.: Prediction of Single Component Equilibria, Ph.D. Thesis TU München1999

Mehler, C.: Charakterisierung heterogener Feststoffoberflächen durch Erweiterungeines dielektrischen Kontinuumsmodells, Ph.D. Thesis TU München 2003

Münstermann, U.: Adsorption von CO2 aus Reingas und aus Luft am Molekular-sieb-Einzelkorn und im Festbett, Berücksichtigung von Wärmeeffekten und H2O-Präadsorption, Ph.D. Thesis TU München 1984

Noack, R.; Knoblauch, K.: Betriebserfahrungen mit dem Babcock-B.-F.-Verfahrenzur Rauchgasentschwefelung, VDI-Bericht No. 267, VDI-Verlag, Düsseldorf 1976

Liaw, C. H. et al.: Kinetics of Fixed bed adsorption: a new solution, AICHEJ. 25, p. 376 (1979)

References 655

Pan, C. J.; Basmadjian, D.: An Analysis of Adiabatic Sorption of Single Solutes inFixed Beds: Pure Thermal Wave Formation and it’s Practical Implications, Chem.Eng. Sci 25 (1970), p. 1653/1664

Polte, W. M.: Zur Ad- und Desorptionskinetik in bidispersen Adsorbentien, Ph.D.Thesis TU München 1987

Rosen, J. B.: General Numerical Solution of Solid Diffusion in Fixed Beds, Ind.Eng. Chem. 46 (1954) 8, p. 1590/1594

Ruhl, E.: Temperaturwechsel-, Druckwechsel- und Verdrängungssorptions-Verfah-ren, Chem.-Ing.-Techn. 43 (1971) 15, p. 870/876

Scholl, S.: Zur Sorptionskinetik physisorbierter Stoffe an festen Adsorbentien,Ph.D. Thesis TU München 1991

Schweighart, P. J.: Adsorption mehrerer Komponenten in biporösen Adsorbentien,Ph.D. Thesis TU München 1994

Sievers, W.: Über das Gleichgewicht der Adsorption in Anlagen zur Wasserstoffge-winnung, Ph.D. Thesis TU München 1993

Treybal, R. E.: Mass Transfer Operations, Mc Graw Hill, New York 1968

Chapter

General

Keey, R. B.: Drying Principles and Practice, Pergamon, New York 1972

Kneule, F.: Das Trocknen, 3. Aufl. Aarau: Sauerländer 1975

Krischer, O.; Kast, W.: Die wissenschaftlichen Grundlagen der Trocknungstechnik,3. Aufl. Berlin, Heidelberg, New York: Springer 1978

Kröll, K.: Trockner und Trocknungsverfahren, 2. Aufl. Berlin, Heidelberg, NewYork: Springer 1978

Mujumdar A. S.: Handbook of Industrial Drying, Marcel Dekker, Inc., New York1995

10

References656

Special

Görling, P.: Untersuchungen zur Aufklärung des Trocknungsverhaltens pflanzli-cher Stoffe, VDI-Forsch. 458, Düsseldorf: VDI-Verlag 1956

Kamei, S.: Untersuchung über die Trocknung fester Stoffe. MEm. Coll. Eng. KyotoImp. Univ., VIII (1934) p. 42/64

Krischer, O.; Sommer, E.: Kapillare Flüssigkeitsleitung in porigen Stoffen beiTrocknungs- und Befeuchtungsvorgängen. Chem.-Ing.-Tech. 43 (1971) p. 967/974

Van Meel, D. A.: Adiabatic convection batch drying with recirculation of air.Chem. Eng. Sci. 9 (1958) p. 36/44

Chapter 1

Baldus, H.; Baumgärtner, K.; Knapp. H.; Streich, M.: Verflüssigung und Trennungvon Gasen, in: Winnacker Küchler: Chemische Technologie, Vol. 3, Carl HauserVerlag, München 1983, p. 567/650

Blass, E.: Entwicklung verfahrenstechnischer Prozesse, Springer Verlag, Berlin1997

Perry, R. H.; Green D. (eds.) Perry’s Chemical Engineer’s Handbook, Mc Graw Hill (2008)

Tsotsas, E.; Metzger, Th.; Gnielinski, V.; Schlünder, E.-U.: Drying of Solids, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2010

Tsotsas, E.; Mujumdar A.; Modern Drying Technology, Vol. 1 - ComputationalMethods (2007), Vol. 2 - Experimental Methods (2009) and Vol. 3 - Product Qualityand Formulation (2011) Wiley-VCH

1

References 657

Brusis, D.: Synthesis and Optimisation of Thermal Separation Processes withMINLP Methods, Ph.D. Thesis TU München 2003

Doherty, M. F.; Malone, M. F.: Conceptual Design of Distillation Systems,McGraw-Hill, New York 2001

Douglas, J. M.: The Conceptual Design of Chemical Processes, McGraw-Hill,New York 1988

El Saie, A.; El Kafrawi, K.: Study of Operation Conditions for Three Large MSFDesalination Units, Desalination 73 (1989), p. 207/230

Frey, T.: Synthese und Optimierung von Reaktivrektifikationsprozessen, Ph.D.Thesis TU München 2001

Geriche, D.: Konzentrieren von Salpetersäure mit Schwefelsäure, Schott-Inform-tion, Schott GmbH, Mainz 1973

Greig, H. W.: An Ecomonomic Comparison of Two 2000 m³ per Day DesalinationPlants, Desalination 64 (1987), p. 17/50

Kaibel, G.: Distillation Columns with Vertical Partitions, Chem. Eng. Technol. 10(1987), p. 92/98

Kaibel, G.; Miller, C.; Watzdorf, R. von; Stroezel, M.; Jansen, H.: Industrieller Ein-satz von Trennwandkolonnen und thermisch gekoppelten Destillationskolonnen,Chem.-Ing.-Tech. 75 (2003), p. 1165/1166

Linnhoff, B.: New Concepts in Thermodynamic for Better Chemical ProcessDesign, Chem. Eng. Res. Dev., Vol. 61 (1983), p. 207/223

Linnhoff, B.; Sahdev, V.: Pinch Technology, in: Ullmanns Encyclopedia of Indust-rial Chemistry, Vol. B3, p. 13-1/13-6, VCH Verlagsgesellschaft, Weinheim 1988

Linnhoff, B.; Dhole, R. V.: Distillation Column Targets, Computers and ChemicalEngineering Journal, Vol. 17 (1983), p. 549/560

Mersmann, A.; Kind, M.; Stichlmair, J.: Thermische Verfahrenstechnik - Grundla-gen und Methoden, Springer, Berlin 2005

Meyers, R. A.: Handbook of Petroleum Refining Processes, McGraw-Hill, NewYork 1996

Rautenbach, R.; Albrecht, R.: Membrane Processes, Wiley, New York 1989

References658

Schoenmakers, H.: Alternativen zur Aufarbeitung desorbierter Lösungsmittel,Chem.-Ing.-Tech. 56 (1984), No. 3, p. 250/251

Schweitzer, P. A.: Handbook of Separation Techniques for Chemical Engineers,McGraw-Hill, New York 1997

Seider, W. D.; Seader, J. D.; Levin, D. R.: Process Design Principles, JohnWiley&Sons, Inc., New York 1999

Siirola, J. J.: Industrial Applications of Chemical Process Synthesis, Adv. Chem.Engng, 23 (1996), p. 1/62

Smith, R.: Chemical Process Design, McGraw-Hill, New York 1995

Stichlmair, J. G.; Fair, J. R.: Distillation - Principles and Practice, Wiley-VCH,New York 1998

Strigle, R. F.: Random Packings and Packed Towers, Design and Applications,Gulf Publishing Comp., Houston 1987

Sundmacher, K.; Kienle, A.: Reactive Distillation - Status and Further Directions,Wiley-VCH, Weinheim 2003

Weyd, M.; Richter, H.; Kühnert, J.-T.; Voigt, I.; Tusel, E.; Brüschke, H.: EffizienteEntwässerung von Ethanol durch Zeolithmembranen in Vierkanalgeometrie, Che-mie Ingenieur Technik 82 (2010), No. 8, pp 1257/1260

Westphal, G.: Kombiniertes Adsorptions-Rektifikationsverfahren zur Trennungeines Flüssigkeitsgemisches, Deutsches Patent DE 3712291, 1987

Wunder, R.: Abtrennung und Rückgewinnung von anorganischen Stoffen durchAbsorption, in: Stofftrennverfahren in der Umwelttechnik, GVC-Gesellschaft Ver-fahrenstechnik und Chemieingenieurwesen, Düsseldorf 1990

References 659

Index

A Absorption

chemical heats of formation, 306–307 minimum demand of solvent,

309–312 phase equilibrium, 308

flash and distillation, 297–298 phase equilibrium, 298–299 physical

vs. distillation, 305–306 minimum demand of solvent,

299–301 minimum demand stripping gas,

301–302 number of equilibrium stages,

302–305 regeneration, 297

Activated aluminium oxides, 485 Activated nucleation

collision factor, 449 dimensionless nucleation rate vs.

relative supersaturation, 449, 450

free enthalpy vs. nucleus size, 446 imbalance factor, 447–448 impact coefficient, 447

Adiabatic fixed bed absorber CO2 molecular sieve, 526, 527 desorption, purge gas, 528, 529 operation mode, 524 temperature and concentration break

through curve, 525–527 thermal desorption, 528, 529

Adsorption adsorber and desorber, 487, 488 countercurrent adsorber, 490–492 countercurrent flow adsorber,

499–501 definition, 483 industrial adsorbents

activated aluminium oxides, 485 carbonic adsorbents, 486 organic polymer, 486 pore volume distribution, 486,

487 properties, 483, 484 silica gel, 485 zeolites, 485

isotherms vs. desorption, 72 diagrams, 72–73 drying, 567, 568 heat of mixing, 76 Henry coefficient, 76 IUPAC classification, 73 models, 74–75 pore filling degree, 76–77 propane-activated carbon, 77, 78 types of, 71

kinetics adiabatic fixed bed absorber,

524–530 adsorptives, 513, 514 axial diffusion, 505 axial dispersion coefficient,

518–519 ci/cα,i vs. adsorption time,

513–515 diffusion, macropores and

tortuosity factor, 520–522

LDF model, 507–509 mass transfer coefficient,

519–520 material balances, 503–505 mean loading, 506 micropore diffusion coefficient,

523, 524 molecular sieve fixed bed, 501,

502 Rosen model, 509–512

661

Index662

self-sharpening effect, 513 single pellet, 514–518 surface diffusion coefficient,

522–523 tortuosity factor, 522

liquid treatment, 492, 493 moving bed adsorber, 489, 490 n-paraffin and isoparaffin

separation, 535 pressure swing adsorption, 488, 489 radial flow, adsorption vessel, 489,

491 regeneration, adsorbents

adsorption isotherms, 531 loading vs. adsorptive pressure,

532, 533 loading vs. pressure, 530 pressure swing, 532 temperature swing, 530, 531

rotating adsorber, 488, 490 single stage, 496–497 sorption equilibria

fixed bed method, 494–495 volumetric method, 494 ZLC, 495–496

three-stage crossflow, 497–499 Aggregation and agglomeration

adhesion force, 466, 467 birth and death events, 465 DLVO forces, 468 electrostatic potential vs.distance, 469 interaction energy vs. distance, 461 orthokinetic aggregation, 462 perikinetic aggregation, 462 perikinetic and orthokinetic

agglomeration, 463, 464 tensile strength vs. size, 466

Agitated extractors, 363–364 Agitated thin-film evaporator, 390, 391 Air fractionation, 601–602 Angular momentum balance, 176 Assmann’s psychrometer, 572–574 Asymmetrical rotating disc contactor

(ARD), 363 Attrition controlled nucleation, 453–454 Azeotropic distillation, 624–625 Azeotropic mixture separation

entrainer, 620–623 fractionation, heteroazeotrope,

617–619 pressure swing distillation, 619–620

B Balancing exercises, heat and mass

transfer with kinetic phenomena

heated stirred tank, condensing steam, 213–215

isothermal evaporation, binary mixture, 222–227

shell and tube heat exchanger, 227–230

stirred tank cooling, cooling water, 215–219

transient mass transport, spheres, 219–222

without kinetic phenomena crystallization facility, 187–193 filling tank, 180–181 isothermal evaporation, water,

185–187 tank with outlet, 181–182 temperature evolution, agitated

tank, 183–185 Batch distillation, rectification

binary mixtures, 290–292 inverse batch distillation, 289–290 middle vessel batch distillation,

289–290 reactive systems, 293–296 regular batch distillation, 289 ternary mixtures, 293

Bernoulli equation, 120–122 Binary mixtures

air separation, 601–602 ammonia removal, wastewater

ammonia recovery process, 598–599

vapor/liquid equilibrium, 598 batch distillation, rectification,

290–292 continuous closed distillation,

242–243 continuous rectification

energy demand, 262–264 enthalpy balances, column

simulation, 264–267 material balances, column

simulation, 254–258 reflux and reboil ratios, 259–262

discontinuous open distillation concentrations vs. distillate

amount, 248

Index 663

product concentrations, 249 scheme, 247

hydrogen chloride removal, inert gases air purification and hydrogen

chloride recovery, 599, 600

McCabe–Thiele diagram, 600 liquid–gas systems, thermodynamics

freezing point depression, 28–29 Henry’s law, 31–32 Raoult’s law, 29–31 vapor pressure, dilute binary

solutions, 20–28 multi stage rectification, 290–292 phase equilibrium, distillation

azeotropes, 237 ideal mixtures, 234–235 irreversible chemical reaction,

liquid, 236–237 total miscibility gap, liquid,

235–236 vapor-liquid equilibrium,

233–234 sulfuric acid concentration

process, dilution, 597–598 vapor–liquid equilibrium, 596,

597 Bioaffinity chromatography, 550 Biogas and biomass, 8 Bond enthalpy, 50 Bubble cap and valve trays, 325–326

C Carbonic adsorbents, 486 Chelating resins, 552–553 Chemical absorption

heats of formation, 306–307 minimum demand of solvent,

309–312 phase equilibrium, 308

Chemical engineering, carbon dioxide basis, 2 chemical reactions, 5, 7 combustion processes, 5 cracking, 5–6 emission reduction, fossil

combustibles, 4 energetic efficiency, 6 global energy supply, 3–4 primary energy sources, 8

vapor pressure vs. temperature, 6, 8 Chemical reactor, 175 Chemisorption, 567 Chromatography

band profiles vs. time or volume, 548, 549

bioaffinity, 550 column, 536, 537 component bands, 536, 537 equilibria, 537–540 HETP/(2dp) vs.Peclet number, 548 industrial processes, 551 number N of stages

cascade, stirred vessels, 540 concentration vs. time, 545 definition, 543 design, columns, 546–550 Gaussian bell-shaped band, 542 retention factor, 544

simulated moving bed, 549–550 true moving bed, 548–549

Closed distillation, 232 Cocurrent spray dryer, 565 Component balances, 179 Conceptual process design

absolute alcohol production, 595, 596 azeotropic mixture separation

entrainer, 620–623 fractionation, heteroazeotrope,

617–619 pressure swing distillation,

619–620 binary mixture separation

air separation, 601–602 ammonia removal, wastewater,

598–599 hydrogen chloride removal, inert

gases, 599–601 sulfuric acid concentration,

596–598 flow sheets, 595 hybrid processes

azeotropic distillation, 624–625 distillation and extraction,

626–627 distillation with adsorption,

627–629 distillation with desorption, 627,

628 distillation with permeation,

629–631

Index664

extractive distillation, 625–626 reactive distillation

advantages and disadvantages, 631

methyl acetate production, 631–633

zeotropic multicomponent mixture separation indirect (thermal) column

coupling, 612–616 side column, 607–612 ternary mixture fractionation,

603–606 Condensers

design heat transfer coefficients, 403 temperature–heat flow diagram,

405, 406 temperature profile, 401–402

finned tube, 401 surface, 399–400

Condensing steams heat transfer coefficient, 207 mass transfer resistance, 209 Nusselt number, 208 stirred tank heating

dimensionless temperature and time, 214

heat flow, 213 temperature profile, 215

Continuous closed distillation binary mixtures, 242–243 flash distillation, 244–246 multi component mixtures,

243–244 Continuously operated crystallizer

energy balance, 438–440 mass balance, 432–436

Continuous rectification binary mixtures

energy demand, 262–264 enthalpy balances, column

simulation, 264–267 material balances, column

simulation, 254–258 reflux and reboil ratios, 259–262

multi component mixtures fractionation,

methanol/ethanol/propanol, 284

MESH equations, 283

rate based models, 285 scheme, equilibrium stage,

281–282 software packages, 284

reactive distillation chemical equilibrium, 286 principles, 285 processes, 288–289 reactive azeotrope, 287 superposition, 286–287

ternary mixtures energy demand, 276–281 phase equilibrium, 267–272 separation regions, 272–276

Cooling crystallization, 418, 419 Counter current distillation, 232 Countercurrent flow, circular vertical

tube, 133–134 Crystal growth

concentration profile, supersaturated solution, 454, 455

crystallization kinetics, 454–460 diffusion, 456 diffusion and integration, 458–460 integration

BCF model, 457–458 birth and spread model, 457

Crystallization abrasion behavior, 415 characteristic strength values,

crystals, 416, 417 crystalline systems, 414, 415 crystal types, 414, 415 definition, 413 design, crystallizers

dimensionless nucleation vs. growth rates, 476, 477

mean crystal size vs. relative supersaturation, 477

mean specific power input, 475 operation, industrial

crystallizers, 476 residence time, 473–474

equilibrium, 417 fracture resistance, 416 kinetics

aggregation and agglomeration (see Aggregation and agglomeration)

crystal growth, 454–460

Index 665

nucleation and metastable zone (see Nucleation and metastable zone)

mass balance batch crystallizer, 436–438 continuously operated

crystallizer, 432–436 from melt

concentration profile and distribution coefficient, 427–429

definition, 413 effective distribution coefficient,

428–430 layer crystallization, 427, 428 multistage process, 430–431 phase diagram, 426 stage and stage distribution

coefficient, 430, 431 suspension crystallization, 427

Miller indices, 414, 416 MSMPR crystallizers, 470–473 population balance, 441–444 processes and devices

cooling crystallization, 418, 419 crystallization from solution,

422–425 evaporative crystallization,

419–420 reactive crystallization, 420–421 vacuum crystallization, 420

from solution continuously operated routing

tube crystallizers, 423–424

evaporative crystallizer, 423, 424

fluidized bed cooling crystallizer, 422, 423

horizontal multistage crystallizer, 425

industrial crystallizers, 422, 423 MESSO crystallizer, 424, 425 vacuum crystallizer, 423, 424

supersaturation, 413 Crystallization facility

component balances, 188 functionalities, 188 matrix inversion and multiplication,

190 with recycle, 190–192

schematic representation, plant, 187 Crystallizer

continuously operated routing tube, 423–424

design dimensionless nucleation vs.

growth rates, 476, 477 mean crystal size vs. relative

supersaturation, 477 mean specific power input, 475 operation, industrial

crystallizers, 476 residence time, 473–474

evaporative, 423, 424 fluidized bed cooling, 422, 423 horizontal multistage, 425 industrial, 422, 423 MESSO, 424, 425 MSMPR, 470–473 vacuum, 423, 424

D Decantation. See Phase splitting Degree of turbulence, 128 Desalination, sea water, 409–411 Desiccants, 571–572 Desorption. See Absorption Differential solution enthalpy, 49 Dimensional analysis and dimensionless

numbers Euler number, 136 Froude number, 134 surface or interfacial tension, 135

Direct column coupling, 606 Discontinuous open distillation

binary mixtures concentrations vs. distillate

amount, 248 product concentrations, 249 scheme, 247

ternary mixtures process, 249–250 residuum line, 249 triangular concentration

diagram, 249–250 Disperse systems

final rising/falling velocity, single particles dimensionless diameter,

145–146

Index666

drag coefficient, 145 force balance, 144 Reynolds number, 147–148 shape fluctuations, 148 velocity vs. diameter, 146–147

fixed bed and flow patterns, 141–142

mean particle size, bubbles, 142 spray and bubble/drop columns,

143–144 volumetric hold-up

bubble and drop columns, 152 cocurrent/countercurrent flow,

continuous phase, 154 exponent vs. particle Reynolds

number, 150 flow density vs. diameter,

151–152 fluidized beds, 152–153 objectives, 149 physical properties, phases, 155 spray columns, 153–154 structures, 150–151

Dispersion model, 382 Distillation

boiling point, 240–241 continuous closed

binary mixtures, 242–243 flash distillation, 244–246 multi component mixtures,

243–244 dew point, 241–242 discontinuous open

binary mixtures, 247–249 ternary mixtures, 249–250

modes of operation, 232–233 phase equilibrium

binary mixtures, 233–237 multi component mixtures, 239 ternary mixtures, 237–238

Double-stage fluidized bed dryer, 564 Drop regime, 370 Drowning-out crystallization, 420–421 Drum dryer, 562 Drying

belt and rotating drum dryer, 580 cocurrent spray dryer, 565 constant rate period, 582–585 critical moisture content, 585 desiccants, 571–572 double-stage fluidized bed dryer, 564

drum dryer, 562 enthalpy–concentration diagram,

humid air adiabatic saturation temperature,

575 Assmann’s psychrometer,

572–574 internal air circulation, 576, 577 mass and energy balance, 574 psychrometric psychrometric

difference, 573, 574 transferred heat flow, 572

falling rate period hygroscopic goods, 588–590 nonhygroscopic goods, 586–588

five-stage belt dryer, 566 fluid dynamics and heat transfer, 580 goods

adhering liquid, 567 adsorption isotherms, 567, 568 chemisorption, 567 contact drying, 570 moisture conduction coefficient,

569–570 sorption enthalpy, 568, 569 thermal conductivity, 570, 571

paddle dryer, 562 pneumatic conveyor dryer, 565 radiation, 572 resistance and high-frequeny drying,

563, 564 rotary dryers, 566 rotary jacketed tray dryer, 563 three-stage dryer, 578, 579 tray dryer, 564 twin screw dryer, 562, 563 vacuum-wobble-dryer, 562

E Energy balance, 176 Energy saving, thermal separation

technology, 3 Enthalpy–concentration diagram

aqueous calcium chloride solutions, 105

drying adiabatic saturation temperature,

575 Assmann’s psychrometer,

572–574

Index 667

internal air circulation, 576, 577 mass and energy balance, 574 psychrometric psychrometric

difference, 573, 574 transferred heat flow, 572

ethane-propane binary mixture, 104 evaporation, 396–398 heat of solution, salts, 108 H2O-CaCl2 binary solution, 104 humid air, 110–111 magnesium sulfate-water system,

106–107 mixing process, 111–112

Euler equation, 120–122 Evaporation

agitated thin-film evaporator, 390, 391

desalination, 409–411 falling film evaporator, 388, 390 forced circulation evaporator, 388,

390 horizontal-tube evaporators, 386–387 multiple effect

cost vs. number of effects, 393, 394

enthalpy–concentration diagram, 396–398

forward-feed and backward-feed operation, 393–395

parallel-feed operation, 393, 394 steam consumption, 391–392

pure fluids, 208–211 recirculating evaporator, inclined

tube bundle, 388, 389 recirculation long-tube vertical

evaporator, 387, 388 short-tube vertical evaporator, 387 single effect continuously operated

evaporator and condenser, 385

thermocompression economics, 409 temperature-specific entropy

diagram, 408, 409 Evaporative crystallization, 419–420 Evaporator

agitated thin-film, 390, 391 design

falling film and an agitated thin-film evaporator, 407, 408

flow patterns, vertical evaporator tube, 404, 405

heat transfer coefficients, 403 multiple stage steam ejectors,

406 temperature–heat flow diagram,

405, 406 temperature profile, 401–402,

404 falling film, 388, 390 forced circulation, 388, 390 horizontal-tube, 386–387 recirculating evaporator, inclined

tube bundle, 388, 389 recirculation long-tube vertical, 387,

388 short-tube vertical, 387

Extraction processes definition, 349 dimensioning, solvent extractors

mass transfer, 376–383 two-phase flow, 370–376

equipment agitated devices, 363–364 decantation, 366–370 designs, 364 dispersed phase selection,

365–366 Karr column, 365 packed columns, 365 pulsed columns, 362–363 RDC columns, 365 static columns, 361–362

phase equilibrium density differences and

interfacial tensions vs. solute concentration, 351

leaching, typical system, 351–352

solvent selection, 352–354 ternary system, 350

principal scheme, 349 raffinate, 349 thermodynamic description

multiple stage counter current extraction, 357–360

multistage crossflow extraction, 356–357

single stage extraction, 354–356 Extractive distillation, 625–626

Index668

F Falling film

evaporator design, 407, 408 evaporator, recirculation, 388, 390 flow patterns, 132–133 force balance, 131 shear stresses, 130 single-phase flow, 130–133

FAST theory, 97–98 Film diffusion, 555 Five-stage belt dryer, 566 Fixed bed method, 494–495

LDF model, 507–509 Rosen model, 509–512

Fixed beds friction factor, 141 mean fluid velocity, 140 patterns, fluidized beds, 139–140

Flash and distillation, 297–298 Flows

in fixed beds friction factor, 141 mean fluid velocity, 140 patterns, fluidized beds, 139–140

in stirred vessels break-up, gases and liquids,

168–169 energy spectrum vs. wave

number, 159 gas–liquid systems, 169–170 large scale flow, 156–157 macro-, meso-and micromixing,

162–165 marine-type impeller, multiblade

impeller and helical ribbon stirrer, 155–156

mixing-diffusion microscale, 161 Newton number, 158 ranges, 158 settling, 165–167 shear stress and shear rate, 161

Fluid dynamics and heat transfer, 580 Fluidized bed cooling crystallizer, 422,

423 Fluidized systems, 203–204 Forced circulation crystallizer, 422, 423 Forced circulation evaporator, 388, 390 Forced convection

characteristic length, 198 laminar flow, 197 Nusselt and Sherwood number, 199

Fossil combustibles, 9 Freeze crystallization, 413 Froude number, 134 Fugacity coefficient, liquid-gas, 57–60

G Geothermal heat, 8 Gibbs–Duhem equation

activity coefficient vs. mole fraction, liquid phase, 42–43

boiling temperature, mixture, 47 chemical potential, 43 Duhem–Margules equation, 46 fugacity coefficient, 45 pressure vs. mole fraction, liquid

phase, 41, 42 water-vapor distillation, 47

Gibb’s phase-rule, 11 Goods, drying

adhering liquid., 567 adsorption isotherms, 567, 568 chemisorption, 567 contact drying, 570 moisture conduction coefficient,

569–570 sorption enthalpy, 568, 569 thermal conductivity, 570, 571

Graesser contactor, 363–364

H Hagen–Poiseuille equation, 124 Heat and mass transfer

balances component, 179 conserved physical quantity, 177 exercises with kinetic

phenomena, 212–230 exercises without kinetic

phenomena, 179–193 MESH-equations, 179 properties of state, 176 residual stresses, 178 total energy, 177

coefficients condensing steams, 207–209 fluidized systems, 203–204 forced convection, 197–199 natural convection, 202–203 particulate systems, 200–202

Index 669

pure fluid evaporation, 208–211 unsteady, 205–206

kinetics, 193–197 process simulations, 175

Height equivalent to a theoretical plate (HETP), 547

Henry’s law, liquid–gas system, 31–32 Heterogeneous nucleation

contact angles, 451, 452 dimensionless supersaturation vs.

dimensionless solubility, 451

Henry coefficient, 452 HETP. See Height equivalent to a

theoretical plate (HETP) Horizontal-tube evaporators, 386–387 Hygroscopic drying goods, 567

I Ideal adsorption solution theory (IAST)

binary activity coefficients, 98–99 binary solution, 97 chemical potential, 93 FAST theory, 97–98 multiphase theory, 99–100 real heterogeneous adsorbed

solution, 100–101 surface and adsorbate properties, 93,

95 Industrial adsorbents

activated aluminium oxides, 485 carbonic adsorbents, 486 organic polymer, 486 pore volume distribution, 486, 487 properties, 483, 484 silica gel, 485 zeolites, 485

Ion exchange capacity and equilibrium

ion exchange resins, 553 selectivity coefficient, 554, 555

industrial application, 556 kinetics and breakthrough, 554–555 operation modes, 555–556 water softening, 551–552

Irrotational flow, 119 Isothermal absorption, 302–303 Isothermal evaporation

binary mixture concentration profiles, 226–227

liquid overflow, carrier gas, 222 mass transport, 224 process, limit cases, 225–226 residue curve, 223

water component balance, 186 flow evolution vs. liquid

temperature, 186–187 vapor pressure, 185

K Karr column, 362–363 Knudsen diffusion, 520

L Laminar and turbulent flow in ducts

discharge coefficient, 126–127 exponent, Reynolds number, 124 friction factor, 125 Hagen–Poiseuille equation, 124 orifice/sieve plate, 126 pressure and shear stress, cylindrical

liquid cylinder, 123 sudden contraction and sudden

enlargement, 125–126 LDF. See Linear driving force (LDF)

model Leaching, 349–350

four stage countercurrent, 358, 359 four stage cross flow, 356, 357 phase equilibrium, 351–352 single stage, 355–356

Lewis number, 196–197 Linde process, 615–616 Linear driving force (LDF) model,

507–509 Linear momentum balance, 176 Liquid–gas systems

binary mixture behavior freezing point depression, 28–29 Henry’s law, 31–32 Raoult’s law, 29–31 vapor pressure, dilute binary

solutions, 20–28 ideal mixture behavior, 32–39 liquid mixture behavior

activity and activity coefficient, 55–57

excess quantities, 53–55

Index670

fugacity and fugacity coefficient, equilibrium constant, 57–60

Gibbs–Duhem equation, 42–47 heat of phase transition, mixing,

chemical bonding, 47–53

pure substance characteristics strongly curved liquid surfaces,

18–19 vapor pressure, 13–18

Liquid-liquid systems hexane/aniline/methylcyclopentane,

62–63 perfluortributylamine/nitroethane/tri

methylpentane, 63–64 phenole/water/acetone, 63 solubility temperature vs. mass

fraction, 60–61 water/benzene/acetic acid, 61–62

Liquid phase adsorption, 492

M Marangoni convections, 380 Mass transfer

driving concentration difference, extractors axial backmixing, 382 internal concentration profiles,

381–382 interfacial area, extractors, 380–381 overall transfer coefficient,

extractors empirical correlation, 377 eruptive Marangoni convections,

379 internal circulation, 378 rolling cell generation, 379

packed column critical surface tension, 341 CV and CL factors, 342–343 design principles, 329–333 maldistribution, 343–344 operation region, 333–335 two phase flow, 335–340

resistance, condensing steams, 209 tray column

design principles, 314–315 operation region, 315–319 schematic representation, 313

two-phase flow, 319–326 two-phase layer, mass transfer,

326–329 McCabe–Thiele diagram

batch distillation, 291 process, HCl removal, 600 rectification, 256–257 total liquid reflux and reboil, 259

MESH-equations, 179 Methyl acetate production, 631–633 Miller indices, 414, 416 Mixed bed ion exchanger, 555–556 Mixer settler, 383 Molar enthalpy of mixing, 48 Molecular flow, single-phase

elastic collisions, 128–129 friction, 128 mass flow density, 130

Multiphase flow. See Single-phase flow Multiphase ideal adsorbed solution

theory (MIAST), 99–100 Multiphase spreading pressure

dependent model (MSPDM), 101

Multi-phase systems, 11 Multiple distillation, 251–252 Multiple effect evaporation, 410 Multiple stage countercurrent extraction

number of equilibrium stages, 359, 360

phase equilibrium, 359, 360 solvent extraction, 357–358 solvent leaching, 358–359 states of operating line, 359, 360

Multistage crossflow extraction, 356–357

Multistage flash evaporation, 410–411 Multi stage flash process, seawater

desalination, 613 Murphree efficiency, 327

N Natural convection

contact length, 202 sphere and cylinder, 203

Navier–Stokes equation, 120–122 Nonhygroscopic drying goods, 567 Non-isothermal absorption, 303–305 Nuclear fuels, 8 Nucleation and metastable zone

Index 671

activated nucleation collision factor, 449 dimensionless nucleation rate vs.

relative supersaturation, 449, 450

free enthalpy vs. nucleus size, 446

imbalance factor, 447–448 impact coefficient, 447

attrition controlled nucleation, 453–454

heterogeneous nucleation contact angles, 451, 452 dimensionless supersaturation

vs. dimensionless solubility, 451

Henry coefficient, 452 supersaturation creation, 444

O Open distillation, 232 Orthokinetic agglomeration, 464 Osmosis, 20

P Packed columns

critical surface tension, 341 CV and CL factors, 342–343 design principles, 329–333 maldistribution, 343–344 operation region, 333–335 two phase flow, 335–340

Paddle dryer, 562 Partial condensation, 246 Particulate systems

dimensions, 200 hydraulic diameter, 201 logarithmic probability distribution,

138 packed column and model systems,

137–138 parameter, 136 parameter allocation diagram,

201–202 Rosin–Rammler–Sperling–Bennet

(RRSB) distribution, 138–139

two-phase systems, 136–137

volume density distribution, 139 Perikinetic agglomeration, 464 Phase equilibrium

absorption, 298–299 binary mixtures, distillation

azeotropes, 237 ideal mixtures, 234–235 irreversible chemical reaction,

liquid, 236–237 total miscibility gap, liquid,

235–236 vapor-liquid equilibrium,

233–234 chemical absorption, 308 extraction processes

density differences and interfacial tensions vs. solute concentration, 351

leaching, typical system, 351–352

solvent selection, 352–354 ternary system, 350

multi component mixtures, distillation, 239

ternary mixtures, distillation, 237–238

Phase splitting agitation intensity effect, 367–368 contaminants, 369 extraction processes, 366 phase ratio effect, 368 principle mechanism, 367

Physical absorption vs. distillation, 305–306 minimum demand of solvent,

299–301 minimum demand stripping gas,

301–302 number of equilibrium stages

isothermal absorption, 302–303 material balance, 302–303 non-isothermal absorption,

303–305 Pinch technology, 615–616 Pneumatic conveyor dryer, 565 Point efficiency, 328–329 Precipitation crystallization, 413 Pressure swing adsorption (PSA), 488,

489 Pressure swing distillation, 619–620

Index672

Principles, thermal separation technology, 1

Pulsed extractor columns, 362–363

R Radiative drying, 572 Raoult’s law, liquid–gas system, 29–31 Reactive crystallization, 420–421 Reactive distillation

conceptual process design advantages and disadvantages,

631 methyl acetate production,

631–633 continuous rectification

chemical equilibrium, 286 principles, 285 processes, 288–289 reactive azeotrope, 287 superposition, 286–287

Reboiler, 386–387 Recirculation long-tube vertical

evaporator, 387, 388 Rectification

basic scheme, multiple distillation, 251

cascade, multiple distillation, 252 continuous

binary mixtures, 254–267 multi component mixtures,

281–285 reactive distillation, 285–289 ternary mixtures, 267–281

equilibrium stages, 253 equilibrium stages vs. transfer units

concepts, 254 modified scheme, multiple

distillation, 251–252 multi stage

binary mixtures, 290–292 inverse batch distillation,

289–290 middle vessel batch distillation,

289–290 reactive systems, 293–296 regular batch distillation, 289 ternary mixtures, 293

transfer units, 253 Reverse osmosis, 22 Reynolds number, 135

Rosen model, 509–512 Rosin–Rammler–Sperling–Bennet

(RRSB) distribution, 138–139 Rotary dryers, 566 Rotary jacketed tray dryer, 563 Rotational flow, 119

S Self-sharpening effect, 513 Shell and tube heat exchanger

energy balance, 229 feed streams, 229 MINV and MMULT, 230 temperature profile, 230 two-flow, baffles, 227–228

Short-tube vertical evaporator, 387 Sieve trays

static packed columns, 361, 362 two-phase layer, 323–325

Simulated moving bed (SMB), 549–550 Single particles, rising/falling velocity

dimensionless diameter, 145–146 drag coefficient, 145 force balance, 144 Reynolds number, 147–148 shape fluctuations, 148 velocity vs. diameter, 146–147

Single-phase flow falling film, vertical wall, 130–133 irrotational and rotational flow, 119 laminar and turbulent flow in ducts,

123–127 laws of mass conservation and

continuity, 118–119 molecular flow, 128–130 Navier–Stokes, Euler and Bernoulli

equations, 120–122 turbulence, 127–128 viscous fluid, 120

Single stage adsorbers, 496–497 Single stage extraction

leaching, 355 solvent extraction, 354–355 ternary mixture, 356

Solar energy, 9 Solid–liquid systems

crystalline anhydrate, 66 crystalline hydrates, 66–67 phase diagram, eutectic binary

system, 67–68

Index 673

selectivity and phase diagrams, binary systems, 68–69

sodium-carbonate sodium-sulphate water, triangular solubility diagram, 67

Solvent extractors agitated devices, 363–364 designs, 364 Karr column, 365 mass transfer, 376–383 packed column, 365 pulsed column, 362–363 RDC column, 365 static column, 361–362 two-phase flow, 370–376

Solvent selection extraction, solutes from water,

353–354 phase splitting, 353 solution parameter, 352

Sorption equilibria fixed bed method, 494–495 volumetric method, 494 ZLC, 495–496

Spray columns, 361 Static extractor columns, 361–362 Stirred tank

cooling water coiled pipe, 215 dimensionless fluid temperature

vs. time, 219 energy balance, 218 illustration, 216 transferred heat flow, 217

heating dimensionless temperature and

time, 214 heat flow, 213 temperature profile, 215

Stirred vessels break-up, gases and liquids,

168–169 energy spectrum vs. wave number,

159 gas–liquid systems, 169–170 large scale flow, 156–157 macro-, meso-and micromixing,

162–165 marine-type impeller, multiblade

impeller and helical ribbon stirrer, 155–156

mixing-diffusion microscale, 161 Newton number, 158 ranges, 158 settling, 165–167 shear stress and shear rate, 161

Surface condensers, 399–400

T Ternary mixtures

batch distillation, rectification, 293 continuous rectification

energy demand, 276–281 phase equilibrium, 267–272 separation regions, 272–276

discontinuous open distillation process, 249–250 residuum line, 249 triangular concentration

diagram, 249–250 fractionation

a/c-path, 604, 605 a-path, 603 c-path, 603, 604 direct column coupling, 606

multi stage rectification, 293 phase equilibrium, distillation,

237–238 Thermocompression

economics, 409 temperature-specific entropy

diagram, 408, 409 Thermodynamic phase-equilibrium

enthalpy–concentration diagram aqueous calcium chloride

solutions, 105 ethane-propane binary mixture,

104 heat of solution, salts, 108 H2O-CaCl2 binary solution, 104 humid air, 110–111 magnesium sulfate-water

system, 106–107 mixing process, 111–112

first law, 11 liquid–gas systems

binary mixture behavior, 19–32 ideal mixture behavior, 32–39 liquid mixture behavior, 39–60 pure substance characteristics,

13–19

Index674

liquid–liquid systems hexane/aniline/methylcyclopenta

ne, 62–63 perfluortributylamine/nitroethan

e/trimethylpentane, 63–64

phenole/water/acetone, 63 solubility temperature vs. mass

fraction, 60–61 water/benzene/acetic acid, 61–62

second law, 13 solid–liquid systems

crystalline anhydrate, 66 crystalline hydrates, 66–67 phase diagram, eutectic binary

system, 67–68 selectivity and phase diagrams,

binary systems, 68–69 sodium-carbonate sodium-

sulphate water, triangular solubility diagram, 67

sorption equilibria adsorbed solution theory,

93–101 calculation, single component,

85–93 heat of adsorption and bonding,

77–79 multicomponent adsorption,

79–85 single component sorption,

71–77 Thermodynamics, extraction processes

multiple stage countercurrent extraction, 357–360

multistage crossflow extraction, 356–357

single stage extraction, 354–356 Transient mass transport, spheres

adsorbents, 219 concentration profile, 220 diffusion, 219 Fourier number, dispersed phase,

221 time averaged Sherwood number,

221–222 Transport coefficients

axial dispersion coefficient, 518–519

diffusion, 520–522

mass transfer coefficient, 519–520 micropore diffusion coefficient, 523,

524 surface diffusion coefficient,

522–523 tortuosity factor, 522

Tray columns design principles, 314–315 operation region, 315–319 schematic representation, 313 two-phase flow, 319–326 two-phase layer, mass transfer,

326–329 Tray dryer, 564 True moving bed (TMB), 548–549 Turbulence, single-phase flow, 127–128 Twin screw dryer, 562, 563 Two-phase flow

agitated columns, flooding, 375–376 dispersed phase vs. hold-up, 374 exponent vs. Reynolds number, 372 friction factor, 372 motion of swarms, 370 pulsed and unpulsed packed

columns, flooding, 375, 376

pulsed sieve tray columns, flooding, 375, 377

RDC columns, flooding, 375 spray columns, flooding, 374–375 superficial velocity, 373 swarm exponent, 375 terminal velocity, organic drops in

water, 370–371 trays

entrainment, liquid, 321 froth height, 320 interfacial area, 323–324 liquid mixing, 321–322 maldistribution, liquid, 322–323 pressure drop, 324 relative liquid hold-up, 320 structures, 319

U Unsteady heat and mass transfer

adsorbent grain, 205 coefficient, 205 Nusselt number vs. reciprocal of

Fourier number, 206

Index 675

V Vacuum crystallization, 420 Vacuum-wobble-dryer, 562 Vapor pressure

entropy of vaporization vs. molar mass, 16–17

membrane, osmotic pressure, 22–23 vs. modified temperature, 16 vs. mole fraction and temperature,

26 osmosis, 20 pure substance and solution vs.

temperature, 24 ratio vs. curvature radius, 19 reverse osmosis, 22 specific vaporization enthalpy, 15 specific vaporization heat vs.

temperature difference, 17–18

strongly curved liquid surfaces, 18–19

vs. temperature, sodium methylate-methanol solution, 28

water, benzene and naphthalene, 13–14

Viscous fluid, 120 Volumetric hold-up, disperse systems

bubble and drop columns, 152 cocurrent/countercurrent flow,

continuous phase, 154 exponent vs. particle Reynolds

number, 150 flow density vs. diameter, 151–152 fluidized beds, 152–153

objectives, 149 physical properties, phases, 155 spray columns, 153–154 structures, 150–151

Volumetric method, 494

W Water softening, 551–552 Weber number, 135 Wind, 9

Z Zeolites, 485 Zeotropic multicomponent mixture

separation indirect (thermal) column coupling

multi stage flash process, 613 pinch technology, 615–616 thermal column coupling,

613–615 side column

a/c-path, 608–611 a-path, 607, 608 c-path, 608, 609 divided wall columns, 611–612

ternary mixture fractionation a/c-path, 604, 605 a-path, 603 c-path, 603, 604 direct column coupling, 606

Zero length column (ZLC) method, 495–496