26
Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions Flavoured Leptogenesis from Nonequilibrium QFT Matti Herranen a in collaboration with M. Beneke a B. Garbrecht a C. Fidler a P. Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a Institut für Theoretische Physik, Universität Zürich b Bielefeld, 5.5.2011 M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 1 / 25

Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Flavoured Leptogenesis from Nonequilibrium QFT

Matti Herranena

in collaboration with

M. Benekea B. Garbrechta C. Fidlera P. Schwallerb

Institut für Theoretische Teilchenphysik und Kosmologie,RWTH Aachen Universitya

Institut für Theoretische Physik,Universität Zürichb

Bielefeld, 5.5.2011

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 1 / 25

Page 2: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Outline

Introduction

Closed Time Path (CTP) Formalism of Noneq. QFT

CTP Approach to Flavoured Leptogenesis

Numerical Results

Conclusions and outlook

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 2 / 25

Page 3: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Why baryogenesis?

To explain the excess of matter over antimatter in the universe:[WMAP 2003]

nB

nγ=(6.1+0.3−0.2

)× 10−10

Why is there something rather than nothing?

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 3 / 25

Page 4: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Leptogenesis [Fukugita, Yanagida (1986)]

The Standard Model is extended by adding heavy right-handedMajorana neutrinos Ni, i = 1, 2, . . . (eg. see-saw models)

L ⊃ −h∗abφ ψ`bPRψRa − Y∗iaψ`a(εφ)†ψNi −12ψNiMiψNi + h.c.

Lepton asymmetry is generated through out-of-equilibrium L- andCP-violating Yukawa decays: N1 → `φ

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 4 / 25

Page 5: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Nonequilibrium QFT Approach to Leptogenesis1

1related / complementary aspects in:Buchmüller, Fredenhagen (2000); De Simone, Riotto (2007);Garny, Hohenegger, Kartavtsev, Lindner (2009 & 2010);Anisimov, Buchmüller, Drewes, Mendizabal (2010);Anisimov, Besak, Bödeker (2010)

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 5 / 25

Page 6: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Closed Time Path∗ (CTP) Formalism∗ a.k.a. Schwinger-Keldysh Formalism [Schwinger (1961); Keldysh (1964); Calzetta, Hu (1988)]

Usually in QFT matrix elements are computed within the in-outframework:

〈out|S|in〉 ←− time-ordered correlators: 〈T[ψ(x)ψ(y)]〉

In leptogenesis we want to calculate expectation values in a finitedensity medium, e.g.

j0(x) = 〈ψ(x)γ0ψ(x)〉 ≡ tr[ρ ψ(x)γ0ψ(x)

]ρ is an (unknown) quantum density operator

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 6 / 25

Page 7: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

−→ In-In generating functional on a Closed Time Path:

Im t

Re t

Path-ordered correlators:

iSC(x, y) = 〈TC [ψ(x)ψ(y)]〉

Four propagators with respect to real time variable:

iS+−(u, v) = iS<(u, v) = −〈ψ(v)ψ(u)〉iS−+(u, v) = iS>(u, v) = 〈ψ(u)ψ(v)〉iS++(u, v) = iST(u, v) = 〈T(ψ(u)ψ(v))〉

iS−−(u, v) = iST(u, v) = 〈T(ψ(u)ψ(v))〉

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 7 / 25

Page 8: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Kadanoff-Baym Equations

Generic Schwinger-Dyson equations for (CTP) propagators:

= +G G0 Σ

Kadanoff-Baym equations are the <,> components:

(i∂/− m)S<,> − ΣH � S<,> − Σ<,> � SH =12(Σ> � S< − Σ< � S>

)(A� B)(u, v) ≡

∫d 4w A(u,w)B(w, v) denotes convolution

Renormalization, thermal corrections (thermal masses etc.)

Finite width effects

Collision term

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 8 / 25

Page 9: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Approximations

Wigner representation:

S(k, x) =

∫d 4r eik·r S

(x +

r2, x− r

2),

and gradient expansion to the lowest order in

x-derivatives: ∂xS(k, x), ∂xΣ(k, x), etc.

coupling constants in Σ(k, x)

−→ Constraint and Kinetic Equations:

2(k0 − k · γγ0)iγ0S<,>` −{

Σ/H` γ

0, iγ0S<,>`

}−{

iΣ/<,>` γ0, γ0SH`

}= −1

2

(iC` − iC†`

)i∂ηiγ0S<,>` −

[Σ/H` γ

0, iγ0S<,>`

]−[iΣ/<,>` γ0, γ0SH

`

]= −1

2

(iC` + iC†`

)η is conformal time variable: dη = dt/a(t)

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 9 / 25

Page 10: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

The zeroth order solutions to Contraint Equation:

Flavour covariant free propagators for `:

iS<`ab(k, η) = −2πδ(k2)k/[ϑ(k0)f+`ab(k, η)− ϑ(−k0)(1ab − f−`ab(−k, η))

]iS>`ab(k, η) = −2πδ(k2)k/

[−ϑ(k0)(1ab − f+`ab(k, η)) + ϑ(−k0)f−`ab(−k, η)

]f±`ab(k, η) are time-dependent distribution functions

a, b are flavour indices

Similar (unflavoured) free propagators for N1 and φ

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 10 / 25

Page 11: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Contributions to Lepton Collision term

Y-Yukawa interactions:

` `

φ

N

MSM h-Yukawa and gauge interactions:

` `

`

φ

` `

`

A

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 11 / 25

Page 12: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Kinetic Equation for Lepton Number Densities[Beneke, Garbrecht, Fidler, MH, Schwaller (2010)]

Substituting free propagators into Kinetic Equation

−→ First order equation for n±`ab(η) =∫ d3k

(2π)3 f±`ab(k, η):

∂δn±`ab

∂η=∑

c

[Ξeffac δn±`cb − δn±`acΞ

effcb ]∓ i∆ωeff

`abδn±`ab

−∑

c

[Wacδn±`cb + δn±∗`ca W∗bc]± Sab − Γbl(δn+`ab + δn−`ab)− Γ±fl

`ab

Gradients of the mixing matrices: Ξeff ∼ U†∂ηU

Flavor oscillations by the thermal masses: ∆ωeff` ∼ h2T , Y2T

Collision terms: Washout, CP-violating source, Flavour-blinddamping, Flavour-sensitive damping

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 12 / 25

Page 13: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Fast Flavour-blind Gauge Interactions

` `

`

A

Blue cut←→ tree-level pair creation andannihilation and 1↔ 2 scatterings

Kinematically forbidden for on-shellexcitations −→ Γbl ∼ g4

2T

Force kinetic equilibrium with generalized chemical potentialsµ±ab(η):

f±`ab(k, η) =

(1

eβ|k|−βµ± + 1

)ab

Flavour and momentum dependence factorizes to first order in µ±ab:

δn±`ab = µ±abT2

12=⇒ δf±`ab(k, η) = δn±`ab

12β3eβ|k|

(eβ|k| + 1)2

−→ Simple interaction terms in the kinetic equationM. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 13 / 25

Page 14: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Suppression of Flavour Oscillations

Toy equations for flavour oscillations

∂δn±`ab∂η

= ∓i∆ωeff`abδn±`ab − Γbl(δn+

`ab + δn−`ab)

Parametrically Γbl � ∆ωeff`

−→ Two over-damped solutions with short and long time scales:

Short mode with τshort = 1/(2Γbl) forces an effective constraint:

δn−ab = −δn+ab

Flavour oscillations of δn+ab are over-damped with a long decay time:

τdamp ∼ 2Γbl/(∆ωeff`ab)2

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 14 / 25

Page 15: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Suppression of Flavour Oscillations

Toy equations for flavour oscillations

∂δn±`ab∂η

= ∓i∆ωeff`abδn±`ab − Γbl(δn+

`ab + δn−`ab)

Parametrically Γbl � ∆ωeff`

−→ Two over-damped solutions with short and long time scales:

Short mode with τshort = 1/(2Γbl) forces an effective constraint:

δn−ab = −δn+ab

Flavour oscillations of δn+ab are over-damped with a long decay time:

τdamp ∼ 2Γbl/(∆ωeff`ab)2

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 14 / 25

Page 16: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Final Kinetic Equations

Lepton asymmetries q ≡ δn+ − δn− (L- and R-handed):

∂q`ab

∂η=∑

c

[Ξacq`cb − q`acΞcb −Wacq`cb − q`acWcb]− Γfl`ab + 2Sab

∂qRab

∂η= −Γfl

Rab

Majorana neutrino N1:

∂fN1(kcom)

∂η= −2|Y1|2

kcomµ

2kcom 0Σµ

N(kcom)[fN1(kcom)− f eq

N1(kcom)]

Higgs field φ remains in thermal equilibrium

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 15 / 25

Page 17: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Lepton Asymmetries: Y`ab =n+`ab−n−`ab

s , Fully Flavoured case

hΤ=0.030

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

10-11

10-10

10-9

10-8

z

ÈYÈ

dark blue: Y`11

light blue: Y`22

brown dotted: Re[Y`12]

red dashed: Im[Y`12]

M1 = 1012 GeV, M2 = 1014 GeV

YYuk =

(1.4× 10−2 1× 10−2

i× 10−1 10−1

)

Y`12 = Y∗`21 strongly suppressed before freeze-out at z = M1T ≈ 10

−→ Flavour off-diagonals Y`12,21 can be negleted

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 16 / 25

Page 18: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Lepton Asymmetries: Y`ab =n+`ab−n−`ab

s , Unflavoured case

hΤ=0.001

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

10-11

10-10

10-9

10-8

z

ÈYÈ

dark blue: Y`11

light blue: Y`22

brown dotted: Re[Y`12]

red dashed: Im[Y`12]

M1 = 1012 GeV, M2 = 1014 GeV

YYuk =

(1.4× 10−2 1× 10−2

i× 10−1 10−1

)

Y`12 = Y∗`21 decay away long after freeze-out at z ≈ 10

−→ Flavour damping by Γfl` can be neglected

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 17 / 25

Page 19: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Lepton Asymmetries: Y`ab =n+`ab−n−`ab

s , Intermediate regime

hΤ=0.007

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

10-11

10-10

10-9

10-8

z

ÈYÈ

dark blue: Y`11

light blue: Y`22

brown dotted: Re[Y`12]

red dashed: Im[Y`12]

M1 = 1012 GeV, M2 = 1014 GeV

YYuk =

(1.4× 10−2 1× 10−2

i× 10−1 10−1

)

Full kinetic equations need to be solved!

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 18 / 25

Page 20: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Total Lepton Asymmetry as a function of Γfl`

Scale M1,2 and the couplings YYuk such that Γfl` is varying while the

washout and source terms remain constant

Scenario A

1010 1011 1012 1013 10140

1.´10-9

2.´10-9

3.´10-9

4.´10-9

5.´10-9

6.´10-9

M1@GeVD

ÈY11+

Y22È

fully flavoured

full kinetic equations

unflavoured

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 19 / 25

Page 21: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Conclusions

First principle description of leptogenesis within the CTPframework

RIS subtraction procedure not required

Simple kinetic equations for lepton number densities, including

Quantum statistical corrections in loops and external states

Sizable for weak washout

Flavour effects

Flavour oscillations are overdamped by fast gauge interactions

Full flavoured equations are needed between fully flavoured andunflavoured regimes

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 20 / 25

Page 22: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Outline Introduction CTP Formalism Flavoured Leptogenesis Numerical Results Conclusions

Outlook

Systematic inclusion of thermal effects

Finite widths

Thermal masses

Spectator processes

Resonant leptogenesis

Flavour coherence effects between Neutrinos Ni

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 21 / 25

Page 23: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Washout contribution

` `

φ

N

Blue cut←→ tree-level decays andinverse decays N1 ↔ `φ

12

tr∫

d3k(2π)3

∫ ∞0

dk0

2πCY`ab = −

∑c

Wacδn+`cb

with

Wac =12

Y∗1aY1c

∫d3k

(2π)32|k|d3k′

(2π)32√

k′2 + (a(η)M1)2

d3k′′

(2π)32|k′′| (2π)4δ4(k′ − k − k′′)

× 2k · k′(fN1(k′) + fφ(k′′)

) 12β3 eβ|k|

(eβ|k| + 1)2

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 22 / 25

Page 24: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

CP-violating Source Sab: Wave-function Contribution

Orange cut←→ Interference betweentwo s-channel scatterings

Blue cut←→ Interference betweenloop and tree-level decays

Swfab = i

∑c

[Y∗1aY∗1cY2cY2b − Y∗2aY∗2cY1cY1b]

×(−M1

M2

)∫d3k′

(2π)32√

k′2 + (a(η)M1)2

ΣNµ(k′)ΣµN(k′)gw

δfN1(k′)

where the thermal decay rate is

ΣµN(k) = gw

∫d3p

(2π)32|p|d3q

(2π)32|q| (2π)4δ4(k − p− q) pµ(

1− f eq` (p) + f eq

φ (q))

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 23 / 25

Page 25: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

CP-violating Source Sab: Vertex Contribution

Orange cut←→ Interference betweens- and t-channel scatterings

Blue cut←→ Interference betweenloop and tree-level decays

In the strongly hierarchical case, M1 � M2:

SVab =

12

Swfab =⇒ Sab =

32

Swfab

ΣµN(k)

MN�T−−−−→ gwkµ

16π recover standard approximation

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 24 / 25

Page 26: Flavoured Leptogenesis from Nonequilibrium QFT · 2011. 5. 5. · Why baryogenesis? To explain theexcess of matter over antimatterin the universe: [WMAP 2003] n B n = 6:1+0:3 0:2

Flavour-sensitive MSM Yukawa Interactions

` `

`

φ

Blue cut←→ tree-level pair creation andannihilation and 1↔ 2 scatterings

Kinematically forbidden for on-shellexcitations

Γfl`ab =Γan

([h†h]acq`cb + q†`ac[h

†h]cb − h†acqRcdhdb − h†adq†Rdchcb

)+Γsc

([h†h]acq`cb + q†`ac[h

†h]cb − h†acqRcdhdb − h†adq†Rdchcb

)

Example: 2 flavours, charged lepton basis

Γfl` = (Γan + Γsc) h2

τ

[(1 00 0

)q` + q`

(1 00 0

)− 2

(qR11 0

0 0

)]

Γan,sc ∼ g22T need to be calculated including (thermal) finite width

corrections for ` and φ propagators

M. Herranen (RWTH Aachen) Bielefeld, 5.5.2011 25 / 25