16
ARCHIV FÜR HYDROBIOLOGIE Organ der Internationalen Vereinigung für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben von Prof. Dr. H.-J. ELSTER Prof. Dr. Dr. h. c. W. OHLE Limnologisches Institut Max-Planck-Institut der Universität für Limnologie Konstanz/Bodensee Plön/Holstein Heft 21 Food limitation and the structure of Zooplankton communities Proceedings of an International Symposium held at Plön, W. Germany, July 9-13, 1984 edited by Winfried Lampert With 207 figures and 82 tables in the text E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller) Stuttgart 1985

für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

A R C H I V F Ü R H Y D R O B I O L O G I E Organ der Internationalen Vereinigung

für Theoretische und Angewandte Limnologie B E I H E F T 21

Ergebnisse der Limnologie Advances in Iimnology Herausgegeben von

Prof. Dr. H.-J. ELSTER Prof. Dr. Dr. h. c. W. OHLE Limnologisches Institut Max-Planck-Institut der Universität für Limnologie Konstanz/Bodensee Plön/Holstein

Heft 21

Food limitation and the structure of Zooplankton communities

Proceedings of an International Symposium held at Plön, W. Germany, July 9-13, 1984

edited by Winfried Lampert

With 207 figures and 82 tables in the text

E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller) • Stuttgart 1985

Page 2: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Bayerische Staatsbibliothek

München

© by E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u . Obermiller), Stuttgart 1985

A l l rights reserved including translation into foreign languages. This Journal or parts thereof may not be reproduced in any form without permission from the publishers.

V a l i d for users in U . S. A . : The appearance of the code at the bottom of the first page of an article in this Journal indicates the Copyright owner's consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., P . O . Box 8891, Boston/Mass. 02114, U . S . A . , for copying beyond that permitted by Sections 107 or 108 of the U . S. Copyright Law.

Printed in Germany

ISBN 3-510-47019-2 - ISSN 0071-1128

Satz: Satzstudio „West" Jürgen Reinsch G m b H , Planegg Druck: Proff G m b H & C o . K G , Bad Honnef

Page 3: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

III

Contents

Preface V

List of participants VIII

Are Zooplankton limited by food?

Frost, B. W.: Food limitation of the planktonic marine copepods C a l a n u s p a c i f i c u s and Pseudocalanus sp. in a temperate fjord 1

Ohman. M . D . : Resource-satiated population growth of the copepod Pseudocalanus sp. . . 15 Runge. J . A . : Egg production rates of C a l a n u s finmarcbicus in the sea off Nova Scotia . . . 33 Huntley, M . : A method for estimating food-limitation and potential production of

Zooplankton communities 41 Boyd, C. M . : Is secondary production in the Gul f of Maine limited by the availability

o f food? 57 Geller, W.: Production, food utilization and losses of two coexisting, ecologically

different D a p h n i a species 67 Duncan. A . : Body carbon in daphnids as an indicator of the food concentration

available in the field 81 Gulati , R. D. , Siewertsen, K. & Postema, G . : Zooplankton structure and grazing activities

in relation to food quality and concentration in Dutch lakes 91 Checkley, D. M . Jr.: Nitrogen limitation of Zooplankton production and its effect

on the marine nitrogen cycle 103

Mechanisms of gathering scarce food

Price, H . J . & Paffenhöfer, G . - A . : Perception of food availability by calanoid copepods . . 115 DeMott, W. R. : Relations between filter mesh-size, feeding mode, and capture efficiency

for cladocerans feeding on ultrafine particles 125 Brendelberger, H . : Filter mesh-size and retention efficiency for small particles:

comparative studies with Cladocera 135 Haney, J . F. & Trout, M . A . : Size selective grazing by Zooplankton in Lake Titicaca . . . . 147 Infante, A . & Edmondson, W. T. : Edible phytoplankton and herbivorous Zooplankton

in Lake Washington 161 Gerritsen, J . & K o u , J . : Food limitation and body size 173 Gilbert, J . J . & Stemberger, R. S.: The costs and benefits of gigantism in Polymorphie

species of the rotifer A s p l a n c h n a 185

Response to changing food conditions

Koza, V . & Korinek, V . : Adaptability of the filtration screen in D a p h n i a - . Another answer to the selective pressure of the environment 193

Ringelberg, J . & Royackers, K . : Food uptake in hungry cladocerans 199 Landry, M . R. & Hassett, R. P.: Time scales in behavioral, biochemical, and energetic

adaptations to food-limiting conditions by a marine copepod 209 Mayzaud, P. & Mayzaud, O . : The influence of food limitation on the nutritional

adaptation of marine Zooplankton 223 Donaghay, P. L . : A n experimental test of the relative significance of food quality and

past feeding history to limitation of egg production of the estuarine copepod A c a r t i a t o n s a 235

Dagg, M . J . : The efferts of food limitation on diel migratory behavior in marine Zoo­plankton 247

Page 4: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

IV Contents

Food-limited growth and survival

Condrey, R. E . & Füller, D. A . : Testing equations of ingestion-limited growth 257 Stemberger, R. S. & Gilbert, J . J . : Assessment of threshold food levels and population

growth in planktonic rotifers 269 Piyasiri, S.: Methodological aspects of defining food dependence and food thresholds

in fresh-water calanoids 277 Taylor, B. E . : Effects of food limitation on growth and reproduction of D a p h n i a 285 Burns, C. W.: The effects of starvation on naupliar development and survivorship of

three species of Boeckella (Copepoda: Calanoida) 297 Lampert, W. & Muck, P.: Multiple aspects of food limitation in Zooplankton commu-

nities: the D a p h n i a — E u d i a p t o m u s example 311

Population dynamics as indicator of food limitation

Ghilarov, A . M . : Dynamics and structure of cladoceran populations under conditions of food limitation 323

Threlkeld, S. T . : Resource Variation and the initiation of midsummer declines of cladoceran populations 333

Larsson, P., Andersen, S., Bdrsheim, Y . , Jakobsen, P. & Johnsen, G . : Individual growth of D a p h n i a l o n g i s p i n a in the summer decline phase of the population 341

Life history consequences

Lynch , M . : Elements of a mechanistic theory for the life history consequences of food limitation 351

Romanovsky, Y . E . : Food limitation and life-history strategies in cladoceran crustaceans . 363 Gabriel, W.: Overcoming food limitation by cannibalism: A model study on cyclopoids . . 373

The relative importance of food limitation and predation

Benndorf, J . & Horn, W. : Theoretical considerations on the relative importance of food limitation and predation in structuring Zooplankton communities 383

Gophen, M . & Pollingher, U . : Relationships between food availability, fish predation and the abundance of the herbivorous Zooplankton Community in Lake Kinneret 397

Sullivan, B. K . & Ritacco, P. J . : The response of dominant copepod species to food limitation in a coastal marine ecosystem 407

Gliwicz, Z . M . : Predation or food l imitation: an ultimate reason for extinction of planktonic cladoceran species 419

Food limitation through exploitative competition

Kerfoot, W. C , DeMott , W. R. & DeAngelis, D . L . : Interactions among cladocerans: Food limitation and exploitative competition 431

Matveev.V.: Delayed density dependence and competitive ability in two cladocerans . . . . 453 Hrbacek, J . : The role of allochthonous organic matter in the competition of D a p h n i a

in food limited Zooplankton communities 461 Orcutt, J . D. , Jr.: Food level effects on the competitive interactions of two co-occurring

cladoceran Zooplankton: D i a p h a n o s o m a b r a c h y u r u m and D a p h n i a a m b i g u a 465 Edmondson, W. T. : Reciprocal changes in abundance of D i a p t o m u s and D a p h n i a

in Lake Washington 475 Nei l l , W. E . : The effects of herbivore competition upon the dynamics of Chaoborus

predation 483

Thomas M . Zaret (1945-1984) 493

Species Index 495

Page 5: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

A r c h . Hydrobio l . Beih. Ergebn. L i m n o l . 21 373-381 Stuttgart, Dezember 1985

Overcoming food limitation by cannibalism: A model study on cyclopoids

By W I L F R I E D G A B R I E L , Plön

With 5 figures in the text

Abstract

Many cyclopoid copepods change their feeding habits during development. Young stages are herbivorous, whereas adults are carnivores or omnivores. A demographic model based on physiological parameters is developed to study the effect of cannibalism on the population dynamics of cyclopoids and their prey. If alternative prey are available and their potential growth rate is higher than the potential growth rate of the cyclopoids, the survival of predator and prey populations without cannibalism is guaranteed only if the prey population is above a critical density. Cannibalism allows the survival below this critical density independent of the actual age distribution and even prevents extinction at densities much below the critical point. Therefore, cannibalism is considered to be a stabilizing factor in predator-prey interactions during and after periods of food l imitation.

Introduction

Intraspecific predation is a widespread process (Fox 1975; Polis 1981). It in-fluences the population dynamics of numerous species and may significantly affect the structure of many communities.

Size and species composition of Zooplankton are considered to be correlated with the predators present (Lane 1978; Kerfoot 1980; Brandl & Fernando 1981). Therefore, a change in a predaceous behaviour, such as cannibalism triggered by food limitation, may be an important factor in structuring Zooplankton communities. Cyclopoid copepods are of special interest in this respect because of the switch in their feeding habit: nauplii are herbivorous, late copepodites and adults are carnivores. Cannibalism is observed in the field and in experiments(Fryer 1957; McQueen 1969; Graset al. 1971;Gophen 1977; Brandl & Fernando 1979;Landry 1981). Ithasbeen shown to be advantageous in cyclopoids in a constant environment (Gabriel & Lampert 1985), but its benefit may be much greater in a variable environment with fluctuating food conditions which can cause a sudden, dramatic shift in the relative abundances of predator and prey. For example, a depletion of algal food may cause a decrease in abundance of the prey population below a level, where the growth of the prey cannot compensate the predation pressure, even after reestablishment of good food conditions. Without cannibalism, the predacious C y c l o p s would eliminate its own prey, but also cannibalism implies the risk of self-extinction. The model presented is designed to study the impact of cannibalism around such critical situations.

25 Archiv f. Hydrobiologie, Beih. 21 0071-1128/85/0021-0373 $ 2.25

© 1985 E . Schweizerbart'sche Verlagsbuchhandlung, D-7000 Stuttgart 1

Page 6: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

374 W. Gabriel

Model description P o p u l a t i o n d y n a m i c s o f t h e c y c l o p o i d copepods

Calculation of the population dynamics of the cyclopoids is based on physio-logical data, field and laboratory observations taken from the literature (Brandl & Fernando 1975; Elgmork 1959; Gophen 1976, 1980; Jamieson 1980 a, b ; Peacock & Smyly 1983; Schober 1980; Smyly 1970, 1973; VijVerberg 1977, 1980; William-son 1980).

T o construct a representative cyclopoid copepod averaging across different species, temperatures, food conditions etc., all time scales are normalized by the age at maturity and all weights are expressed relative to the weight of adult females. Differences between males and females are considered only by a correction factor in the birth rate calculation. For given feeding rates, metabolic parameters and efficiencies, the time course of growth can be calculated. The carnivorous portion of the diet is assumed to be zero until the cyclopoids have grown to a certain weight (i. e. 15 % of the final weight) and then to increase linearly with weight so that the adults are obligate carnivores.

As the onset of cannibalism can cause rapid and dramatic changes in the age-structure of the population, the compartments have to be small enough to keep track of the dynamics. Using the instars as compartments is inadequate. I have verified that 40 age classes from birth until first reproduction are sufficient to describe the dynamics of the age structure without systematic errors for the applic-ations presented.

It can be unrealistic to describe a discontinuous process like predation by differential equations. Therefore, the changes in the abundances of the different age classes are modelied by difference equations, but the time step is variable and ad-justed during calculation. Starvation is implemented by prolonging development in an age class, if the net production is positive, and by an additional mortality, if the food intake is lower than the metabolic requirement.

Cannibals are known to prefer smaller prey. The data available, however, are not sufficient to determine the exact preference function. Fortunately, I have been able to prove that the general results of this study are independent of the preference structure used. For the data presented, the relative preference of prey is calculated from the length difference between the predaceous cyclopoid and the one eaten by assuming a Gaussian distribution around an optimal length difference. Thereby the age specific mortality under cannibalism and the birth rate are highly dependent on the actual population structure and on the food availability. The detailed mathematic-al description of these problems is given elsewhere (Gabriel in prep.).

I n t e r a c t i o n w i t h a l t e r n a t i v e p r e y p o p u l a t i o n s

The special aim of this model is to establish the requirements necessary for the predator-prey-system to recover from critical situations where the probability of extinction is high. For this purpose the dynamics are studied only on a short time scale. Therefore, the interaction between cyclopoids and their alternative prey populations can be treated in a simple way by neglecting second order effects such as carrying capacities, time lags, internal structure of the alternative prey populations, and long term stability.

Page 7: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Food limitation and cannibalism 375

Let A represent the density of alternative prey populations in units of body weight of an adult of the cyclopoid population C . If r A describes the potential growth rate of A without the mortality caused by C , then the interaction between A and C can be regarded (in differential form) by

( 1 ) — = r A A - g C , dt

where the complex dynamics of C are calculated by the model described verbally above, and where g is the specific consumption rate of alternative prey by cyclo-

g= f N i f o U - K i ) i= 1

index of cyclopoid age classes, number of age classes, relative food demand, carnivorous part of food demand, n

relative frequency of an age class ( 2 Nj = 1), intensity of cannibalism. 1 = 1

The intensity of cannibalism is zero for a population without cannibalism; other-wise K [ is determined by A , C, and the internal structure of C . For the model it is assumed that the predator is notable to discriminate cyclopoids from the alternative prey:

(3 a) Ki = a i C / ( A 4 - a i C ) ,

where ot{ gives the proportion of C available for interspecific predation:

(3 b) c*i= £ Njw: j = l J J

WJ = relative body weight of an animal of age class j compared to the weight of an adult.

A p p r o x i m a t e c o n d i t i o n s f o r coexistence w i t h o u t c a n n i b a l i s m

Without any food limitation cannibalism becomes negligible and the cyclopoids approach a stable age distribution. The corresponding intrinsic growth rate may be called the potential growth rate r^ of the cyclopoids. It is fully determined by the Parameters chosen for the representative copepod. By integration of ( l )under the assumptions of approximate time independence of r A , r*c, and g, which implies ex-ponential growth of C so that in (1) C can be substituted by C = Co * exp(rct), one gets

poids:

(2)

I

n

(1') A(t) = exp | r A } [gC(t 0 ) (exp { - ( r A - r c ) t | - l ) / ( r A - r c ) + A ( t 0 ) ] .

Page 8: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

376 W. Gabriel

By asking for A(t) > 0, two necessary conditions for the coexistence of A and C can be derived. The first is trivial:

(4) rA >r c ;

the second is a relation between A and C at the starting point to

(5) A ( t 0 ) > C ( t 0 ) g / ( r A - r c ) .

Therefore, coexistence of the predacious cyclops and its prey can be expected in the absence of cannibalism only if the potential growth rate of the alternative prey population is higher than that of the cyclopoid copepods, and only if the relative abundance of the alternative prey population is above the value given by (5). The influence of cannibalism around this critical point will be discussed now by a local analysis.

Results and discussion

In unstable natural environments the potential intrinsic growth rates are time dependent. For that reason the approximate conditions (4) and (5) for coexistence are strictly valid only in idealized situations. To demonstrate the essential impact of cannibalism, however, it is useful to look at some isolated dynamic aspects locally. Therefore, r A is chosen as constant and is slightly greater than rc ( r A = 1-25 rc) allowing coexistence in principal. The constants rc and r A represent the potential growth rates under the local environmental conditions. The actual growth rates of A and C are time dependent even during a period of an unchanging environment; the actual growths rate of the cyclopoids can be smaller or greater than rc depending on the actual age structure and the magnitude of A .

With this assumption, the alternative of allowing intraspecific predation or of avoiding cannibalism is studied under different starting conditions.

Fig. 1 a and 1 b show the time courses of the C y c l o p s and its prey population. Bröken lines are drawn for the caseof cannibalism; solid lines give the corresponding population development when the predator does not cannibalize. The starting value of the prey population is 10 % above the critical value. The stable age distribution resulting from the potential growth rate is used as the starting age distribution of the cyclopoids, so that there is an exponential decrease in the abundance with age. As expected, the C y c l o p s population increases faster wiuiout cannibalism, and the prey population is less hindered by cannibalizing C y c l o p s . Predator and prey po­pulations can grow in both cases. Of course, they do not grow exponentially to infinity, but for this local analysis it is sufficient to know whether the populations reach the exponential growth.

In Fig. 2 a and 2 b the starting prey density is changed to 10 % below the critical value. In the beginning the non-cannibals do better, but then they consume all the prey and starve without any further reproduction. In contrast, the cannibals do not annihilate the alternative prey. In this instance, cannibalism secures the survival of predator and prey. When the prey density is in the critical region, the actual age distribution may have a dramatic influence. In Fig. 3 and 4 the starting exponential age distribution (~exp { — ba } ) with a = age) is varied lowering the exponent in

Page 9: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Food limitation and cannibalism 377

0 .0 1.2 2 . 4 0 .0 1.2 2 . 4

1.2 RELATIVE

1.2 R E L A T I V E

Fig. 1 a, b . Comparisons of the time courses of the relative abundances of predator (a) and prey (b) for cannibalism allowed (broken lines) and with cannibalism not allowed (solid lines). The starting prey population is 10 % above the critical value. One relative time unit corresponds to the development time until maturity.

0.0 1.2 2 . 4 0 .0 1.2 2 . 4

0 .0 1.2 2 . 4 R E L A T I V E TIME

0 .0 1.2 2 . 4 R E L A T I V E TIME

Fig. 2 a, b . Same as Fig. 1 but with a starting prey population density 10 % below the critical value.

Steps of 10 % starting with a value for b = b$ that corresponds to the stable age distribution with the potential growth rate. The starting prey population is set 30 % below the critical value. As b decreases (or equivalentiy the more older animals exist at the beginning), the first increase in the non-cannibals becomes steeper (Fig. 3 a) but the survival time of the prey becomes shorter (Fig. 3 b). As the critical starting prey population is derived for a growing predator population with more

Page 10: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

378 W. Gabriel

young than old animals, it can easily be shown that, if the age structure of the C y c l o p s is shifted to older animals, the populations are destroyed even at starting prey densities above the critical value.

0.0 1.2 2.4 0 .0 1.2 2.4

0 . 0 1.2 2.4 0 .0 1.2 2.4 RELAT IVE TIME RELAT IVE TIME

Fig. 3 a, b . Effect of different starting age distributions of the predator in case of avoiding canni­balism. The exponent b of the starting age distribution is lowered in Steps of 10 % from b = b$ to b = 0.5 bs -The lines with the higher maximum abundances for both predator and prey belong to the higher b values (which is equivalent to more pronounced young animals in the age structure).

Fig. 4 a, b . Effect o f different starting age distributions of the predator in case of cannibalism. The exponent b of the starting age distribution is lowered in Steps of 10 % from b = bg to b = — bg . The lines with the faster increase belong to the higher b values.

Page 11: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Food limitation and cannibalism 379

In the case of cannibalism the growth of predator (Fig. 4 a) and prey (Fig. 4 b) is retarded, but their coexistence is not imperilled when the starting age distribution is shifted. This is even true for populations with more old than young animals as demonstrated in Fig. 4 where b ranges from b = b$ to b = — b$-

This shows that cannibalism leads to a high robustness in relation to perturb-ations in the age structure of the predator, whereas the survival of the non-cannibals is highly dependent of the actual age structure.

0 10 20 o 10 20

RELAT IVE TIME RELAT IVE TIME

Fig. 5 a, b , c, d . Tolerance to lowering the starting prey density under cannibalism. Effects on the average relative body weight (a), the average intensity o f cannibalism (= part of carnivorous food gained by cannibalism) (b), and the population size of predator (c) and prey (d). The starting prey population is 5, 10, 15, 20, 25, 30, 35, and 40 times lower than the critical value. The lower the starting prey density, the later the population approaches to the common limit value (a, b) or increases (c, d).

Page 12: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

380 W. Gabriel

Another quantity of interest is the minimum prey density necessary for the preservation of the predator-prey System. In Fig. 5 the starting prey population is below the critical value by factors of 5, 10, 15, 20, 25, 30, 35, and 40. Not until the starting prey population is more than 35 times lower than the critical value does cannibalism become unable to compensate for the predation pressure. To de-monstrate the dynamics, the time course of the average body weight of the pre-dators (Fig. 5 a), the part of carnivorous food gained by cannibalism (= average intensity of cannibalism) (Fig. 5 b) ,and the predator (Fig. 5 c) and prey populations (Fig. 5 d) are illustrated. The average body weight (Fig. 5 a) initially oscillates around a value above the equilibrium value corresponding to the stable age distribution. The equilibrium is reached later for lower starting prey populations. The average intensity of cannibalism also converges to zero more slowly for smaller starting prey populations. Only for the prey density starting 40 times below the critical value is the growth of the prey insufficient to reduce the intensity of cannibalism. The time courses of predator (Fig. 5 c) and prey (Fig. 5 d) show how after more or less pro-nounced and extended reductions in population sizes the whole System grows ex-ponentially, which means for this local analysis that the System recovers from the dangerous Situation.

The benefit of cannibalism is demonstrated by the higher resilience of the pre­dator around the critical prey density and, in particular, by the maintenance of co­existence at prey densities much below the critical value. The small disadvantage of cannibalism under good food conditions is likely to be more than compensated for by the advantage during periods of food limitation, so that cannibalism can be ex­pected to be an evolutionarily stable strategy in fluctuating environments. With its self-regulatory and stabilizing capabilities, cannibalism has to be considered a power-full strategy for predators to overcome periods of food limitation. It may be an especially important factor in structuring Zooplankton communities.

Acknovvledgements

I thank Dr. Michael Lynch for critical remarks and for improving the manuscript.

References

Brandl, Z . & Fernando, C. H . (1975): Investigations on the feeding of carnivorous cyclopoids. - Verh. Internat. Verein. L i . . .uo l . 19: 2 9 5 9 - 2 9 6 5 . (1979): The impact of predation by the copepod Mesocyclops edax (Forbes) on the Zoo­plankton in three lakes in Ontario, Canada. - Can. J . Zool . 57: 9 4 0 - 9 4 2 . (1981): The impact of predation by cyclopoid copepods on Zooplankton. — Verh. Inter­nat. Verein. L i m n o l . 21 : 1573-1577 .

Elgmork, K . (1959): Seasonal occurrence of C y c l o p s s t r e n u u s s t r e n u u s . — Folia L i m n o l . Scand. 11: 1 -196 .

Fox, L . R. (1975): Cannibalism in natural populations. — A n n . Rev. Ecol . System. 6: 87 — 106. Fryer, G . (1957): The food of some freshwater cyclopoid copepods and its ecologicai signific-

ance. — J . A n i m . Ecol . 26: 263—286. Gabriel, W. & Lampert, W. (1985): Can cannibalism be advantageous in cyclopoids? A mathe-

matical model. — Verh . Internat. Verein. L i m n o l . 22: 3164—3168. Gophen, M . (1976): Temperature effect on lifespan, metabolism, and development time of

Mesocyclops l e u c k a r t i (Claus). - Oecologia 25: 271-277' . — (1977): Food and feeding habits of Mesocyclops l e u c k a r t i (Claus) in Lake Kinneret (Israel).

- Freshwater Biol . 7: 513 -518 .

Page 13: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Food limitation and cannibalism 381

Gophen, M . (1980): A r t e m i a nauplii as a food source for cyclopoids: extrapolation of experi-mcntal measurements to the metabolic activities of copepods in Lake Kinneret, Israel. — In: G. Persoone et al. (eds.), The Brine Shrimp A r t e m i a 3: Ecology, Culturing, Use in Aqua-culture, 68—76. Universa Press, Wetteren, Belgium.

Gras, R . A . et al. (1971): Biologie des crustaces du lac Tchad. - Cah. O . R. S. T. O. M . , ser. Hy-drobiol . 5: 2 8 5 - 2 9 6 .

Jamieson, C. D. (1980 a): Observations on the effect of diet and temperature on rate of develop-ment of Mesocyclops l e u c k a r t i (Claus) (Copepoda, Cyclopoida). — Crustaceana 38: 145 — 154.

— (1980 b) : The predatory feeding of Copepodid Stages III to adult Mesocyclops l e u c k a r t i (Claus). — In: W. C. Kerfoot (ed.), Evolution and ecology of Zooplankton communities, 5 1 8 - 5 37. Univ. Press of New England, Hanover, N . H .

Kerfoot, W. C. (ed.) (1980): Evolution and ecology of Zooplankton communities. — Univ. Press of New England, Hanover, N . H .

Landry, M . R. (1981): Switching between herbivory and carnivory by the planktonic copepod C a l a n u s p a c i f i c u s . — Mar. Biol . 65: 77—82.

Lane, P. A . (1978): The role of invertebrate predation in structuring Zooplankton communities. - Verh. Internat. Verein. L imnol . 20: 480—485.

McQueen, D. J . (1969): Reduction of Zooplankton Standing Stocks by predaceous C y c l o p s b i c u s p i d a t u s t h o m a s i in Marion Lake, British Columbia. — J . Fish. Res. Bd. Canada 26: 1605-1618 .

Peacock, A . & Smyly, VV. J . P. (1983): Experimental studies on the factors limiting T r o p o c y c l o p s p r a s i n u s (Fisher) 1860 in an oligotrophic lake. — Can. J . Zool . 61: 250—265.

Polis, G . A . (1981): The evolution and dynamics of intraspecific predation. — A n n . Rev. Syst. 1 2 : 2 2 5 - 2 5 1 .

Schober, U . (1980): Kausalanalytische Untersuchungen der Abundanzschwankungen des Crusta-ceen-Planktons im Bodensee. — Diss. Univ. Freiburg/Brsg., 162 pp.

Smyly, W. J . P. (1970): Observations on the rate of development, longevity, and fecundity of A c a n t b o c y c l o p s v i r i d i s (Jurine) (Copepoda, Cyclopoida) in relation to the type of prey. — Crustaceana 18: 21 — 36.

— (1973): Bionomics of C y c l o p s s t r e n u u s a b y s s o r u m Sars (Copepoda: Cyclopoida). — Oeco-logia 11: 163-186 .

Vijverberg, J . (1977): Population structure, life histories and abundances of copepods in Tjeu-kemeer, The Netherlands. - Freshwater Biol . 7: 579 -597 .

— (1980): Effect of temperature in laboratory studies on development and growth of clado-cera and copepoda from Tjeukemeer, The Netherlands. Freshwater Biol . 10: 317—340.

Williamson, C . E. (1980): The predatory behaviour of Mesocyclops edax: Predator preferences, prey defences, and starvation-induced changes. — Limnol . Oceanogr. 25: 903—909.

Author's address: Dr. Wilfried Gabriel, Abteilung ökophysiologie, Max-Planck-Institut für Limnologie, Post­fach 165, D-2320 Plön, Fed. Rep. Germany

Page 14: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

495

Species Index

A c a r t i a c l a u s i 2 8 - 2 9 , 2 2 3 - 2 2 5 , 227 -229 , 243, 410, 416

- b u d s o n i c a 4 0 8 - 4 1 2 , 4 1 5 - 4 1 6 - s t e u e r i 28, 416 - t o n s a 28, 235-244,305, 4 0 8 - 4 1 6 A c h n a n t h e s sp. 162, 166 A c r o c a l a n u s i n e r m i s 28 Aedes sp. 462 Aerobacter aerogenes 125 — 132 Anabaena sp. 335, 341-342 , 346, 349 A n g u i l l a a n g u i l l a 343 A n k i s t r o d e s m u s b r a u n i i 163-166 , 169 A n k y r a j u d a i 344 A n u r a e o p s i s fissa 98 A p b a n i z o m e n o n flos-aquae 97 Apbanocapsa sp. 433, 439 Apbanotbece sp. 163, 166, 169, 439 A r e t o d i a p t o m u s spinosus 278—282 A r t e m i a s a l i n a 263 A s p l a n c b n a b r i g b t w e l l i 185-191 - i n t e r m e d i a 185, 188 - p r i o d o n t a 2 7 0 - 2 7 4 - sieboldi 185-188 - s i l v e s t r i i 185-191 A s t e r i o n e l l a formosa 162, 165-166 , 169, 346,

386 Asterococcus sp. 433, 4 3 9 - 4 4 3

Boeckella d i l a t a t a 2 9 7 - 3 0 7 - bamata 2 9 7 - 3 0 7 - o c c i d e n t a l i s 147, 150 -158 - s y m m e t r i c a 299 - t i t i c a c a e 147, 150-158 - t r i a r t i c u l a t a 2 9 7 - 3 0 7 B o s m i n a coregoni 101, 147, 150-152 , 158,

3 2 3 - 3 3 1 , 363-367 , 420, 4 5 3 - 4 5 8 - l o n g i r o s t r i s 95, 101, 126-133 , 158, 3 9 8 -

401, 4 2 6 - 4 2 8 , 432, 434, 4 3 9 - 4 4 5 , 4 4 8 -449, 4 5 3 - 4 5 8 , 486, 488

- l o n g i s p i n a 343, 349 - o b t u s i r o s t r i s 462 - sp. 91, 9 5 - 1 0 1 , 125-126 , 281, 400 Botryococcus b r a u n i i 163-165 B r a c b i o n u s c a l y c i f l o r u s 270—272, 453

C a e n o r b a b d i t i s briggsae 283 C a l a n u s f i n m a r e b i c u s 5, 10—11, 3 3 - 3 9 , 61,

214 - h e l g o l a n d i c u s 262, 265, 281 - byperboreus 212, 226 - marsballae 2 1 4 - 2 1 5

- paeificus 1 -10 , 2 8 - 2 9 , 35, 38, 4 1 - 5 3 . 209-219 , 224-226 , 231, 243, 282, 305

- sp. 212-214 , 224 Centropages sp. 61, 224 - t y p i c u s 28, 117, 243 C e r a t i u m b i r u d i n e l l a 99 - sp. 335 C e r i a n t b i o p s i s a m e r i c a n u s 416 C e r i o d a p b n i a l a c u s t r i s 335 — 338 - q u a d r a n g u l a 147-158, 486, 488 - r e t i c u l a t a 127-128 , 365-367 , 398 -399 - sp. 99, 101, 126, 4 0 0 - 4 0 1 , 4 2 6 - 4 2 8 Cbaoborus f l a v i c a n s 392-393 - t r i v i t t a t u s 4 8 3 - 4 9 0 Cbirocepbalus g r u b e i 462 C h l a m y d o m o n a s r e i n b a r d i i 126-127 , 1 3 0 -

133, 299, 466 - sp. 125, 278, 281, 344, 433, 435 C h l o r e l l a p y r e n o i d o s a 299, 386 - s o r o k i n i a n a 148—158 - sp. 95, 147, 199-206, 299, 389 - v u l g a r i s 278, 281 Chroococcus l i m n e t i c u s 162, 165 - sp. 404, 433, 439, 4 4 0 - 4 4 3 C h y d o r u s spbaericus 98, 101, 1 2 5 - 1 3 2 , 4 2 0 Cocconeis p e d i c u l u s 163 C o e l a s t r u m sp. 439 Coelospbaerium k u e t z i n g i a n u m 162, 165 C o s m a r i u m b o t r y t i s 163-165 - sp. 439 C r u c i g e n i a sp. 433, 4 3 9 - 4 4 0 C r y p t o m o n a s c u r v a t a 83 - erosa 85, 344 - erosa r e f l e x a 270 - m a r s s o n i i 344 - o v a t a 187 - r a s t i f o r m i s 83 - sp. 8 2 - 8 4 , 186, 349, 433 C y c l o p s a b y s s o r u m t a t r i c u s 423—425 - s c u t i f e r 343 - sp. 373, 376, 422, 481 - s t r e n u u s 462 - v i c i n u s 392 C y c l o t e l l a bodanica 162 - c o m p t a 162 - g l o m e r a t a 163 - ocellata 166 - p s e u d o s t e l l i g e r a 163 - sp. 165-169 - s t e l l a t a 162 C y m b e l l a a f f i n i s 162, 166

Page 15: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

496 Species Index

D a p h n i a a m b i g u a 170, 465—472 - a t k i n s o n i 463 - catawba 170 - c u c u l l a t a 101, 137-138 , 3 2 3 - 3 3 1 , 365,

367, 4 2 0 - 4 2 1 - c u r v i r o s t r i s 137-138 , 193-197 , 462 - galeata 67, 7 0 - 7 7 , 137-138 , 140-141 ,

161-170 , 200, 313, 3 2 3 - 3 3 1 , 392-393 , 432, 439

- galeata mendotae 75, 128, 170, 335-338 , 435, 445, 458

- h y a l i n a 6 7 , 7 0 - 7 7 , 8 2 - 8 7 , 101, 137-138 , 200, 313, 347, 365, 367, 383-386 , 3 8 9 -390, 4 2 0 - 4 2 1

- l o n g i r e m i s 143 - l o n g i s p i n a 137-138 , 341 -349 , 365, 367,

4 6 2 - 4 6 3 - l u m h o l t z i 4 2 6 - 4 2 8 - m a g n a 82, 137 -141 , 199 -205 , 265, 3 6 5 -

367, 463 - m i d d e n d o r f f i a n a 143 - obtusa 193-197 , 4 6 2 - 4 6 3 - p a r v u l a 335 -338 - p u l e x 82, 84, 137-138 , 143, 147-158 ,

1 9 3 - 1 9 9 , 2 8 5 - 2 9 5 , 301, 365, 367, 432 - p u l i c a r i a 8 1 - 8 8 , 127-133 , 137-138 ,

1 6 1 - 1 7 0 , 193-197 , 2 8 5 - 2 9 5 , 335-338 , 4 2 2 - 4 2 5 , 4 3 1 - 4 3 2 , 4 3 5 - 4 4 5 , 448, 457, 4 6 2 - 4 6 3

- rosea 128, 133, 432, 4 3 5 - 4 3 9 , 4 4 2 - 4 4 5 , 448, 4 5 7 - 4 7 3 , 4 8 3 - 4 8 9

- schoedleri 75 - s i m i l i s 463 - sp. 6 7 - 7 7 , 81, 88, 91, 99, 101, 122-126 ,

129, 135, 165, 170, 281, 311 -319 , 333, 341, 361, 363, 4 3 4 - 4 3 5 , 4 4 6 - 4 4 9 , 453, 4 6 1 - 4 6 3 , 475, 4 7 7 - 4 8 1

- t h o r a t a 8 1 - 8 8 , 161-163 D i a c y c l o p s t h o m a s i 484 D i a p h a n o s o m a b r a c h y u r u m 126—133, 323 —

331, 343, 349, 363-367 , 398 -399 , 420, 4 3 2 - 4 3 4 , 4 3 6 - 4 4 9 , 4 6 5 - 4 7 2 , 486, 488

- e x c i s u m 4 2 6 - 4 2 8 - l e u c h t e n b e r g h i a n u m 161-170 , 335 -336 - sp. 99, 101, 125-126 , 400, 457 D i a p t o m u s a s h l a n d i 161-170 , 475, 4 7 7 - 4 8 1 - castor 462 - d o r s a l i s 299 - kenai 484, 486, 488 - l e p t o p u s 486, 488 - s i c i l i s 117-119 - sp. 157 D i a t o m a e l o n g a t u m 163, 169 - sp. 165-167 - v u l g a r e 162 D i n o b r y o n sp. 163, 433, 4 3 9 - 4 4 2 D i p l o n e i s s m i t h i 163 D i t y l u m b r i g h t w e l l i 43

E l m i n i u s modestus 265 E p i s c h u r a sp. 481 E p i t h e m i a t u r g i d a 163 E s c h e r i c h i a c o l i 2 5 9 - 2 6 0 . 299 E u b o s m i n a t u b i c e n 465 E u c a l a n u s a t t e n u a t u s 117 - crassus 117 - e l o n g a t u s 115-122 - p i l e a t u s 116, 118 E u d i a p t o m u s g r a c i l i s 91 , 101, 311 -319 . 343,

383, 386, 392 - g r a c i l o i d e s 306 E u p h a u s i a p a c i f i c a 262

F r a g i l l a r i a c o n s t r u e n s 163 - c r o t o n e n s i s 163, 169 - sp. 165-168

Gasterosteus aculeatus 343 Gloeocystis sp. 163 Gomphonema sp. 162 Gomphosphaeria sp. 165 G y m n o d i n i u m splendens 262 G y r o s i g m a sp. 163

H o l o p e d i u m g i b b e r u m 4 2 3 - 4 2 5 , 486, 488

I s o c h r y s i s galbana 43

K e l l i c o t t i a l o n g i s p i n a 274, 486 K e r a t e l l a cochlearis 98, 270-274 , 4 8 5 - 4 8 6 - e a r l i n a e 2 7 0 - 2 7 2

L e p i d u r u s apus 462 L e p t o d o r a sp. 481 L i m n o t h r i s s a m i o d o n 426 L y n g b y a l i m n e t i c a 97

M a c r o c y c l o p s a l b i d u s 387 M a l l o m o n a s akrokomos 162 M e l o s i r a a m b i g u a 163 - d i s t a n s 162 - i t a l i c a 1 6 3 - 1 7 0 - i t a l i c a t e n u i s s i m a 163, 170 - sp. 167 -168 - v a r i a n s 162 Mesocyclops edax 432 - l e u c k a r t i 4 2 6 - 4 2 8 M e t r i d i a lucens 248 M i c r o c y c l o p s sp. 147, 151-153 M i c r o c y s t i s a e r u g i n o s a 163 M i r o g r e x sp. 404 M a i n a b r u c h i a t a 365, 367 - macropoda 365, 367 - r e c t i r o s t r i s 365, 367 M o n o c h l o n y x sp. 462 M o n o r a p h i d i u m sp. 344, 346, 349 M o u g e o t i a sp. 68, 439

Page 16: für Theoretische und Angewandte Limnologie BEIHEFT 21 ... · für Theoretische und Angewandte Limnologie BEIHEFT 21 Ergebnisse der Limnologie Advances in Iimnology Herausgegeben

Species Index 497

N a n n o c b l o r i s o c u l a t a 125-133 N a v i c u l a c r y p t o c e p b a l a 162, 166 Neocalanus c r i s t a t u s 118, 121 - p l u m c b r u s 118, 121, 2 4 7 - 2 5 3 N i t z s c h i a a c i c u l a r i s 162

O i t h o n a c o l c a r v a 412-417 O n c o r b y n c b u s n e r k a 263 O o c y s t i s l a c u s t r i s 163-166 - p a r v a 163 - p u s i l l a 162 - sp. 165-170 , 433, 4 3 9 - 4 4 3 O r e s t i a s sp. 158 O s c i l l a t o r i a a g a r d b i i 97 - redekei 97 - sp. 480

P a r a c a l a n u s p a r v u s 28, 105-109 , 120, 2 6 5 -305

- sp. 117-118 P a r a m e c i u m a u r e l i a 186-191 - c a u d a t u m 387 P e d i a s t r u m sp. 439 -443 P e r i d i n i u m sp. 398, 401 -402 P b y l l o d i a p t o m u s annae 2 7 8 - 2 8 2 P l a n k t o s p b a e r i a sp. 433, 4 3 9 - 4 4 3 P l e u r o m a m m a sp. 224 P o l y p b e m u s p e d i c u l u s 423 Pseudocalanus e l o n g a t u s 3 - 6 , 10—11, 16, 27,

263-265 - m i n u t u s 10, 61, 223, 227, 305 - sp. 1 -11 , 15-29 , 2 2 8 - 2 3 1 , 282 P s e u d o d i a p t o m u s c o r o n a t u s 412—417

Q u a d r i g u l a sp. 433, 439 -443

R b i z o s o l e n i a a l a t a 118-120 Rbodomonas l a c u s t r i s 344—346, 349 - m i n u t a 270 - sp. 68, 433

Saccharomyces cerevisiae 194—195, 299 Salmo g a i r d n e r i 343 - salar 342 - t r u t t a 343 S a l v e l i n u s a l p i n u s 425 - f o n t i n a l i s 425 Scenedesmus a c u t u s 8 2 - 8 7 , 135-143 , 278,

286, 313-317,320

- b r e s s i l i e n s i s 278 - o b l i q u u s 193-195 - q u a d r i c a u d a 384—386 - sp. 281, 433, 4 3 9 - 4 4 4 S e r r a t i a marcescens 299 S i d a c r y s t a l l i n a 125-131 , 135-144 Simocephalus s e r r a t u l u s 126—131 - v e t u l u s 135-138, 143-144 , 365, 367 S k i s t o d i a p t o m u s oregonensis 306 Sphaerocystis scbroeteri 163-169 - sp. 433, 439 -443 S t a u r a s t r u m p a r a d o x u m 162 - p l a n e t o n i c u m 313-314 - p s e u d o c u s p i d a t u m 162 - sp. 166 Stephanodiscus astraea 163-166, 170 - astraea m i n u t u l a 163 - b a n t z s c h i i 162, 164 - n i a g a r a e 163-166 - sp. 165-169 Stichococcus m i n u t i s s i m u s 313 — 314 Syncbaeta oblonga 185-191 Synecbococcus e l o n g a t u s 135-144 - leopoliensis 386 S y n e d r a acus 163 - c y c l o p u m 163 - d e l i c a t i s s i m a 163 - r u m p e n s 162, 404 - sp. 166, 169, 439

T a b e l l a r i a f e n e s t r a t a 163-170 - sp. 346 T e m o r a l o n g i c o r n i s 263 — 264 - sp. 61, 109-111 - s t y l i f e r a 117 - t u r b i n a t a 249 T e t r a e d r o n m i n i m u m 163 T b a l a s s i o s i r a a n g s t i i 6 - ex c e n t r i c a 119 - ßuviatilis 238 -240 , 244, 262 - r o t u l a 264 - weissßogii 2 - 6 , 34, 43, 116-122, 2 1 3 -

217, 239, 247 -248 T r o p o c y c l o p s p r a s i n u s 432

U n d i n u l a v u l g a r i s 247

V o l v o x sp. 335

f. Bayerische Staatsbib!

che ] othek