20
Funksystem für industrielle Anwendungen HiFlecs Zukunft der Netze Lübeck, 28.-29. September 2017 Frank Bittner TZI Universität Bremen

Funksystem für industrielle Anwendungen HiFlecs - …€¦ · Funksystem für industrielle Anwendungen – HiFlecs Zukunft der Netze Lübeck, 28.-29. September 2017 Frank Bittner

Embed Size (px)

Citation preview

Funksystem für industrielle Anwendungen – HiFlecs Zukunft der Netze Lübeck, 28.-29. September 2017

Frank Bittner TZI – Universität Bremen

§  Collaborativemanufacturing networks

Industry 4.0 Vision - highly flexible, work-sharing, geographically distributed production

Horizontal Integration Vertical Integration

§  Machines communicate with each other

Source: HP 2

Vertical Integration: Industrial Radio Requirements

Manufacturing Process Automation

Augmented Reality

Latency < 1ms 100 ms 10 ms

Jitter < 1us - -

Reliability (PER) 1e-9 1e-5 1e-5

Data Rate Kbit/s – Mbit/s Kbit/s Mbit/s-Gbit/s

Packet size short short long

Range 10m - 100 m 100 m- 1km 10m - 100m

Massive communications

middle yes no

Determinism strong middle no

Todayswirelesstechnologiesfailtomeetrequirements3

Different BMBF Research Programmes

„reliable wireless communication in industry“

4

Reliable wireless communication in industry (ZDKI)

Wesentliche Merkmale Overview of research projects

§  8 autonomous projects for wireless communication

§  Simultaneous accompanying research project

§  Research grant ~ 40. Mio. €

§  Very diverse composition of consortia:

•  Industrial SMEs and corporations

•  Relevant research institutions

•  renowned Applied Universities/Universities

BZKI

PRO WILAN

SBDist

ParSec

Kol

Treu Funk

OWI CELLS

HiFlecs

DEAL

5

„Hochperformante, sichere Funktechnologien und deren Systemintegration in zukünftige industrielle Closed-Loop Automatisierungslösungen“

§  Extremely low latency (< 1ms)

§  Extremely high availability and reliability

HiFlecs: Design of an Industrial Radio System

Coordination: Prof. Dr. Armin Dekorsy, University of Bremen

6

Requirement Profiles - HiFlecs

Profile A •  Driverless transport of large

goods •  Marriage in vehicle assembly •  Shuttle vehicles in packaging

machines

Profile B •  Industrial plant with

decentralized drive technology

•  Robot cell with product feed and removal of the peripheral axes

•  Storage and retrieval machines or shuttle systems

Profile C •  High bay warehouse •  Robot cells with

interchangeable tools

Parameter A B C Transmission time [ms] 0,15 1,00 0,50 Update time [ms] 5,00 1,00 1,50 Data length [Bit] 1024 400 1600 Packet Loss Rate 5 * 10-7 N/A N/A Consecutive Losses 2 N/A 2 No. of devices 32 1000 100

7

Core Technologies

Adaptive PHY/MAC technologies Integrated information security

Coexistence-Management Mapping of distributed application functionality

§  Plug & Trust §  Physical layer security §  Latency optimized encryption

§  Interface between application and radio

§  Dynamic, distributed object model

§  Cognitive spectrum sensing §  Self-regulated coexistence-

management

§  Scalable latency and resource usage §  Use of multicast/broadcast-properties §  Dynamically reconfigurable hardware

HiFlecs Radio

System

8

System Architecture, Interfaces, and Channels

9

HiFlecs - Controller

10

Coexistence Management

Challenge:

•  Fast and reliable classification of active wireless systems in a shared frequencies

Approach:

•  Compressed Sensing based spectrum sensing

•  Multi-layer convolutional neural network

•  100% classification down to -5 dB SNR

HiFlecs

Multi-layer convolutional neural network

11

Air Interface

12

Challenge: Treating real-time and best-effort traffic efficiently

Desirable: Inherent Broadcast/Multicast support

Idea: Utilization of Hybrid MAC technique, i.e. combination of contention and reservation based MAC techniques

HiFlecs

Quasi Orthogonal Spreading Sequences (QOSS)

Orthogonal Variable Spreading Factor (OVSF)

Air Interface

13

HiFlecs - New Waveform

Challenge Problematic scenarios (OFDM): §  Inefficient spectrum usages

(High Out-of-band Emissions) §  Low cost device with low-end power

amplifiers (High PAPR) §  Large CP overhead under channels

with large delay spread

Approach Generalized Frequency Division Multiplexing §  Non-orthogonal

Low PAPR

-40 -30 -20 -10 Center Freq. 10 20 30 40-140

-120

-100

-80

-60

-40

-20

0

20

Frequencies (MHz)PS

D (d

B)

OFDM configuration in 20 MHz modelGFDM w. time domain window

-40 dBr

IEEE 802.11ac spectrum mask

for 20MHz

0 dBr

-20 dBr -28 dBr

Low Out-of-Band Emissions

§  Beneficial for higher order modulation schemes

•  Higher spectral efficiency §  Lower inter-channel interference §  More usable spectrum

GFDM Evaluation

Quelle: proWiLAN

•  GFDM waveform •  Low-complexity GFDM modulator/demodulator •  Improved Schmidl&Cox synchronization

•  Polar Codes •  State-of-the-Art high throughput implementation

Latency optimized SDR Baseband Implementation

14

Encryption and Message Authentication

•  Tight integration of encryption (AES) and authentication (CMAC) with baseband

•  Low Latency Cipher Implementation

Physical-Layer Security based message authentication

•  Avoids CMAC overhead, leads to reduced latency

•  Promising authentication accuracy

Security

AES-128Encryption

AES-128Encryption

256BitPayload

256Bit

320Bit

256BitPayload

256Bit

AES-128CMAC(64Bittrunc.)

PHY/MAC&Channel

AES-128CMACCheck

PHYSECAuth.Check

AES-128Decryption

AES-128Decryption

PHY/MAC&Channel

320Bit

256Bit

256Bit

256BitPayload

256BitPayload

256Bit

CSI

HiFlecs

15

Transmodul line of a packing machine

•  Wireless data transmission between control module (SPS) and transport modules by HiFlecs

•  Synchronization with delta-robot and linear measurement system via HiFlecs (cycle time 1ms)

Implementation and Demonstration

HiFlecs

16

HiFlecs within existing infrastructure

Extension / replacement of wired systems

ZDKI

17

ZDKI and 5G – our own view

Task: Extension / replacement of wired systems

5. Mobile Radio Generation (5G)

ZDKI

18

TACNET 4.0Hochzuverlässige und echtzeitfähige 5G Vernetzung für Industrie 4.0

5G Vernetzung für die Digitalisierung der IndustrieProduktion, Robotik, Internet der Dinge

20.06.2017 1

Volumen10,33 Mio. EUR (60% Förderanteil)

Laufzeit04/2017 - 03/2020

Verbundkoordinatoren

DFKI, Kaiserslautern Prof. Dr. Hans D. Schotten

und

Nokia Bell Labs, MünchenDr. Peter Rost

Thank you!