14
1 24.06.14 Genomische Medizin und Assekuranz Thomas D. Szucs 2 Disclaimer Die vorgetragenen (vorliegenden) Ausführungen, Meinungen und Fakten entsprechen der persönlichen Betrachtungsweise des/der Vortragenden (Verfassers/ Verfasserin). Die hier vertretenen Ansichten stellen insbesondere nicht den offiziellen Standpunkt der Helsana dar und sind dementsprechend für Helsana in keiner Weise bindend. 2

Genomische Medizin und Assekuranz - SULM...of others by observing their faces ... • Ehlers–Danlos syndrome, vascular ... Despite the many hurdles yet to be overcome, genomic diagnostics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    24.06.14

    Genomische Medizin und Assekuranz

    Thomas D. Szucs

    2

    Disclaimer

    Die vorgetragenen (vorliegenden) Ausführungen, Meinungen und Fakten entsprechen der persönlichen Betrachtungsweise des/der Vortragenden (Verfassers/Verfasserin). Die hier vertretenen Ansichten stellen insbesondere nicht den offiziellen Standpunkt der Helsana dar und sind dementsprechend für Helsana in keiner Weise bindend.

    2

  • 2

    3

    Herausforderungen aus Sicht Krankenversicherer - Prozesse

    Genomische Medizin bedingt Prozessinnovation

    Zwei gegenläufige Trends?

    Automatisierung

    Personalisierung

    Anzahl Positionen, Personen und Leistungen total pro Kapitel und pro Jahr

    5

  • 3

    Assekurranz und genomische Medizin - Chancen

    The „new normal“

    WZW

    Weniger Giesskanne Rx

    AMTS

    Kosten ê Qualität é

    Geschwindigkeit é

    Effizientere klinische Forschung

    Bessere Kalkulation der Prämien

    (VVG > KVG)

    7

    Sind Gentests allgemein wirtschaftlich?

  • 4

    8

    Sind Gentests allgemein wirtschaftlich?

    Es kommt drauf an

    9

    1996

  • 5

    10

    Liga Tabelle Pharmakogenetisches Screening Gen Medikament Eregbnis (outcome) Inkrementale Kosten-Effektivität

    CYP2C9 Coumarin Vermiedene Blutungen EUR 7326 pro vermiedene Blutung

    CYP2C9 Coumarin Vermiedene Blutungen EUR 4233 pro vermiedene Blutung

    CYP2C19 Protonen-pumpenhemmer

    Wirtschaftlich

    CYP2C19 Protonen-pumpenhemmer

    Vermiedene Ulkusblutung

    Dominant

    CYP2C19

    Protonen-pumpenhemmer

    Erfolgreiche Eradikation Dominant

    TPMT Azathioprim Vermiedene Nebenwirkungen Dominant

    TPMT Azathioprim Gewonnene Lebensjahre EUR 1348/gewonnenes Lebensjahr

    TPMT 6-Mercaptopurin Gewonnene Lebensjahre EUR 4800/gewonnenes Lebensjahr

    Mehrere Clozapin QALY EUR 36‘186/QALY

    MTHFR Methotrexate Medikamentenabbruch Dominant

    HLA Abacavir Vermiedene Hypersensitivitätsreaktion

    Dominant bis EUR22811/vermiedene Reaktion

    A1555G Aminoglykoside QALY EUR 59‘759/QALY

    Vegter S et al. Pharmacoeconomics 2008; 26: 569

    Wirtschaftlich

    Adaptation durch Versicherer

    §  Stärke der Evidenz = wichtigster Faktor für die Erstattungsentschediung

    §  Stärke der Evidenz variiert in Abhängigkeit der Technologie

    §  Leitlinien der Fachgesellschaften beeinflussen die

    Erstattung sehr stark §  Zur Zeit scheinen regulatorische Aspekte und Daten

    zur Wirtschaftlichkeit die Erstattung nicht massgeblich zu beeinflussen

    Modified from Meckley & Neumann; Health Policy 2010

  • 6

    12

    Wirtschaftlichkeit ist abhängig von

    Stärke der Intervention

    Ausgangs-risiko

    ... und den Folgekosten !!

    Warum wurde vieles nicht schon früher klinisch umgesetzt?

    13

    •  Kosten

    •  Qualität

    •  Geschwindigkeit

  • 7

    Fragen zur Wirtschaftlichkeit von genomischen Untersuchungen §  Wie häufig ist die genetische Variante? §  Wie stark ist die Assoziation zwischen Genotyp und

    Phänotyp (Penetranz)? §  Wird der Phänotyp durch metabolische, Umwelt- oder andere

    signifikante Faktoren beeinflusst? §  Wie hoch ist die Sensitivität und Spezifität des

    genomischen Tests? §  Gibt es alternative Methoden? §  Wie prävalent ist die Krankheit? §  Welches sind die charakteristischen Ergebnisse der

    Erkrankung mit und ohne Therapie? §  Wie beeinflusst die Genomik diese Ergebnisse?

    Herausforderungen der Genomik - Herausforderungen

    Somatisch versus

    Keimbahn

    Incidentalome

    Novitaet für LERBs

    Novitaet für KV’er

    ELSI

    Underwriting

  • 8

    §  Obwohl im Bereich der meisten Privatversicherungen eine Offenlegung von Ergebnissen früherer präsymptomatischer Untersuchungen im Rahmen der Gesundheitsprüfung statthaft wäre, wird auf eine entsprechende Frage verzichtet.

    §  Es werden auch keine vom Antragsteller freiwillig vorgelegten Ergebnisse berücksichtigt.

    Praxis Helsana

    18

    Aktuelle Praxis wird beibehalten !

    KEINE LIFESTYLE TESTS IM KVG

    19

  • 9

    Ancestry analysis

    20

    LIFESTYLE

    Neanderthal ancestry

    21

    LIFESTYLE

  • 10

    Global similarity map

    22

    LIFESTYLE

    23

    rs53576(G;G)

    •  ... optimistic and empathetic •  ... better at accurately reading the emotions

    of others by observing their faces •  ... less likely to startle when blasted by

    a loud noise ... 23

    LIFESTYLE

  • 11

    24

    Keimbahn Somatische

    Mutationen

    26

    Umgang mit dem Inzidentalom

    565

    © American College of Medical Genetics and Genomics ACMG POLICY STATEMENT

    Exome and genome sequencing (collectively referred to in this report as clinical sequencing) are rapidly being integrated into the practice of medicine.1,2 The falling price of sequencing, coupled with advanced bioinformatics capabilities, is creating opportunities to use sequencing in multiple medical situa-tions, including the molecular characterization of rare diseases, the individualization of treatment (particularly in cancer),

    pharmacogenomics, preconception/prenatal screening, and population screening for disease risk.3,4 In all of these applica-tions, there is a potential for the recognition and reporting of incidental (or secondary) findings, which are results that are not related to the indication for ordering the sequencing but that may nonetheless be of medical value or utility to the order-ing physician and the patient. Considerable literature discusses

    In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unre-lated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clini-cal testing, and reporting of results. The ACMG appointed a Work-ing Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible manage-ment of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recom-mendations, and the background and rationale for these recommen-

    dations, are described herein. The ACMG recommends that labora-tories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (consti-tutional) exome and genome sequencing, including the “normal” of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recom-mendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.Genet Med 2013:15(7):565–574Key Words: genome; genomic medicine; incidental findings; per-sonalized medicine; secondary findings; sequencing; whole exome; whole genome

    ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing

    Robert C. Green, MD, MPH1,2, Jonathan S. Berg, MD, PhD3, Wayne W. Grody, MD, PhD4–6, Sarah S. Kalia, ScM, CGC1, Bruce R. Korf, MD, PhD7, Christa L. Martin, PhD, FACMG8,

    Amy L. McGuire, JD, PhD9, Robert L. Nussbaum, MD10, Julianne M. O’Daniel, MS, CGC3, Kelly E. Ormond, MS, CGC11, Heidi L. Rehm, PhD, FACMG2,12, Michael S. Watson, PhD, FACMG13,

    Marc S. Williams, MD, FACMG14 and Leslie G. Biesecker, MD15

    Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other health-care providers to help them provide quality medical genetic services. Adherence to these recommendations does not necessarily ensure a successful medical outcome. These

    recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, geneticists and other clinicians should apply their own

    professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patient’s record the rationale for any significant deviation from these recommendations.

    Submitted 11 April 2013; accepted 11 April 2013; advance online publication 20 June 2013. doi:10.1038/gim.2013.73

    1Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA; 2Partners Healthcare Center for Personalized Genetic Medicine, Boston, Massachusetts, USA; 3Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA; 4Division of Medical Genetics, Department of Human Genetics, UCLA School of Medicine, Los Angeles, California, USA; 5Division of Molecular Pathology, Department of Pathology & Laboratory Medicine, UCLA School of Medicine, Los Angeles, California, USA; 6Division of Pediatric Genetics, Department of Pediatrics, UCLA School of Medicine, Los Angeles, California, USA; 7Department of Genetics, University of Alabama, Birmingham, Alabama, USA; 8Autism and Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA; 9Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas, USA; 10Division of Genomic Medicine, Department of Medicine, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA; 11Department of Genetics, Stanford University, Stanford, California, USA; 12Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA; 13American College of Medical Genetics and Genomics, Bethesda, Maryland, USA; 14Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA; 15National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA. Correspondence: Robert C. Green ([email protected]) or Leslie G. Biesecker ([email protected])

    Genet Med

    00

    00

    2013

    Genetics in Medicine

    10.1038/gim.2013.73

    ACMG Policy Statement

    15

    7

    11April2013

    11April2013

    © American College of Medical Genetics and Genomics

    20June2013 GENETICS in MEDICINE | Volume 15 | Number 7 | July 2013

  • 12

    Conditions recommended for return of incidental findings in clinical sequencing

    •  Hereditary breast and ovarian cancer •  Li–Fraumeni syndrome •  Peutz-Jeghers Syndrome •  Lynch syndrome •  Familial adenomatous polyposis •  MYH-associated polyposis;

    adenomas, multiple colorectal, FAP type 2; colorectal adenomatous polyposis, autosomal recessive, with pilomatricomas

    •  Von Hippel–Lindau syndrome •  Multiple endocrine neoplasia type 1 •  Multiple endocrine neoplasia type 2 •  Familial medullary thyroid cancer •  PTEN hamartoma tumor syndrome •  Retinoblastoma •  Hereditary paraganglioma–

    pheochromocytoma syndrome

    •  Tuberous sclerosis complex •  WT1-related Wilms tumor •  Neurofibromatosis type 2 •  Ehlers–Danlos syndrome, vascular

    type •  Marfan syndrome, Loeys–Dietz

    syndromes, and familial thoracic aortic aneurysms and dissections

    •  Hypertrophic cardiomyopathy, dilated cardiomyopathy

    •  Catecholaminergic polymorphic ventricular tachycardia

    •  Arrhythmogenic right-ventricular cardiomyopathy

    •  Romano–Ward long QT syndrome 192500 types 1, 2, and 3, Brugada 613688 syndrome

    •  Familial hypercholesterolemia •  Malignant hyperthermia 145600

    susceptibility

    Green RC, Genet Med 2013

    Beispiele

    28

    Ausbildung ist zentral

    192 VOLUME 94 NUMBER 2 | AUGUST 2013 | www.nature.com/cpt

    PERSPECTIVES

    is not yet clear how multigene panels and more comprehensive sequencing applica-tions will be addressed in the new coding system. Using the old system, exces-sively high reimbursement could result for multi-gene panels coded with stacks of codes. The new system will undoubt-edly require adjustments as diagnostics make the transition from single-gene, single-variant analyses to genomic mul-tigene analyses.

    Finally, intellectual-property limitations associated with human gene sequences may pose an additional barrier to genomic testing in the clinical laboratory. Human gene sequences have historically been patentable, and providers of testing ser-vices are required to secure a license and pay royalties for testing and interpreta-tion of human genetic sequences covered by patents, e.g., ASPA in Canavan disease, BRCA1/2 in breast cancer, and APOE*E4 in Alzheimer’s. As testing makes the tran-sition from single-gene analysis to more comprehensive genomic analysis, clinical laboratories introducing genomic assays could face an enormous burden of licens-ing obligations and stacked royalties. It is noteworthy that the patentability of human genes was reviewed by the US Supreme Court in the case Association of Molecular Pathology vs. Myriad Genet-ics, Inc.; the outcome will have significant implications for access to genomic test-ing, the cost of testing, and its utilization in health-care delivery.9

    Clinical laboratory directors are enthu-siastic about the application of human genomic testing and its impact on patient care. It is likely that early applications will focus on multigene panels designed to address specific medical situations where clinical utility has been more adequately substantiated. Examples of such emerg-ing clinical utility can be seen in prena-tal screening, inherited-disorder carrier screening, identification of rare genetic conditions involving defined genes, tumor characterization to guide targeted thera-peutic choices, and panels for identify-ing drug metabolism status. Multigene panels will create a foundation for more comprehensive whole-genome testing, and expansion of available phenotype–genotype correlative data will accelerate the application of genomic testing. Con-

    currently, sequencing-platform manufac-turers and associated software developers are designing applications to meet the rigor and standards of clinical diagnos-tics. Despite the many hurdles yet to be overcome, genomic diagnostics are mov-ing into the clinical laboratory and will ultimately guide better therapeutic choices and improved patient management.

    CONFLICT OF INTERESTThe author was a full-time employee of Laboratory Corporation of America, a provider of clinical diagnostic services, when the manuscript was submitted.

    © 2013 ASCPT

    1. Manolio, T.A. et al. Implementing genomic medicine in the clinic: the future is here. Genet. Med. 15, 258–267 (2013).

    2. Cressman, A.M. & Piquette-Miller, M. Epigenetics: a new link toward understanding human disease and drug response. Clin. Pharmacol. Ther. 92, 669–673 (2012).

    3. Lai-Goldman, M. & Faruki, H. Abacavir hypersensitivity—a model system for pharmacogenetic test adoption. Genet. Med. 10, 874–878 (2008).

    4. Faruki, H. & Lai-Goldman, M. Application of a pharmacogenetic test adoption model to six oncology biomarkers. Personalized Med. 7, 441–450 (2010).

    5. Cordero, P. & Ashley, E.A. Whole-genome sequencing in personalized therapeutics. Clin. Pharmacol. Ther. 91, 1001–1009 (2012).

    6. Skirton, H., Goldsmith, L., Jackson, L. & O’Conner, A. Direct to consumer genetic testing: a systematic review of position statements, policies and recommendations. Clin. Genet. 82, 210–218 (2012).

    7. Bellcross, C.A., Page, P.Z. & Meaney-Delman, D. Direct-to-consumer personal genome testing and cancer risk prediction. Cancer J. 18, 293–302 (2012).

    8. American Medical Association. Press release. AMA announces CPT code changes for 2013 that address constantly evolving healthcare advancements (17 September 2012).

    9. Cook-Degan, R. Law and science collide over human gene patents. Science 338, 745–747 (2012).

    Educational Challenges in Implementing Genomic MedicineE Passamani1

    Clinical medicine is about to embark on an exciting, although harrowing, period of innovation, the result of astonishing advances in genomic science. The current workforce—physicians, nurses, pharmacists, and others—will soon need to adapt to substantial change, driven by genomics, in diagnostic and therapeutic strategies. If errors of omission and commission are to be prevented, sustained efforts in workforce education will be needed on the part of medical schools, training programs, and professional societies.

    1Division of Policy, Communications, and Education, National Human Genome Research Institute, Bethesda, Maryland, USA. Correspondence: E Passamani ([email protected])

    doi:10.1038/clpt.2013.38

    The scientific revolution in genomics has entered its third decade.1 Advances in understanding the clinical consequences of genomic variants are now beginning to drive diagnostic and therapeutic strategies in some cancer patients and are facilitating diagnoses in rare, often devastating mono-genic disorders. More broadly, genom-

    ics has the potential to help physicians improve efficacy and avoid toxicity when choosing medications for the individual patient.

    As the science of genomics becomes more clinically relevant, all health-care providers, especially physicians, will need to become more knowledgeable

  • 13

    29

    Versicherer müssen

    § … sich in dieses neue Thema einbringen § … klare Erstattungsrichtlinien entwerfen und

    verabschieden

    § … neue Erstattungsmodelle entwerfen, ggf mit Fokus auf “pay for performance”

    § … mit Herstellern im Dialog bleiben, um neue Entwicklungen frühzeitig zu erkennen

    § … bestehende Leistungsdaten analysieren, um das nicht ausgeschöpfte Potential der personalisierten Medizin zu erkennen

    § …Mut haben

    30

    Sonntagsblick 30. Juni 2013

  • 14

    31

    Vielen Dank für Ihre Aufmerksamkeit