Mikroreaktoren Microwave Vorlesung

Embed Size (px)

Citation preview

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    1/36

    Rainer Riedl 1

    Masterstudiengang Chemistry for the Life Sciences

    Modul: Small Active Molecules

    Kurs: NewSynTech

    New Synthetic Technologies HS 2014

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    2/36

    Rainer Riedl 2

    Mikroreaktoren MikrowelleFestphasensynthese

    Kombinatorische ChemieParallelsynthese

    Warum neue Synthesetechnologien?

    Molekulare Evolution

    Biotransformationen Katalytische Antikrper

    Ribozyme

    Automatisierte Synthesen

    Multikomponentenreaktionen Organokatalyse

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    3/36

    3

    Mikroreaktoren

    Rundkolben der Zukunft !?

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    4/36

    Rainer Riedl 4

    Mikroreaktoren

    Kontinuierliche Reaktionsfhrung

    Miniaturisierung

    Kurze Mischzeiten

    Definierte Verweilzeiten

    Sehr guter Wrmeaustausch, keine Hotspots

    Einfaches Scale-up

    Bessere Selektivitten und Ausbeuten

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    5/36

    Rainer Riedl 5

    Ein praktisches Beispiel..

    Medchem Approach

    Traditioneller Scale-up.

    Kontinuierliche Produktion.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    6/36

    Rainer Riedl 6

    Typische Mikroreaktoren

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    7/36

    Rainer Riedl 7

    Mikroreaktoren aus Glas

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    8/36

    Rainer Riedl 8

    Photolithographische Fabrikation vonMikroreaktoren

    Chem. Soc. Rev., 2005, 34, 235-246.

    Mikroreaktoren aus Glas

    werden bevorzugt,

    da chemisch weitgehend inert

    visuelle Detektionsmethoden

    sind mglich

    Fabrikation ist etabliert

    0.5m/min

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    9/36

    Rainer Riedl 9

    Sind Mikroreaktoren wirklich mikro?

    Science 206, 314, 430-431.

    Mikroreaktoren an sich schon, aber der apparative Anhang nicht!

    Autosampler, Pumpen, Mischungssystem, Detektionseinheit, Analyseeinheit

    Beispiel einer vollautomatisierten 7-stufigen Synthese eines Naturstoffes

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    10/36

    Rainer Riedl 10

    Mikroreaktoren

    Es werden vielmals bessere Selektivitten und Ausbeuten

    erreicht:

    das Verstndnis von Reaktionsmechanismus und Kinetikist wichtig

    per Design enges Temperatur- und Verweilzeitprofil

    TMR

    TBR

    RK

    E

    A

    B

    C

    B

    B

    B + C

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    11/36

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    12/36

    Rainer Riedl 12

    Elektroosmotischer Fluss (EOF)

    Keine Pumpen ntig

    -> leichte Miniaturisierung

    Chem. Soc. Rev., 2005, 34, 235-246.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    13/36

    Rainer Riedl 13

    Quelle: ChemFiles (Sigma-Aldrich) 2005, Vol. 5, Issue 7.

    Beispiele fr Chemie in Mikroreaktoren

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    14/36

    Rainer Riedl 14

    Swern-Oxidation

    Verstndnis von Reaktionsmechanismus definiert MR-Set-up

    Kawaguchi et al.,Angew. Chem. 2005, 117, 2465-2468..

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    15/36

    Rainer Riedl 15

    Pros and Cons

    Schnelle, exotherme Reaktionen

    Aggressive oder instabile Zwischenprodukte

    Sehr gute Temperaturkontrolle von -40 bis 150 C

    Erhhter Druck bis 100 bar mglich

    Gasentwicklung fhrt zu verkrzter Reaktionszeit ist sonst aber

    kein Problem

    Grsste Einschrnkung: keine Feststoffe!

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    16/36

    Rainer Riedl 16

    Nchster Schritt:Lab on a Chip: Integration eines Mikroreaktors mitbiologischem Assay-System

    Ideal fr Pharma:Kurze Reaktionszeiten

    Geringe Substanzmengen

    Keine Lagerung

    bergang von Chemie zu Biologie wird eliminiert

    Chem. Soc. Rev., 2005, 34, 235-246.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    17/36

    Rainer Riedl

    Weiterfhrende Literatur

    Microreactors in Organic Synthesis and Catalysis, Wiley-VCH,

    Ed. By T. Wirth, 2008.

    Microreactors, Wiley-VCH, W. Ehrfeld, V. Hessel, H. Lwe,2005.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    18/36

    Rainer Riedl 18

    Microwave Irradiation in Organic Synthesis:

    The Bunsen burner of the 21st century!

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    19/36

    Rainer Riedl 19

    Heating with Microwaves

    Microwave irradiation is electromagnetic irradiation in the

    frequency range of 0.3300 GHz. All domestic kitchen

    microwave ovens and all dedicated microwave reactors for

    chemical synthesis operate at a frequency of 2.45 GHz

    (corresponding to a wavelength of 12.24 cm) to avoid

    interference with telecommunication and cellular phonefrequencies. The energy of the microwave photon at this

    frequency region (0.0016 eV) is too low to break chemical

    bonds and is also lower than Brownian motion. It is therefore

    clear that microwaves cannot induce chemical reactions.

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    20/36

    Rainer Riedl

    Microwave Synthesizer

    http://www.biotage.com

    BiotageInitiator

    Microwave Synthesizer

    CEMs automated microwave

    peptide synthesizer

    http://www.cemmicrowave.co.uk

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    21/36

    Rainer Riedl 21

    Microwave-assisted organic synthesis (MAOS) inthe literature

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    22/36

    Rainer Riedl 22

    Pros and Cons

    Pros:

    Most importantly, microwave processing frequently leads to dramatically

    reduced reaction times, higher yields, and cleaner reaction profiles. In

    many cases the observed rate-enhancements may be simply a consequence

    of the high reaction temperatures that can rapidly be obtained using this

    non-classical heating method, or may result from the involvement of so-

    called specific or non-thermal microwave effects.

    An additional benefit of this technology is that the choice of solvent for a given

    reaction is not governed by the boiling point (as in a conventional reflux

    setup) but rather by the dielectric properties of the reaction medium which

    can be easily tuned by e.g. addition of highly polar materials such as ionic

    liquids.Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    23/36

    Rainer Riedl 23

    Pros and Cons

    Pros:

    The temperature/pressure monitoring mechanisms of modern microwave

    reactors allow for an excellent control of reaction parameters which generally

    leads to more reproducible reaction conditions.

    Because direct in core heating of the medium occurs, the overall process is

    more energy efficient than classical oilbath heating.

    Microwave heating can be rapidly adapted to a parallel or automatic

    sequential processing format. In particular the latter technique allows for the

    rapid testing of new ideas and high-speed optimization of reaction

    conditions. The fact that a yes or no answer for a particular chemical

    transformation can often be obtained within 5 to 10 min (as opposed to

    several hours in a conventional protocol), has contributed significantly to the

    acceptance of microwave chemistry both in industry and academia.

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    24/36

    Rainer Riedl 24

    Pros and Cons

    Cons:

    high equipment costs compared to conventional heating

    equipment

    MAOS has changed the world o f organic chemistry, and i t

    wo uld be wise to embrace th is new technolog y or be lef t

    lagging behind w i th convent ional heat ing methodolog ies.

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    25/36

    Rainer Riedl 25

    Doing MAOS

    In open or closed vessels:

    Open vessel: Boiling point limits reaction temperature

    Closed vessel: Reaction temperatures above boiling point are

    possible

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    26/36

    Rainer Riedl 26

    Traditional conductive heating versus heating with microwave

    energy

    Traditionally: Conductive heating

    with external heat source

    Slow and inefficient:

    depends on thermal conductivity of vessel etc

    MAOS: efficient internal heating

    Direct coupling of microwave

    energy with molecules

    Reaction vessels are microwave

    transparent (glass etc)

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    27/36

    Rainer Riedl

    Microwave versus oil-bath heating

    Mol. Diversity 2003, 7, 293300; Biotage AB

    Temperature profiles after 1 min of microwave irradiation

    (left) and treatment in an oil bath (right).

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    28/36

    Rainer Riedl 28

    T/p/P profile of MAOS with state of the art equipment

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    29/36

    Rainer Riedl 29

    Energy Transfer in MAOS

    When irradiated at microwave frequencies,

    the dipoles or ions of the sample align in the

    applied electric field.

    As the applied field oscillates, the dipole or ion field

    attempts to realign itself with the alternating electric

    field and, in the process, energy is lost in the

    form of heat through molecular friction.

    Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    30/36

    Rainer Riedl 30

    Solvents for MAOS

    Chimia 60 (2006) 308312.

    How about CCl4? Whats the dipole moment of CCl4?

    Can you use it as solvent in MAOS?

    The heating characteristics of a particular

    material (i.e. a solvent) under microwaveirradiation conditions are dependent

    on the dielectric properties of the material.

    The ability of a specific substance to convert

    electromagnetic energy into heat at a

    given frequency and temperature is determined

    by the so-called loss tangent tan .

    The tangent loss factor is expressed as thequotient, tan = /, where is the dielectric

    loss, indicative of the efficiency

    with which electromagnetic radiation is

    converted into heat, and is the dielectric

    constant describing the ability of molecules

    to be polarized by the electric field.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    31/36

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    32/36

    Rainer Riedl 32

    Microwave effects: Non Thermal Microwave Effects

    Classified as rate accelerations that cannot be rationalized by

    either purely thermal/kinetic.

    Essentially, non-thermal effects result from a proposed direct

    interaction of the electric field with specific molecules.

    It has been argued that the presence of an electric field leads to

    orientation effects of dipolar molecules and hence changes the

    pre-exponential factor A or the activation energy (entropy term) in

    the Arrhenius equation.

    Furthermore, a similar effect should be observed for polar reaction

    mechanisms, where the polarity is increased going from the ground

    state to the transition state, resulting in an enhancement of

    reactivity by lowering of the activation energy. Chimia 60 (2006) 308312.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    33/36

    Rainer Riedl 33

    MAOS Chemistry

    Almost any type of synthetic transformation known today has been

    evaluated under microwave conditions. These range from e.g.

    Transition metal-catalyzed reactions,

    rearrangements,

    cycloadditions,

    glycosylations

    peptide couplings,multicomponent reactions,

    free radical processes,

    heterocyclic ring formations.

    Microwave synthesis has been successfully integrated with other

    technologies such as solid-phase synthesis,solid-supported reagents or catalysts,

    and microreactor technology.

    D. Bogdal, Microwave-Assisted Organic Synthesis, Elsevier, Amsterdam, 2005.

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    34/36

    Rainer Riedl

    Examples for MAOS

    Tetrahedron 2002, 58, 31773183

    Open vessel!!!

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    35/36

    Rainer Riedl

    Examples for MAOS

  • 7/21/2019 Mikroreaktoren Microwave Vorlesung

    36/36

    Rainer Riedl 36

    Examples for MAOS

    Tetrahedron 65 (2009) 33253355.