29
Mitglied der Helmholtz- Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

Embed Size (px)

Citation preview

Page 1: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

Mit

glie

d d

er

Helm

holt

z-G

em

ein

sch

aft

Accelerators COSY and HESR

March 15 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 2

Outline

Introduction

Cooler Synchrotron COSY Prototyping and Accelerator PhysicsPolarized BeamsPreparation for Storage Ring EDM

High-Energy Storage Ring HESRBeam Dynamics Simulations Design Work

SummaryOutlook

March 15 2013 | A Lehrach COSY amp HESR 3

Ions (pol amp unpol) p and d

Momentum 300600 to 3700 MeVc for pd respectively

Circumference of the ring 184 m

Electron Cooling up to 550 MeVc

Stochastic Cooling above 15 GeVc

Cooler Synchrotron COSY

2MV Electron Cooler

Siberian Snake

Major Upgrades

March 15 2013 | A Lehrach COSY amp HESR 4

Prototyping and Accelerator Physics

WASA

2 MeV e-Cooler (201213)

Barrier Bucket Cavity

Stochastic Cooling

Residual Gas Profile Monitor

Pellet Target

Siberian Snake (2013)

RF Solenoid

RF Dipole

March 15 2013 | A Lehrach COSY amp HESR 5

Magnetized High-Energy Electron Cooling Development Steps

COSY from 01 MeV

to 2 MeV

HESR 45 MeV

Upgradable to 8 MeV

bull Technological challengebull Benchmarking of cooling forces Installation at COSY started

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 2: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 2

Outline

Introduction

Cooler Synchrotron COSY Prototyping and Accelerator PhysicsPolarized BeamsPreparation for Storage Ring EDM

High-Energy Storage Ring HESRBeam Dynamics Simulations Design Work

SummaryOutlook

March 15 2013 | A Lehrach COSY amp HESR 3

Ions (pol amp unpol) p and d

Momentum 300600 to 3700 MeVc for pd respectively

Circumference of the ring 184 m

Electron Cooling up to 550 MeVc

Stochastic Cooling above 15 GeVc

Cooler Synchrotron COSY

2MV Electron Cooler

Siberian Snake

Major Upgrades

March 15 2013 | A Lehrach COSY amp HESR 4

Prototyping and Accelerator Physics

WASA

2 MeV e-Cooler (201213)

Barrier Bucket Cavity

Stochastic Cooling

Residual Gas Profile Monitor

Pellet Target

Siberian Snake (2013)

RF Solenoid

RF Dipole

March 15 2013 | A Lehrach COSY amp HESR 5

Magnetized High-Energy Electron Cooling Development Steps

COSY from 01 MeV

to 2 MeV

HESR 45 MeV

Upgradable to 8 MeV

bull Technological challengebull Benchmarking of cooling forces Installation at COSY started

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 3: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 3

Ions (pol amp unpol) p and d

Momentum 300600 to 3700 MeVc for pd respectively

Circumference of the ring 184 m

Electron Cooling up to 550 MeVc

Stochastic Cooling above 15 GeVc

Cooler Synchrotron COSY

2MV Electron Cooler

Siberian Snake

Major Upgrades

March 15 2013 | A Lehrach COSY amp HESR 4

Prototyping and Accelerator Physics

WASA

2 MeV e-Cooler (201213)

Barrier Bucket Cavity

Stochastic Cooling

Residual Gas Profile Monitor

Pellet Target

Siberian Snake (2013)

RF Solenoid

RF Dipole

March 15 2013 | A Lehrach COSY amp HESR 5

Magnetized High-Energy Electron Cooling Development Steps

COSY from 01 MeV

to 2 MeV

HESR 45 MeV

Upgradable to 8 MeV

bull Technological challengebull Benchmarking of cooling forces Installation at COSY started

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 4: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 4

Prototyping and Accelerator Physics

WASA

2 MeV e-Cooler (201213)

Barrier Bucket Cavity

Stochastic Cooling

Residual Gas Profile Monitor

Pellet Target

Siberian Snake (2013)

RF Solenoid

RF Dipole

March 15 2013 | A Lehrach COSY amp HESR 5

Magnetized High-Energy Electron Cooling Development Steps

COSY from 01 MeV

to 2 MeV

HESR 45 MeV

Upgradable to 8 MeV

bull Technological challengebull Benchmarking of cooling forces Installation at COSY started

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 5: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 5

Magnetized High-Energy Electron Cooling Development Steps

COSY from 01 MeV

to 2 MeV

HESR 45 MeV

Upgradable to 8 MeV

bull Technological challengebull Benchmarking of cooling forces Installation at COSY started

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 6: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 6

Example Beam Cooling with WASA Pellet Target

a) Injected beamb) Beam heated by targetc) + stochastic coolingd) + barrier bucket

0

1 10-7

2 10-7

3 10-7

4 10-7

5 10-7

6 10-7

15368 15369 1537 15371 15372 15373

Pa

rtic

le D

en

sity

(a

rb

units

)

f [GHz]

a) b)

d)

c)-600

-500

-400

-300

-200

-100

0

100

200

00 05 10 15 20

Time micros

BB

Vol

tage

V

-01

-005

0

005

01

015

02

025

03

Pha

sem

onit

or a

u

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 7: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 7

Polarized Beams at COSY

Intrinsic resonances tune jumpsImperfection resonances vertical orbit excitation

P gt 75 at 33 GeVc

G=4

G=5

G=6

7-Qy

0+Qy

8-Qy

1+Qy

9-Qy

2+Qy

10-Qy

Polarization during accelerationTune-Jump

bull Length 06 mbull Max current plusmn3100 A bull Max gradient 045 Tm bull Rise time 10 μs

Qy

Qy

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 8: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 8

Physics at COSY using longitudinally polarized beams Snake Concept

bull Should allow for flexible use at two locations

bull Fast ramping lt30s

bull Integral long field gt47 T m

bull Cryogen-free system

Bdl (Tm)

COSY Injection Energy 45 MeV 1103

pnrarrppsπ- at 353 MeV 3329

PAX at COSY 140 MeV 1994

PAX at AD 500 MeV 4090

Tmax at COSY 288 GeV 13887

ANKE

PAXPAX

ANKE

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 9: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 9

Siberian Snake at COSY

Superconducting 47 Tm solenoid is ordered Overall length 1 mRamping time 30 s

Spin dynamics and longitudinal polarized beams for experiments

Installation at COSYin summer 2013

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 10: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 10

Polarization of a Stored Beam by Spin-FilteringExperiment with COSY schematic

Spin-flipper

bull Stacking injection at 45 MeVbull Electron cooling onbull Acceleration to 493 MeV bull Start of spin-filter cycle at PAX 16 000 s bull PAX ABS offbull ANKE cluster target on bull Polarization measurement (2 500 s) at ANKE bull Spin flips with RF Solenoid bull New cycle different direction of target polarization

COSY Cycle Results

COSY Cycle schematic

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 11: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 11

Facility for Antiproton and Ion Research

p-Linac

HESR

SIS18SIS100

CRRESR

AntiprotonenProduction Target

Linac 70MeV protons 70mA le4Hz

SIS 18 5middot1012 protonscycle

SIS 100 4middot1013 protonscycle

29GeV protons

bunch compressed to 50nsec

Production target 2middot108 antiprotonscycle

3 momentum spread

CR bunch rotation and stochastic cooling at 38GeVc 10s

RESR accumulation at 38GeVc

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 12: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 12

HESR with PANDA and Electron Cooler

Juumllich is the leading lab of the HESR ConsortiumGermany (Juumllich (90) GSI Mainz) Slovenia and Romania

HESR COSY

575 m Circumference 184 m

15 ndash 15 GeVc Momentum 03 ndash 37 GeVc

up to 9 GeVc Electron Cooling up to 05 GeVc

Full range Stochastic Cooling 15 ndash 37 GeVc

HESR

COSY

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 13: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 13

HESR design driven by the requirements of PANDA

bull Antiprotons with 15 GeVc le p le 15 GeVc

bull High luminosity 2middot1032 cm-2s-1

- Thick targets 4middot1015 cm-2

bull High momentum resolution Δpp le 4middot10-5

- Phase space cooling

bull Long beam life time gt30 min

Criteria for the Layout of the HESR

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 14: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 14

Beam Dynamics Simulations

Beam injection and accumulation stacking injection concept(Simulation codes by T Katayama and H Stockhorst)

Dynamic aperture calculations and closed-orbit correction steering and multipole correction concept

(MAD-X SIMBAD based on ORBIT)

Beam losses at internal targets luminosity estimations particle losses (hadronic single Coulomb energy straggling single intra-beam)

(Analytic formulas)

Beam-cooling beam-target interaction intra-beam scattering beam equilibria(BetaCool MOCAC PTARGET Juumllich stochastic cooling code)

Ring impedance RF cavities kicker etc(SIMBAD based on ORBIT)

Trapped ions discontinuity of vacuum chamber clearing electrodes (Analytic codes)

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 15: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 15

Injection and Accumulation

bull Barrier Bucket and stochastic cooling will be used to accumulate antiprotons in HESR

bull Proof of principle measurement

Beam accumulation in HESR required for modularized FAIR start version

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 16: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 16

Future HESR Upgrade Options

Spin FilteringAntiproton Polarizer (APR)Asymmetric Collider

15 GeVc ndash 35 GeVc

Polarized Proton-Antiprotons Collider

Linac

eSynchrotron

eRing (33GeV)

HESR(15GeVc

= 16)

SIS18

new 70MeV linac

P tune jump Quadspartial snake

eCool 82MVfull snake

spin rotatorsaround IR

e

Polarized Electron-Nucleon Collider ENC

Accelerator Working Group

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 17: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 17

Summary Outlook

Prototyping and Accelerator Physics at COSYDetector tests for PANDA and CBM

Preparation for HESRHigh-Energy Electron Cooling and High-Bandwidth Stochastic CoolingInternal Targets RF Manipulation techniques

COSY is essential to develop and establish these techniques for HESR

Polarized beams at COSY

Polarizing stored Antiprotons by spin-filtering

RampD work for storage ring EDM searches of charged particles

First direct EDM measurement ideal EDM injector COSY is essential to perform RampD work for PAX and EDM

HESR project status

New HESR beam accumulation scheme due to modularized start version of FAIR

Design work of the HESR is finalized and the construction phase started

Main HESR components are ordered (dipoles quadrupoles )

corresponds to roughly 30 of total project costs

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 18: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 18

Siberian Snake

bull Full snake χ = 180deg νsp = frac12

Spin tune independent of beam energy

No spin resonances except snake resonances

νsp = frac12 = k plusmn l∙Qx plusmn m∙Qy

bull Partial snake χ lt 180deg νsp ne kKeeps the spin tune away from integerNo imperfection resonances

χ spin- and particle motionspin rotation

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 19: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 19

Energy Range 0025 2 MeV High-Voltage Stability lt 10-4 Electron Current 01 3 A

BINP Novosibirsk

Installation at COSY started

New 2 MV Electron Cooler at COSY

Electron Beam Diameter 10 30 mm Cooling section length 2694 m Magnetic field (cooling section) 05 2 kG

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 20: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 20

Stochastic Cooling System

bull Cooling Bandwidth (2 ndash 4) GHzbull Pickup and Kicker Structures Circular Slot Type Couplers)bull Aperture 90 mmbull Length per cell 125 mmbull 88 pickup cells bull Total length 1100 mmbull Zero dispersion at pickup and kickerbull Noise temperature pickup plus

equivalent amplifier noise 40 K

bull Momentum range 15 GeVc to 15 GeVcbull Above 38 GeVc Filter Coolingbull Below 38 GeVc TOF Cooling R Stassen FZJ

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 21: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 21

Spin Manipulation in COSY

RF SolenoidWater-cooled copper coil in a copper box length 06 mbull Frequency range roughly 06 to 16 MHz bull Integrated field intBrms dl ~ 1 Tmm

RF Dipole8-turn water-cooled copper coil in a ferrite box length 06 mbull Frequency range roughly 012 to 16 MHz bull Integrated field intBrms dl ~ 01 Tmm

Jump QuadrupoleAir coil length 06 mbull Current plusmn3100 A gradient 045 Tmbull Rise time 10 μs fall time 10 to 40 ms

Siberian Snake (ordered)Fast-Ramping Superconducting Solenoid length 098mbull Ramp time to maximum 30s bull Integrated field intBrms dl = 047 Tm

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 22: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 22

COSY Upgrade

1 Improved closed-orbit control system for orbit correction in the micrometer range

Increasing the stability of correction-dipole power supplies

Increase number of correction dipoles and beam-position monitors (BPMs)

Improve BPM accuracy limited by electronic offset and amplifier linearity

Systematic errors of the orbit measurement (eg temperature drift)

2 Alignment of Magnets and BPMs

More precise alignment of the quadrupole and sextupole magnets

BPMs have to be aligned with respect to the magnetic axis of these magnets

3 Beam oscillations

Excited by vibrations of magnetic fields induced by the jitter of power supplies

Coherent beam oscillation

4 Longitudinal and transverse wake fields

Ring impedances

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 23: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 23

HESR Layout

Main machine parameterMomentum range 15 to 15 GeVcCircumference 574 m Magnetic bending power 50 TmDipole ramp 25 mTsAcceleration rate 02 (GeVc)s

Geometrical acceptances for βt = 2 m horizontal 49 mm mrad vertical 57 mm mradMomentum acceptance plusmn 25times10-3

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 24: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 24

DipolesNumber 44Magnetic length 42 mDeflection angle 8182degMax B-field 17 TMin B-field 017 TAperture 100 mm

QuadrupolesNumber 84Magnetic length 06 mIron length (arc) 058 mMax gradient 20 TmAperture 100 mm

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 25: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 25

Luminosity Considerations (Full FAIR version)

Relative Loss Rate

Scattering Process 15 GeVc 9 GeVc 15 GeVc

Hadronic Interaction 18middot10-4 12middot10-4 11middot10-4

Single Coulomb 29middot10-4 68middot10-6 24middot10-6

Energy Straggling 13middot10-4 41middot10-5 28middot10-5

Touschek (Single IBS) 49middot10-5 23middot10-7 49middot10-8

Total relatve loss rate 65middot10-4 17middot10-4 14middot10-4

1e Beam lifetime s ~ 1540 ~ 6000 ~ 7100

11 )( sloss

Antiproton production rate 2middot107 s

Pellet target nt=4middot1015 cm-2

Transverse beam emittance 1mmmiddotmradLongitudinal ring acceptance Δpp = plusmn10-3

Betatron amplitude at PANDA 1m Circulating antiprotons 1011

Cycle averaged luminosity- Momentum 15 GeVc 03 ndash 07 middot 1032 cm-2s-1

- Momentum 15 GeVc 15 ndash 16 middot 1032 cm-2s-1(Production rate 1 ndash 2 middot 107 s)

A Lehrach et al NIMA 561 (2006)

O Boine-Frankenheim et al 560 (2006)

F Hinterberger Juumll-4206 (2006)

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 26: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 26

Electron cooled beams

HR mode 79middot10-6 (15 GeVc) to 27middot10-5 (89 GeVc) and 1middot10-4 (15 GeVc) HL mode lt10-4

Stochastic cooled beams

HR mode 51middot10-5 (38 GeVc) 54middot10-5 (89 GeVc) and 39middot10-5 (15 GeVc) HL mode ~10-4

Transverse stochastic cooling can be adjusted independently

Cooled Beam Equilibria

D Reistad et al Proc of the Workshop on Beam Cooling and Related Topics COOL2007 MOA2C05 44 (2007)O Boine-Frankenheim et al A 560 (2006) 245ndash255

Beam cooling beam-target interactions intra-beam scattering

H Stockhorst et al Proc of the European Accelerator Conference EPAC2008 THPP055 3491 (2008)

rms relative momentum spread pp

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 27: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 27

10E-10

10E-09

10E-08

10E-07

10E-06

10E-05

0 100 200 300 400 500 600

pre

ssu

re

mb

ar

s m

Expected Pressure Distribution and Neutralization Factor

10E-04

10E-03

10E-02

10E-01

10E+00

0 100 200 300 400 500 600

neu

tral

izat

ion

fac

tor

s m

Average distance of clearing electrodes of 10 m with a clearing voltage of 200 V

The mean time for residual gas ions in the antiproton beam Tc

(clearing time) in relation to the time of ion production Tp

c

p

T

T

Emittance Growth Incoherent Tune Shift Beam Instabilities

PANDA IP

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 28: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 28

Coherent Beam Instabilities

F Hinterberger Ion Trapping in the High-Energy Storage Ring HESR JUumlL-Report 4343 (2011)

Resonance frequencies

Bounce frequencies of transverse H+2 ion oscillations represented as tune numbers qxy

(8 minus Qx) = 04005 and (8 minus Qy) = 03784 (9 minus Qx) = 14005 and (9 minus Qy) = 13784

Estimates for beam instabilities

Beam momentump = 15 GeVc

horizontal vertical

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD

Page 29: Mitglied der Helmholtz-Gemeinschaft Accelerators COSY and HESR March 15, 2013 | Andreas Lehrach

March 15 2013 | A Lehrach COSY amp HESR 29

Dynamic Aperture (Optimized)

Dynamic Aperture16 mm mrad

Orb

it d

iffu

sio

n c

oef

fici

ent

D

Orbit diffusion coefficient (eg after 1000 and 2000 turns)

2)1()2(2)1()2(10log yyxx QQQQD