34
27.09.2019 RTI Vorlesung 2

RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

27.09.2019

RTI Vorlesung 2

Page 2: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Quelle: www.dreager.ch

Page 3: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Jbf*L

t,,

-a-IA5Jf+75ut7

t

JT6-rllo.L

{

U {ttra

I

?L

tll

5

-t)5

-EL\--lF-

\).Ja

\)L+aJ\,

"rE----

tl

Page 4: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Signals and Systems

4

inputs(cause)

outputs(effect)

system: operator on functions

signals: functions of time

Page 5: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Systems: Key Assumption

5

1 1 2 2

Page 6: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Systems: Key Assumption

6

?

1 1 2 2=

!

Page 7: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Standard Control System

7

Page 8: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Main Tasks of Control Systems

8

Disturbance Rejection

Stabilization

Reference Tracking

Page 9: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Water Clock of KtesibiosOldest known engineered feedback control system

9

Page 10: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

The Fly-Ball “Governor”

10

Page 11: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

20.09. Lektion 1 – Einführung

27.09. Lektion 2 – Modellbildung4.10. Lektion 3 – Systemdarstellung, Normierung, Linearisierung

11.10. Lektion 4 – Analyse I, allg. Lösung, Systeme erster Ordnung, Stabilität18.10. Lektion 5 – Analyse II, Zustandsraum, Steuerbarkeit/Beobachtbarkeit

25.10. Lektion 6 – Laplace I, Übertragungsfunktionen1.11. Lektion 7 – Laplace II, Lösung, Pole/Nullstellen, BIBO-Stabilität8.11. Lektion 8 – Frequenzgänge (RH hält VL)

15.11. Lektion 9 – Systemidentifikation, Modellunsicherheiten 22.11. Lektion 10 – Analyse geschlossener Regelkreise 29.11. Lektion 11 – Randbedingungen

6.12. Lektion 12 – Spezifikationen geregelter Systeme13.12. Lektion 13 – Reglerentwurf I, PID (RH hält VL)20.12. Lektion 14 – Reglerentwurf II, „loop shaping“

Modellierung

Systemanalyse im Zeitbereich

Systemanalyse im Frequenzbereich

Reglerauslegung

11

Page 12: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Model

13

real system:

model of :

is a mathematically tractable representations of

In RT I+II: • ordinary differential equations (ODE, today) or• transfer functions obtained by Laplace transformation (later)

expressed by

Page 13: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Purpose of the Model

14

Find a (mathematical) model of the plant P, which predictshow the true plant’s output y reacts (approximately) to the input u.

This (mathematical) model is later used to determine the limits of performance of any closed-loop system and then to synthesize a suitable controller C.

Page 14: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

General Modeling Guidelines1. Identify the system boundaries.

2. Identify the relevant reservoirs and level variables.

3. Formulate the conservation laws for the relevant reservoirs

4. Formulate the algebraic relations for the flows between the

reservoirs.

5. Identify the system parameters using experiments.

6. Validate the model with experiments other than those used

for the identification.

dd" (reservoir content) = / in0lows − /out0lows.

15

Page 15: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Conservation Laws

16

dd" (reservoir content) =/in0lows − /out0lows.

t

t

t

content

in0low

out0low

Page 16: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

18

!"($)

!&($)

'"(… )

')(… )

*(… )

+($)

,($)!)($)

'&(… )

'-(… )

,($)+($)

Reservoir (energy, mass, charge, …)

Level (state) variable

Flow (power, mass flow, current, …)

!.($)

Page 17: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Relevant Dynamics

19

Page 18: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Water Tank

Assumptions• The water temperature is assumed to change very slowly.• The actuator (inlet valve) and the sensor are very fast.

20

Page 19: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Water Tank

21

Page 20: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Bernoulli

23

Along a streamline, 12 #$

% + ' = const.holds for incompressible and frictionless flows.

Page 21: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Numerical Simulation

25

dd" ℎ(") =

1() * " − , " ( 2.ℎ "

• F = 100 m2

• ρ = 1000 kg/m2

• g = 9.81 m/s2

• A = 0.1 -> 0.12 m2

• v = 600 kg/s

Page 22: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

2626

speed v(t)

speed v(t)

Example: Cruise Control

Page 23: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Cruise Control

27

Page 24: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

28

Example: Cruise Control

Page 25: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

29

Example: Cruise Control

Page 26: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

31

Example: Cruise Control

Page 27: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Stirred Reactor

32

Page 28: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

33

Example: Stirred Reactor

Page 29: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Loudspeaker

35

Page 30: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

36

Example: Loudspeaker

Page 31: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

37

Example: Loudspeaker

Page 32: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

38

! " # $ = &($)

)ind(t) = κ " //0 p(t)

Example: Loudspeaker

Page 33: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

39

ResultMathematical models of the plant P to be controlled can often be expressed as a set of usually nonlinear Ordinary Differential Equations (ODE).

Pv w z

… but there is more …

Page 34: RTI Vorlesung 2 · 2019-09-20 · ut7 t JT 6-r llo.L {U {tt ra I? L tll 5-t) 5-E L \--l F-\).J a \) L + a J \, "rE----tl. Signals and Systems 4 inputs (cause) outputs (effect) system:

Example: Conveyor Belt

40