35
1/35 Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006 Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Altenbergerstraße 56 A-4040 Linz, Austria [email protected]

Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

  • Upload
    lonna

  • View
    35

  • Download
    2

Embed Size (px)

DESCRIPTION

Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006. Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Altenbergerstraße 56 A-4040 Linz, Austria [email protected]. Last Week. - PowerPoint PPT Presentation

Citation preview

Page 1: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

1/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Signal- und Bildverarbeitung, 323.014

Image Analysis and Processing

Arjan Kuijper

14.12.2006

Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences Altenbergerstraße 56A-4040 Linz, Austria

[email protected]

Page 2: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

2/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Last Week

• Normal motion flow is equivalent to the mathematical morphological erosion or dilation with a ball. – The dilation and erosion operators are shown to be

convolution operators with boolean operations on the operands.

– Morphology with a quadratic structuring element links to Gaussian scale space

– There exists a “pseudo-linear” equation linking them.

• The Mumford-Shah functional is designed to generate edges while denoising– Not unique– Complicated

• Active contours / snakes are defined as an energy minimizing splines that are supposed to converge to edges.

Page 3: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

3/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Today

• Deep structure in Gaussian Scale Space– Critical points– Movement of critical points– Catastrophe points (singularity theory)

• Annihilations• Creations

– Scale space critical points– Iso-manifolds– Hierarchy– Topological segmentation

Page 4: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

4/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Gaussian scale space

Famous quote: “Gaussian scale space doesn’t work because it blurs everything away”

Page 5: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

5/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Deep structure

The challenge is to understand the imagereally on all the levels simultaneously,

and not as an unrelated set of derived imagesat different levels of blurring.

Jan Koenderink (1984)

Page 6: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

6/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

What to look for

• Gaussian scale space is intensity-based.

• Consider an n - dimensional image, i.e. a (n+1) dimensional Gaussian scale space (Gss) image.

• Investigated intensity-related items.

• “Things” with specialties w.r.t. intensity.– Equal intensities – isophotes, iso-intensity manifolds: L=c

• n - dimensional iso-manifolds in the Gss image• (n-1) - dimensional manifolds in the image.

– Critical intensities – maxima, minima, saddle points: L=0• 0 – dimensional points in the Gss image.

– Critical intensities – maxima, minima, saddle points, .....:• 0 – dimensional critical points in the blurred image,• 1 – dimensional critical curves in the Gss image.

Page 7: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

7/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Example image

• Consider a simple 2D image.• In this image, and its blurred

versions we have • Critical points L=0:

– Extrema (green)• Minimum• Maxima

– Saddles (Red)• Isophotes L=0:

– 1-d curves, only intersecting in saddle points

Page 8: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

8/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

What happens with these structures?

• Causality: no creation of new level lines

• Outer scale: flat kernel– All level lines disappear– One extremum remains– Extrema and saddles

(dis-)appear pair-wise

• View critical points in scale space: the critical curves.

x

yt

Page 9: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

9/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Critical points

• Let L(x,y) describe the image landscape.

• At critical points, TL = (∂xL,∂yL) = (Lx,Ly) = (0,0).

• To determine the type, consider de Hessian matrix

• H = TL(x,y) = ((Lxx , Lxy), (Lxy , Lyy)). – Maximum: H has two negative eigenvalues– Minimum: H has two positive eigenvalues– Saddle: H has a positive and a negative eigenvalue.

Page 10: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

10/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

When things disappear

• Generically, det [H] = Lxx Lyy - Lxy Lxy <> = 0, there is no eigenvalue equal to 0.This yields an over-determined system.

• In scale space there is an extra parameter, so an extra possibility: det [H] = 0.

• So, what happens if det [H] = 0? -> Consider the scale space image

Page 11: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

11/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Diffusion equation

• We know that Lt = Lxx + Lyy So we can construct polynomials (jets) in scale space.

• Let’s make a Hessian with zero determinant:

• H=((6x,0),(0,2))

• Thus Lxx = 6x, Lyy = 2, Lxy = 0And Lt = 6x +2

• Thus L = x3 + 6xt + y2 + 2t

• Consider the critical curves

Page 12: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

12/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Critical Curves

• L = x3 + 6xt + y2 + 2t

• Lx = 3x2 + 6t, Ly = 2y

• For (x,y;t) we have – A minimum at (x,0;-x2/2), or (√-2t,0;t)– A saddle at (-x,0;- x2/2), or (-√-2t,0;t)– A catastrophe point at (0,0;0), an annihilation.

• What about the speed at such a catastrophe?

Page 13: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

13/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Speed of critical points

• Higher order derivatives: -L = H x + L t• x = -H-1(L + L t) • Obviously goes wrong at catastrophe points, since then det(H)=0. • The velocity becomes infinite: ∂t (√-2t,0;t)= (-1/√-2t,0;1)

-4 -2 2 4

-2

-1.5

-1

-0.5

0.5

1

Page 14: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

14/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Speed of critical points

• Reparametrize t = det(H) x = -H-1(L + L det(H) )• Perfectly defined at catastrophe points • The velocity becomes 0: -H-1(L det(H) v

-3 -2 -1 1 2

-4

-3

-2

-1

Page 15: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

15/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

To detect catastrophes

• Do the same trick for the determinant:

• -L = H x + L t-det(H) = det(H) x + det(H) t

• Set M = ((H, L), (det(H), det(H))

• Then if at catastrophes– det[M] < 0 : annihilations– det[M] > 0 : creations

Page 16: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

16/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Creations

• Obviously, critical points can also be created.

• This does not violate the causality principle.

• That only excluded new level lines to be created.

• At creations level lines split, think of a camel with two humps.

Page 17: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

17/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

To create a creation

• Let’s again make a Hessian with zero determinant:

• H=((6x,0),(0,2+f(x)))

• With f(0)=0.

• Thus Lxx = 6x, Lyy = 2 + f(x), Lxy = 0

• To obtain a path (√2t,0;t) require Lt = -6x +2, so f(x) = -6x.

• Thus L = x3 - 6xt + y2 + 2t -6 x y2

Page 18: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

18/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

How does it look like?

-0.2 -0.1 0 0.1 0.2-0.2

-0.1

0

0.1

0.2

Page 19: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

19/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

On creations

• For creations the y-direction is needed:

• Creations only occur if D>1.

• Creations can be understood when they are regarded as perturbations of non-generic catastrophes.

• At non-generic catastrophes the Hessian is “more” degenerated: there are more zero eigenvalues and/or they are “more” zero.

Page 20: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

20/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Non-generic events

• …non-generic catastrophes are also of interest.

Page 21: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

21/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Critical points in scale space

L = 0L = 0

– Scale space critical points are always spatial saddle points.

– Scale space critical points are always saddle points.– Causality: no new level lines implies no extrema in scale

space.– Visualize the intensity of the critical curves as a function

of scale:• the scale space saddles are the local extrema of these

curves. • Extrema (minima/maxima) branches in/de-crease

monotonically.

Page 22: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

22/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Example

Page 23: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

23/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Scale space saddles

• At a scale space saddle two manifolds intersect

Page 24: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

24/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Manifolds in scale space

• Investigate structure through saddles.

Page 25: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

25/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Void scale space saddles

-1.5

-1

-0.5

0

-1.5

-1

-0.5

0

00.20.4

0.6

0.8

-1.5

-1

-0.5

0

Page 26: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

26/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Hierarchical Algorithm

• Initializing• Build a scale space. • Find the critical points at each scale

level.• Construct the critical branches.• Find the catastrophe points.• Construct and label the critical curves,

including the one remaining extremum.

• Find the scale space saddles.

• Determining the manifolds• Find for each annihilations extremum

its critical iso-intensity manifold.• Construct the dual manifolds.

Page 27: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

27/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Hierarchical Algorithm

• Labeling• Assign to each extremum the dual

manifolds to which it belongs, sorted on intensity.

• Build a tree:• Start with the remaining extremum at

the coarsest scale as root.• Trace to finer scale until at some value

it is labeled to a dual manifold.• Split into two branches, on the existing

extremum, one the extremum having the critical manifold.

• Continue for all branches / extrema until all extrema are added to the tree.

D C

SSS

P

Page 28: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

28/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Consider the blobs

Page 29: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

29/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Results

Page 30: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

30/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Results

Page 31: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

31/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

The tree

D e5D e3D e1D e2 C e2

C e1C e3

C e5

e4 e2 e1 e3 e5

R demo

Page 32: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

32/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

A real example

Page 33: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

33/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Find critical curves

Pairs e6-s1, e1-s3, e3-s4, e2-s2

Page 34: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

34/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Noise addition

Page 35: Signal- und Bildverarbeitung, 323.014 Image Analysis and Processing Arjan Kuijper 14.12.2006

35/35Johann Radon Institute for Computational and Applied Mathematics: www.ricam.oeaw.ac.at

Conclusions

• A scale space approach justifies continuous calculations on discrete grids.

• Structure of the image is hidden in the deep structure of its scale space image.

• Essential keywords are– Critical curves– Singularities– Deep structure– Iso-manifolds