24
ճస ܈SO(3) 91 5.7 ٿ໘ௐ 5.7.1 يಓӡಈͷද ݱɼҎͷΑʹճసͷੜݩͷيಓӡಈԋͱ 1 L k ͷΛ Δɽ܈ͷදݱͱɼੜݩΛ k k = -i kij x i j (5.119) ΛͷવͰΔɽ k SO(3) ͷϦʔͷΛຬͷͰɼදߦݱΛٻΊͱಉʹɼঢԋ ± = 1 ± i 2 = -i(yz - z y ) ± (z x - xz ) = (x - iy)z ± z (x ± iy )= X ± z ± 2z (5.120) ͱɼ z z = -i(xy - yx )= 1 2 [(x + iy)(x - iy ) - (x - iy)(x + iy )] (5.121) ΛఆɽͰɼ৽X ± = x ± iy , ± = 1 2 (x iy ) , [+ ,X + ]=[- ,X - ]=1 (5.122) ΛಋೖɽX * + = X - . ͷඪʹมมΔͱɼΕΕͷԋ ± = (x ± z - 2z ) , z = X + + - X - - (5.123) ͱॻΔɽ Ұൠʹɼطݱɼhighest weight state ΒΔͱͰΔɽͰ + Ψ ll (x, y, z )=0 (5.124) ͱͳΔΑͳΛٻΊΔͱɼa l Λఆͱ Ψ ll = a l X l + = a l (x + iy) l (5.125) k - =(X - z - 2z + ) k (5.126) Ψ lm = a l (l + m)! (2l)!(l - m)! l-m - X l + (5.127)

SOwatamura/kougi/GP2012_5.pdf回転群SO(3) 71 5.7 球面調和関数 5.7.1 軌道角運動量の表現 さて,以上のように回転の生成元は量子力学の軌道角運動量演算子と1

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • SO(3) 91

    5.7

    5.7.1

    1!Lk

    !k

    !k = −i"kijxi∂j (5.119)

    !k SO(3)

    !± = !1 ± i!2 = −i(y∂z − z∂y)± (z∂x − x∂z)= (∓x− iy)∂z ± z(∂x ± i∂y) = ∓X±∂z ± 2z∂∓ (5.120)

    !z

    !z = −i(x∂y − y∂x) =1

    2[(x+ iy)(∂x − i∂y)− (x− iy)(∂x + i∂y)] (5.121)

    X± = x± iy , ∂± =1

    2(∂x ∓ i∂y) , [∂+, X+] = [∂−, X−] = 1 (5.122)

    X∗+ = X−.

    !± = ∓(x±∂z − 2z∂∓) , !z = X+∂+ −X−∂− (5.123)

    highest weight state

    !+Ψll(x, y, z) = 0 (5.124)

    al

    Ψll = alXl+ = al(x+ iy)

    l (5.125)

    !k− = (X−∂z − 2z∂+)k (5.126)

    Ψlm = al

    √(l +m)!

    (2l)!(l −m)!!l−m− X

    l+ (5.127)

  • SO(3) 92

    5.7.2

    H =1

    2m$p2 + V (r) =

    −!22m

    ∇2 + V (r) (5.128)

    ∆ = ∇2 = 1r2

    ∂r

    (r2∂

    ∂r

    )+

    1

    r2(−$!2) (5.129)

    − $!2 = 1sin θ

    ∂θ

    (sin θ

    ∂θ

    )+

    ∂2

    ∂φ2(5.130)

    χ(r)ψ(θ,φ)

    $!2ψ = αψ (5.131)

    !1 = i(sinφ∂

    ∂θ+ cot θ cosφ

    ∂φ)

    !2 = i(− cosφ∂

    ∂θ+ cot θ sinφ

    ∂φ)

    !3 = −i∂

    ∂φ(5.132)

    $!2 = −( 1sin θ

    ∂θsin θ

    ∂θ+

    1

    sin2 θ

    ∂2

    ∂φ2) (5.133)

    !+ = eiφ(

    ∂θ+ i cot θ

    ∂φ) (5.134)

    !− = e−iφ(− ∂

    ∂θ+ i cot θ

    ∂φ) (5.135)

  • SO(3) 93

    5.7.3

    !3 !2 19

    〈θ,φ|Ĵi|l,m〉 = !i〈θ,φ|l,m〉 (5.136)

    Ĵi ! θ,φ|jm〉 Ylm(θ,φ) = 〈θ,φ|l,m〉

    〈l,m′|Ĵi|l,m〉 =∫

    dΩ〈l,m′|θ,φ〉〈θ,φ|Ĵi|l,m〉

    =

    ∫dΩ〈l,m′|θ,φ〉!i〈θ,φ|l,m〉

    =

    ∫dΩYlm′(θφ)!iYlm(θφ) (5.137)

    〈l,m′|Ĵi|l,m〉 =∫

    dΩYlm′(θφ)!iYlm(θφ) (5.138)

    ∫dΩ ∫ π

    0

    ∫ 2π

    0

    sin θdθdφ (5.139)

    !i

    !iYlm = 〈θφ|Ĵi|l,m〉 =l∑

    m′=−l

    Ylm′〈lm′|Ĵi|lm〉 (5.140)

    5.7.4

    Ylm !3

    !3Ylm = mYlm (5.141)

    19

    1. l

    2. m

  • SO(3) 94

    Ylm(θ,φ) = ψlm(θ)eimφ (5.142)

    highest weight state

    !3Yll = lYll ⇒ Yll(θ,φ) = ψll(θ)eilφ (5.143)

    Y m llowest weight state Yl−l !+

    1. lowest weight state lowest weight state φ

    Yl−l = ψl−l(θ)e−ilφ (5.144)

    lowest weight state

    !−Yl−l = ei(−l−1)φ(− ∂

    ∂θ+ l cot θ)ψl−l(θ) = 0 (5.145)

    a

    ψl−l(θ) = a(sin θ)l (5.146)

    !+

    2.

    !+ψlmeimφ =

    √(l −m)(l +m+ 1)ψlm+1(θ)ei(m+1)φ (5.147)

    ψl−l k ψl,k−l

    ψlm = a(−1)l+m√

    (l −m)!(2l)!(l +m)!

    sinm θ(d

    d cos θ)l+m sin2l θ (5.148)

    m = −l m = k

    !+ψlkeikφ = eiφ(

    ∂θ+ i cot θ

    ∂φ)ψlke

    ikφ

    = ei(k+1)φ(∂

    ∂θ− k cot θ)ψlk

    = ei(k+1)φ sink θ∂

    ∂θ(

    1

    sink θψlk) (5.149)

  • SO(3) 95

    ψlk+1 =1√

    (l − k)(l + k + 1)sink θ

    ∂θ(

    1

    sink θψlk)

    =1√

    (l + k)(l − k + 1)sink θ

    ∂θ(

    1

    sink θa(−1)l+k

    √(l − k)!

    (2l)!(l + k)!sink θ(

    d

    d cos θ)l+k sin2l θ)

    = sink+1 θ(a(−1)l+k+1√

    (l − k − 1)!(2l)!(l + k + 1)!

    (d

    d cos θ)l+k+1 sin2l θ) (5.150)

    m = k + 1

    3. a dΩ = sin θdθdφ

    〈l,−l|l,−l〉 =∫ 2π

    0

    ∫ π

    0

    dθ sin θψ∗l,−lψl,−l = 2π|a|2∫ π

    0

    sin2l+1 θ = 2π|a|2(sll!)2 2sl + 1

    = 1

    (5.151)

    a =1

    2ll!

    √(2l + 1)!

    4π(5.152)

    ! "Ylm(θ,φ) =

    (−1)l+m

    2ll!

    √2l + 1

    √(l −m)!(l +m)!

    sinm θ(d

    d cos θ)l+m sin2l θeimφ (5.153)

    # $5.8 SU(2)

    5.8.1 dynamical symmetry

    SU(2)

    H =∑

    ρ

    (1

    2mp2i +

    1

    2mω2x2i

    )(5.154)

    O(2)

  • SO(3) 96

    m = ω = 1

    aρ =1√2!

    (xρ + ipρ) , a+ρ =

    1√2!

    (xρ − ipρ) (5.155)

    [(x+ ip), (x− ip)] = 2i[p, x] = 2! ⇒ [aρ, a+σ ] = δρσ (5.156)

    H = !∑

    (a+ρ aρ +1

    2) = !(N + 1) (5.157)

    N

    N = N1 +N2 , Nρ = a†ρaρ (5.158)

    (a1a2

    )→

    (a′1a′2

    )=

    (α βγ δ

    )(a1a2

    )(5.159)

    ,U =

    (α βγ δ

    )U †U = 1

    dynamicalsymmetry( )

    20

    1. a′ρ′ = Uρ′ρaρ

    [a′ρ′ , a′†σ′ ] = Uρ′ρU

    ∗σ′σ[aρ, a

    †σ] = Uρ′ρU

    ∗σ′σδρσ (5.160)

    UU † = 1 (5.161)

    U

    2. : N

    N =(a+1 , a

    +2

    )( a1a2

    )(5.162)

    (a1a2

    )

    U(2)20

  • SO(3) 97

    5.8.2

    U(2)

    H|ψ〉 = E|ψ〉 (5.163)

    |0〉ρ

    aρ|0〉ρ = 0 , |p〉ρ =1√p!(a+ρ )

    p|0〉 (5.164)

    |p〉ρ

    〈p|q〉 = δpq , a†ρ|p〉ρ =√

    p+ 1|p+ 1〉 , aρ|p〉 =√p|p− 1〉ρ (5.165)

    |p〉1|q〉2 =1√p!q!

    (a+1 )p(a+2 )

    q|0〉1|0〉2 (5.166)

    U(2) = SU(2)×U(1)

    1. SU(2)a1, a2

    [Nρ, a+ρ ] = a

    +ρ , [Nρ, aρ] = −aρ (5.167)

    J i =1

    2σiaba

    †aab (5.168)

    σi

    J1 =1

    2(a†1a2 + a

    †2a1) , J2 =

    −i2(a†1a2 − a

    †2a1) , J3 =

    1

    2(N1 −N2) (5.169)

    J± = J1± iJ2J+ = a

    †1a2 , J− = a

    †2a1 (5.170)

    [J+.J−] = [a†1a2, a

    †2a1] = a

    †1[a2, a

    †2]a1 + a

    †2[a

    †1, a1]a2 = N1 −N2 = 2J3 (5.171)

  • SO(3) 98

    [J+, J−] = 2J3 (5.172)

    [J3, J+] = J+ , [J3, J−] = −J− (5.173)

    Ji SO(3)

    2. Casimir Casimir

    J2 = J23 +1

    2(J+J− + J−J) = J

    23 − J3 + J+J−

    =1

    4(N1 −N2)2 −

    1

    2(N1 −N2) + a†1a2a

    †2a1

    =1

    4(N1 −N2)2 −

    1

    2(N1 −N2) +N1(N2 + 1)

    =1

    4(N1 +N2)

    2 +1

    2(N1 +N2)

    =N

    2(N

    2+ 1) (5.174)

    Ji JiN

    [Ji, H] = ![Ji, N ] = 0 (5.175)

    J2 J3 H J2N2 j J

    2 = j(j + 1) N = 2j

    3.

    |p〉1|q〉2 =1√p!q!

    (a+1 )p(a+2 )

    q|0〉1|0〉2 (5.176)

    N

    2|p〉1|q〉2 =

    p+ q

    2|p〉1|q〉2 , J3|p〉1|q〉2 =

    1

    2(p− q)|p〉1|q〉2 (5.177)

    |j,m〉 ≡ |p〉1|q〉2 , j =1

    2(p+ q) , m =

    1

    2(p− q) , p = j +m , q = j −m (5.178)

    Ji j j12Z + j ≥ 0 j

    p + q = 2j p, q ≥ 02j + 1 −j ≤ m ≤ j

  • SO(3) 99

    J+|j,m〉 = a†1a2|p〉1|q〉2 =√

    p+ 1|p+ 1〉1√q|q − 1〉 =

    √(p+ 1)q|j,m+ 1〉 (5.179)

    〈j,m+ 1|J+|j,m〉 =√(p+ 1)q =

    √(j +m+ 1)(j −m) (5.180)

    〈j,m− 1|J−|j,m〉 =√(q + 1)p =

    √(j −m+ 1)(j +m) (5.181)

    〈j′m′|J3|j,m〉 = mδjj′δmm′ (5.182)

    5.8.3 U(1)

    SU(2)U(2) U(1) U(1)

    U(1) ai

    U(1) + eiφ : ai → eiφai (5.183)

    U(1) + eiφ : |j,m〉 → e(p+q)iφ|j,m〉 = e2jiφ|j,m〉 (5.184)U(1) φ N = 2j

    U(1)

    5.8.4 SU(3)

    U(2)U(3) N U(N)

    5.8.4.1

    H =3∑

    ρ=1

    a†ρaρ +3

    2=

    3∑

    ρ=1

    Nρ +3

    2(5.185)

    ,! = 1 m = ω = 1 Nρ

    [Nρ, a+ρ ] = a

    +ρ , [Nρ, aρ] = −aρ (5.186)

  • SO(3) 100

    |k,m, n〉 = (a†1)k(a†2)

    m(a†3)n|0〉 (5.187)

    k +m+ l = N

    aja†i (5.188)

    Ta =1

    2a†ρλaρσaσ (5.189)

    λa = σa , λ4 =

    0 0 10 0 01 0 0

    , λ5 =

    0 0 −i0 0 0i 0 0

    ,

    λ6 =

    0 0 00 0 10 1 0

    , λ7 =

    0 0 00 0 −i0 i 0

    , λ8 =1√3

    1 0 00 1 00 0 −2

    , (5.190)

    Tr{(12λa)(

    1

    2λb)} =

    1

    2δab (5.191)

    [Ta, Tb] =1

    4a†[λa,λb]a = fabcTc (5.192)

    fabc SU(3)

    5.8.4.2

    1. N = 1, 3 (4 3C2)

    |1, 0, 0〉 (5.193)

    2. N = 2, 6 (5 4C2)

    |2, 0, 0〉 |1, 1, 0〉 (5.194)

    3. N = 3, 5C2 = 10

    4. N = 4, 6C2 = 15

  • SO(3) 101

    5.8.5

    L =1

    2m(ṙ2 + r2(θ̇2 + sin2 θφ̇2) (5.195)

    U(r) = −kr

    (5.196)

    H =p2

    2m+ U(r) , L = r× p (5.197)

    A =1

    kmp× L− r

    r(5.198)

    Aṙ = (1

    kmp× L− r

    r) · r (5.199)

    Ar cos θ =1

    mkL2 − r (5.200)

    H =k2m

    2L2(A2 − 1) (5.201)

    ∣∣∣∣p+mkA× LL2

    ∣∣∣∣ =mk

    L(5.202)

    5.9

    5.9.1

    5.9.2 weight

    j,mJ3 weight j highest weighthighest weight weight

    J3 weight

    highest weight j−j

  • SO(3) 102

    weight (diagram) weightlattice J±

    (root)

    weight

    j = 1 weight

    5.9.3

    ! "highest weight j1, j2

    |j1,m1〉 , |j2,m2〉 (5.203)

    # $

    |j,m− 1〉 = ((j +m)(j −m+ 1))− 12J−|j,m〉 (5.204)

    |j,m+ 1〉 = ((j −m)(j +m+ 1))− 12J+|j,m〉 (5.205)

  • SO(3) 103

    1.

    |j1,m1〉|j2,m2〉 (5.206)

    (2j1 + 1)(2j2 + 1)

    2.

    R̂%θ(|j1,m1〉|j2,m2〉) = (R̂%θ|j1,m1〉)(R̂%θ|j2,m2〉) (5.207)

    R̂ = 1− i$"Ĵ

    (1− i$"Ĵ)(|j1,m1〉|j2,m2〉) = ((1− i$"Ĵ)|j1,m1〉)((1− i$"Ĵ)|j2,m2〉)= |j1,m1〉|j2,m2〉

    −i$"((Ĵ|j1,m1〉)|j2,m2〉+ |j1,m1〉(Ĵ|j2,m2〉)

    )+O("2)

    (5.208)

    1

    Ĵ(|j1,m1〉|j2,m2〉) = (Ĵ|j1,m1〉)|j2,m2〉+ |j1,m1〉(Ĵ|j2,m2〉) (5.209)

    21

    Ĵ = Ĵ(1) + Ĵ(2) (5.212)

    J (i) |ji,mi〉J 22

    3. J highest weight stateĴ3 = Ĵ

    (1)3 + Ĵ

    (2)3 (5.213)

    J3 J highest weight statem = jmax

    |jmax, jmax〉T = |j1, j1〉|j2, j2〉 (5.214)

    21

    |j1,m1〉 ⊗ |j2,m2〉 (5.210)

    J = J(1) ⊗ 1+ 1⊗ J(2) (5.211)

    22 !

  • SO(3) 104

    J3 m = j1 + j2jmax = j1 + j2 23

    Ĵ− = Ĵ(1)− + Ĵ

    (2)− (5.215)

    2jmax + 1 Vjmax = Vj1+j2

    4. Second highest weight state: Ĵ3 m = jmax − 1

    |j1, j1 − 1〉|j2, j2〉 , |j1, j1〉|j2, j2 − 1〉 (5.216)

    Vj1+j2

    J−|j1, j1〉|j2, j2〉 =√

    2j1|j1, j1 − 1〉|j2, j2〉+√2j2|j1, j1〉|j2, j2 − 1〉 (5.217)

    √2j2|j1, j1 − 1〉|j2, j2〉 −

    √2j1|j1, j1〉|j2, j2 − 1〉 (5.218)

    Ĵ+ = Ĵ(1)+ +Ĵ

    (2)+

    0 highest weight state

    |jmax − 1, jmax − 1〉T (5.219)

    Ĵ− 2(jmax − 1)+ 1 =2(j1 + j2 − 1) + 1 Vj1+j2−1

    5.

    ! "Vj1 ⊗ Vj2 = Vj1+j2 ⊕ Vj1+j2−1 ⊕ · · ·⊕ V|j1−j2| (5.220)# $

    |j1 − j2|

    = 2(j1 + j2) + 1 + 2(j1 + j2 − 1) + 1 + · · · 2|j1 − j2|+ 1= 2

    ((1 j1 + j2 )− (1 |j1 − j2|− 1 )

    )

    = (j1 + j2 + 1)2 − (|j1 − j2|)2

    = (j1 + j2 + |j1 − j2|+ 1)(j1 + j2 − |j1 − j2|+ 1)= (2j1 + 1)(2j2 + 1) (5.221)

    23 m j1 + j2

  • SO(3) 105

    5.9.4 1)j = 12 ⊗ j =12

    m (highest weight state)

    |1, 1〉 = |12 ,12〉|

    12 ,

    12〉 (5.222)

    J−|12 ,12〉 = |

    12 ,−

    12〉 , J+|

    12 ,−

    12〉 = |

    12 ,

    12〉 (5.223)

    J−|1, 1〉 =√2|1, 0〉 , J−|1, 0〉 =

    √2|1,−1〉 (5.224)

    m (highest weight state) J−

    J−|1, 1〉 = J−(|12 ,12〉|

    12 ,

    12〉) = |

    12 ,−

    12〉|

    12 ,

    12〉+ |

    12 ,

    12〉|

    12 ,−

    12〉 (5.225)

    |1, 0〉 = 1√2

    (|12 ,−

    12〉|

    12 ,

    12〉+ |

    12 ,

    12〉|

    12 ,−

    12〉)

    (5.226)

    |0, 0〉 = 1√2

    (|12 ,−

    12〉|

    12 ,

    12〉 − |

    12 ,

    12〉|

    12 ,−

    12〉)

    (5.227)

    J−|1, 0〉 =1√2

    (|12 ,−

    12〉|

    12 ,−

    12〉+ |

    12 ,−

    12〉|

    12 ,−

    12〉)=

    √2|12 ,−

    12〉|

    12 ,−

    12〉 (5.228)

    |1,−1〉 = |12 ,−12〉|

    12 ,−

    12〉 (5.229)

    |12 ,12〉 = | ↑〉 , |

    12 ,−

    12〉 = | ↓〉 (5.230)

  • SO(3) 106

    2 12! "

    1. j = 0

    |0, 0〉 = 1√2(| ↓〉| ↑〉 − | ↑〉| ↓〉) (5.231)

    2. j = 1

    |1, 1〉 = | ↑〉| ↑〉|1, 0〉 = 1√

    2(| ↓〉| ↑〉+ | ↑〉| ↓〉)

    |1,−1〉 = | ↓〉| ↓〉 (5.232)

    3.

    V12⊗ V1

    2= V0 ⊕ V1 (5.233)

    # $5.9.5 2)j = 1⊗ j = 12

    |32 ,12〉 =

    1√3J−|32 ,

    32〉

    |32 ,−12〉 =

    1

    2J−|32 ,

    12〉

    |32 ,−32〉 =

    1√3J−|32 ,−

    12〉 (5.234)

    J−|1, 1〉 =√2|1, 0〉 , J−|1, 0〉 =

    √2|1,−1〉 (5.235)

    m (highest weight state)

    |32 ,32〉 = |1, 1〉|

    12 ,

    12〉 ∗ (5.236)

    J−

    J−|32 ,32〉 = J−(|1, 1〉|

    12 ,

    12〉) =

    √2|1, 0〉|12 ,

    12〉+ |1, 1〉|

    12 ,−

    12〉 (5.237)

    |32 ,12〉 =

    √23 |1, 0〉|

    12 ,

    12〉+

    1√3|1, 1〉|12 ,−

    12〉 ∗ (5.238)

    |12 ,12〉 =

    √13 |1, 0〉|

    12 ,

    12〉 −

    √23 |1, 1〉|

    12 ,−

    12〉 ∗ ∗ (5.239)

  • SO(3) 107

    J−|32 ,12〉 =

    √23(√2|1,−1〉|12 ,

    12〉+ |1, 0〉|

    12 ,−

    12〉) +

    √23 |1, 0〉|

    12 ,−

    12〉

    = 2(√

    13 |1,−1〉|

    12 ,

    12〉+

    √23 |1, 0〉|

    12 ,−

    12〉) (5.240)

    |32 ,−12〉 =

    √13 |1,−1〉|

    12 ,

    12〉+

    √23 |1, 0〉|

    12 ,−

    12〉 ∗ (5.241)

    J−|32 ,−12〉 =

    √13 |1,−1〉|

    12 ,−

    12〉+

    √43 |1,−1〉|

    12 ,−

    12〉

    =√3|1,−1〉|12 ,−

    12〉

    =√3|32 ,−

    32〉 (5.242)

    |32 ,−32〉 = |1,−1〉|

    12 ,−

    12〉 ∗ (5.243)

    j = 12 J−

    J−|12 ,12〉 =

    √23 |1,−1〉|

    12 ,

    12〉+

    √13 |1, 0〉|

    12 ,−

    12〉 −

    √43 |1, 0〉|

    12 ,−

    12〉 (5.244)

    |12 ,−12〉 =

    √23 |1,−1〉|

    12 ,

    12〉 −

    √13 |1, 0〉|

    12 ,−

    12〉 ∗ ∗ (5.245)

    |32 ,−12〉 J− 0

    ∗ ∗∗ 2

    V1 ⊗ V 12= V 3

    2⊕ V 1

    2(5.246)

    5.9.6

    32

    12

    ! "1. V 3

    2m m = (−32 ,−

    12 ,

    12 ,

    32) V 12 m 2 m = (−

    12 ,

    12)

    |j,m〉

    2. 32 |32 ,

    32〉

    12 m

    12

    3.

    # $

  • SO(3) 108

    1. j = 32 ⊗ j =12

    V 32⊗ V 1

    2= V2 ⊕ V1 (5.247)

    2. 2 j = 1

    V1 ⊗ V1 = V2 ⊕ V1 ⊕ V03 × 3 = 5 + 3 + 1 (5.248)

    5.10

    5.10.1

    !" #$$E$E 3

    5.10.1.1 EiBi

    vi(x)

    TRvi(x) = RijRvj = e−iu·(l+L)vi(x) (5.249)

    R = D1,

    Jk = lk + Lk (5.250)

    TRvi(x) = e−iu·Jvi(x) (5.251)

  • SO(3) 109

    J 24 |l,m〉|1,m′〉

    5.10.1.22

    ψ =

    (ψ1

    ψ2

    )= (ψα) (5.252)

    ψ1 ψ2

    TRψ = e−iu·Jψ (5.253)

    J = l + S = (lk +1

    2σk) (5.254)

    Ylm|12 , s〉

    5.11 (Wigner-Eckart theorem)

    5.11.1 (Clebsch-Gordan coefficients)

    highest weight j1 j2 |j1 − j2| ≤ J ≤ j1 + j2

    |J,M〉 =∑

    m1,(m1+m2=M)

    |j1,m1〉|j2,m2〉〈j1,m1; j2,m2|J,M〉 (5.255)

    〈j1,m1; j2,m2|J,M〉

    |j1,m1; j2m2〉 = |j1,m1〉|j2,m2〉 (5.256)

    1. 〈J ′,M ′|

    δJJ ′δMM ′ =∑

    m1,m2

    〈J ′M ′|j1m1; j2m2〉〈j1m1; j2m2|JM〉 (5.257)

    2. |j1−j2| ≤ J ≤ j1+j2 |J,M〉 Vj1⊗Vj2∑

    J,M |J,M〉〈J,M | =1

    δm1m′1δm2m′2 =∑

    J,M

    〈j1m1; j2m2|JM〉〈JM |j1m′1; j2m′2〉 (5.258)

    24 ! ,!

  • SO(3) 110

    5.11.2

    |n〉

    H|n〉 = En|n〉 (5.259)

    H+∆H|n〉+ |∆〉 E +∆E

    (H +∆H)(|n〉+ |∆〉) = (E +∆E)(|n〉+ |∆〉) (5.260)

    1

    ∆H|n〉+H|∆〉 = ∆E|n〉+ E|∆〉 (5.261)

    |n〉 H 〈m| m = n

    〈n|∆H|n〉 = ∆E (5.262)

    m 3= n〈m|∆H|n〉 = (En − Em)〈m|∆〉 (5.263)

    |m〉 ∆Hz ∆H = Kz

    K ∆H j = 1

    5.11.3

    ψ T̂ R̂

    |ψ〉 T̂→ T̂ |ψ〉R̂ ↓ R̂ ↓R̂|ψ〉 R̂T̂ R̂

    −1→ R̂T̂ |ψ〉

    (5.264)

    , T̂

    R̂T̂nR̂−1 = T̂mDmn(R̂) (5.265)

    DmnT̂n

    T̂ j1n1 highest weight j1

    R̂(T̂ j1n1 |j2, n2〉) = T̂j1n1 |j2, n2〉D

    (j1)m1n1D

    (j1)m2n2 (5.266)

  • SO(3) 111

    Vj1 ⊗ Vj2

    |T : J,M〉 =∑

    m1,(m1+m2=M)

    〈j1,m1; j2,m2|J,M〉T̂ j1m1 |j2,m2〉 (5.267)

    T̂ jn |j, n〉 J|T : J,M〉 M J−

    |T : J,M〉 = 〈J ||T ||J〉|J,M〉 (5.268)

    T̂ j1m1 |j2,m2〉 =∑

    J,m

    〈J,m1 +m2|j1,m1; j2,m2〉|T : J,m1 +m2〉 (5.269)

    〈J,M |T̂ j1m1 |j2,m2〉 = 〈J,m1 +m2|j1,m1; j2,m2〉〈J ||T ||J〉δM,m1+m2 (5.270)

    highest

    weight

    〈J ||T ||J〉 = 〈J, J |T |J, J〉 (5.271)

    5.12 ( )

    H0|n〉 = εn|n〉 (5.272)H ′ , H + λH ′

    H0

    (H0 + λH′)(|n〉+ λ

    m

    cm|m〉) = (εn + λε′)(|n〉+ λ∑

    m

    cm|m〉) (5.273)

    λ = 0 eq.(5.272) ε′

    〈k| , λ λ

    λ〈k|H ′|n〉+∑

    m

    cmλ〈k|H0|m〉 = λε′〈k|n〉+ λεn∑

    m

    cm〈k|m〉 (5.274)

  • SO(3) 112

    ε′ = 〈n|H ′|n〉 (5.275)

    Example : L2

    !m |!,m〉 2!+ 1 z

    λH ′ = λp ·A = λBLz (5.276)

    ε′ = 〈!,m|H ′|!,m〉 = Bm (5.277)m

    5.12.1 Example:

    Si = 12σi

    j = 12 |j, s〉 S3

    S3|1

    2, s〉 = !s|1

    2, s〉 , s = ±1

    2(5.278)

    | ↑〉 = |12,1

    2〉, | ↓〉 = |1

    2,−1

    2〉 (5.279)

    ! = 1

    S3| ↑〉 =1

    2| ↑〉 , S3| ↓〉 = −

    1

    2| ↓〉 (5.280)

    −→S (i)

    H = H0 +HIH0 = E(|

    −→S (1)|2 + |−→S (2)|2)

    HI = 2λ−→S (1) ·−→S (2) (5.281)

    Ψ(s, s′) = |s〉1|s′〉2 , s, s′ =↑ , ↓ (5.282)

    1.

    Ψ(↑, ↑) = | ↑〉1| ↑〉2 (5.283)

  • SO(3) 113

    2. H0

    HΨ(s, s) = E(|−→S (1)|2 + |−→S (2)|2)Ψs, s′ = E(12(1

    2+ 1) +

    1

    2(1

    2+ 1))Ψs, s′ =

    3

    2Ψ(s, s′)

    (5.284)

    3. HI −→J =

    −→S (1) +

    −→S (2) (5.285)

    −→J 2 = (

    −→S (1) +

    −→S (2))2 = (

    −→S (1))2 + (

    −→S (2))2 + 2

    −→S (1) ·−→S (2) (5.286)

    2−→S (1)

    −→S (2) =

    −→J 2 − (−→S (1))2 − (−→S (2))2 (5.287)

    4.

    HI = λ(j(j + 1)−3

    2)) (5.288)

    j

    5. j = 1, 0(5.289)

    6. HB = 2µB(S(1)3 +S

    (2)3 ) j = 1

    5.12.2

    12

    −e

    i! ∂∂tψ = Hψ, H =

    $p2

    2me(5.290)

    pµ = (H, $p) → (pµ − eAµ) = (H + eφ, $p− e $A) (5.291)

    1

    2me($p− e $A)2 = 1

    2me($p2 − e($p · $A+ $A · $p) + e2 $A2) (5.292)

    $A =1

    2B(−y, x, 0) (5.293)

    $B = rot $A = (0, 0, B) (5.294)

  • SO(3) 114

    z $A div $A = 0

    $p · $A+ $A · $p = 2 $A · $p = B(xpy − ypx) = BLz = $B · $L (5.295)

    H =1

    2me$p2 + eφ− e

    2me$B · $L+ e

    2B2

    8me(x2 + y2) (5.296)

    $ML =e

    2me$L (5.297)

    . $ML · $B

    12

    $M =e

    2me($L+ 2$S) (5.298)

    12

    $M =e

    2me($L+ g$S) (5.299)

    g gg (g-factor)

    g-factor 2 g-2

    ·²¤È¤ÏÂоÎÀ ¤È·²ÂоÎÀ ¤È·²·²¤ÎÄêµÁÌäÂêÅú¤¨

    ·²¤ÎÎãÍ ¸Â·²Í ¸Â·²¤ÎÎãÌäÂê

    Éôʬ·²ÎãÌäÂê

    ²óž·²Ê£ÁÇ¿ôÂξå¤Î·²Ê£ÁÇÊ¿Ì̾å¤Î²óž·²¤È¿ÍÍÂÎ¥æ¥Ë¥¿¥ê¡¼·²Ï¢Â³·²¤Î¼¡¸µ

    ¹çƱÊÑ´¹·²ÌäÂê [¹ÔÎó¤Ë¤è¤ëɽ¼¨]ά²ò

    ÅÀ·²

    ·²¤Î¹½Â¤¼ÌÁü¼ÌÁüÁ´¼Í ¡¦Ã±¼Í ¡¦Á´Ã±¼Í Á´¼Í¤Èñ¼Í

    ·²¤Þ¤¿¤ÏÂå¿ô¤Î¼ÌÁü·²½àƱ·¿¼ÌÁüÌäÂê²òÅú

    Í ¸Â·²¤Î¼ÌÁü¤ÎÎãÎ㣱¡§½àƱ·¿¼ÌÁü¤ÎÎãÎ㣲¡§Á´Ã±¼Í¤À¤¬·²Æ±·¿¤Ç¤Ï¤Ê¤¤ÎãÎ㣲¡§·²¼«¸Ê½àƱ·¿¼ÌÁü¤ÎÎãÌäÂê²òÅú

    ¾ê;Îà¤È¶¦ÌòÎà¾ê;Îà (coset)ʬ²ò¤ÎÊýË¡¡§¾ê;Îà¤ÎÀ ¼ÁÌäÂê²òÅú

    ¶¦Ìò¸µ¤È¶¦ÌòÎà(conjugacy class)¶¦ÌòÊÑ´¹¶¦Ìò¶¦ÌòÎàÌäÂê(¶¦ÌòÎà¤ÎÎã)

    ¶¦ÌòÎà¤ÎÂå¿ô¤ÎÀ ¼Á

    ¾ê;Îà·²¤È½àƱ·¿ÄêÍýÀµµ¬Éôʬ·²¤Þ¤¿¤ÏÉÔÊÑÉôʬ·²Àµµ¬Éôʬ·²

    ½àƱ·¿ÄêÍýÌäÂê²òÅú

    Âоη²n¼¡¤ÎÂоη²¤Þ¤¿¤ÏÃÖ´¹·²¸òÂå·²ÃÖ´¹·²¤Î±þÍÑÈ¿ÂоΥƥ󥽥ë¤ÎÀÑ

    ¥±¡¼¥ê¡¼Cayley¤ÎÄêÍýÂоη²¤Î¶¦ÌòÎà

    ·²¤Îɽ¸½¥Ù¥¯¥È¥ë¶õ´Ö¤ÈÀþ·Á±é»»»ÒÊ£ÁÇ¥Ù¥¯¥È¥ë¶õ´Ö¥Ù¥¯¥È¥ë¶õ´Ö¤Ë´ØÏ¢¤·¤¿³µÇ°

    ÁÐÂÐ¥Ù¥¯¥È¥ë¶õ´ÖÌäÂê²òÅú

    Àþ·Á±é»»»ÒÀþ·Á±é»»»Ò¤ÎÀ ¼Á

    ±é»»»Ò¤Î¹ÔÎóɽ¸½ÊÑ´¹¤È¹ÔÎó¤Î´Ø·¸¡§

    ·×ÎÌ¥Ù¥¯¥È¥ë¶õ´Ö¤ÈϢ³·²¥Ù¥¯¥È¥ë¶õ´Ö¤ÎÆâÀÑÆâÀѤȴðÄì

    ·²¤Îɽ¸½É½¸½¤ÎÎ㡧¶¦Ìòɽ¸½ÌäÂê

    ²ÄÌóɽ¸½¤È´ûÌóɽ¸½Í ¸Â·²C3v¤Î¹ÔÎóɽ¸½£³¼¡¸µ¤Ë¤ª¤±¤ëC3vC3v¤Îɽ¸½¹ÔÎóÌäÂêά²ò

    ´ûÌóɽ¸½¤È´ûÌóʬ²ò

    ¥·¥å¡¼¥ë¤ÎÊäÂê»Øɸɽ¸½¤Îľ¸òÀ ÄêÍý¾ÚÌÀ¤Î³µÍ×

    »ØɸC3v¤Î»ØɸÌäÂêά²ò

    »Øɸ¤Î£²¾èϤȴûÌóʬ²ò

    ÀµÂ§É½¸½»Øɸ¤ÎÂ裲¼ïľ¸òÀ ÀÑɽ¸½¤Èµ¬Ìóʬ²òÎ㣱¡§¥¢¥ó¥â¥Ë¥¢¡Ê¤¿¤À¤·¥Õ¥ê¥Ã¥×¤ò¹Í¤¨¤Ê¤¤¡Ë»°³Ñ·Á¤Ë·Ò¤¬¤Ã¤¿£²¼¡¸µ¤Îγ»Ò

    ÎÌ»ÒÎϳؤÎÁªÂò§2010Ãæ´Ö¥Ò¥ó¥È2011 ±é½¬ÌäÂê2012Ãæ´Ö2017Ãæ´Ö¥Ò¥ó¥È

    Ϣ³·²¤È¥ê¡¼´ÄϢ³·²¤Î¹ÔÎóɽ¸½¥Ç¥£¥é¥Ã¥¯µ ˡϢ³·²¤ÎʬÎà̵¸Â¾®ÊÑ´¹·²¤Î´ðËÜɽ¸½¤È¤½¤Î¥ê¡¼´Ä¿ïȼɽ¸½Cartan-Weylɽ¼¨µ¬Ìóɽ¸½¤ÎÁ´¤Æ¤Î¾õÂ֤ι½À®Ë¡¥Ç¥£¥ó¥ ¥ó¿Þ

    ²óž·²SO(3)²óž·²¤ÎÄêµÁ¤È´ðËÜɽ¸½²óž¹ÔÎó¤È̵¸Â¾®²óž»Ø¿ô¼ÌÁü¤È¥ê¡¼´ÄBaker-Campbell-Hausdorff ¤Î¸ø¼°html:phtml:

    ¥ª¥¤¥é¡¼³Ñ²óž·²¤Îɽ¸½¤â¤Ã¤È¤â´Êñ¤Êɽ¸½¡¡¥¹¥Ô¥óɽ¸½2²Áɽ¸½

    °ìÈ̤Îɽ¸½ÌäÂꡧ²ò

    ɽ¸½¤ÎÎã

    ÇÈÆ°´Ø¿ô¤Î²óž¤È³Ñ±¿Æ°Î̱黻»ÒµåÌÌÄ´Ï´ؿôµ°Æ»³Ñ±¿Æ°Î̤Îɽ¸½¶ËºÂɸɽ¼¨É½¸½¥Ù¥¯¥È¥ë¤È¤·¤Æ¤ÎµåÌÌÄ´Ï´ؿôµåÌÌÄ´Ï´ؿô¤Îɽ¸½¤È¤·¤Æ¤Î¹½À®

    Ä´Ï¿¶Æ°»Ò¤ÈSU(2)Ä´Ï¿¶Æ°»Ò¤Èdynamical symmetry¸ÇÍ ´Ø¿ô¤Î¹½À®U(1)¤Ë¤Ä¤¤¤ÆSU(3)£³¼¡¸µÄ´Ï¿¶Æ°»Ò½ÌÂà¤Î¹½Â¤

    ¥ì¥ó¥Ä¥Ù¥¯¥È¥ë

    ľÀÑɽ¸½¤È´ûÌóʬ²ò³Ñ±¿Æ°Î̤ιçÀ®É½¸½¤Î¿ÞŪɽ¼¨¡§weight¿ÞÀÑɽ¸½¡§³Ñ±¿Æ°Î̤ιçÀ®Îã1)j=12j=12Îã2)j=1 j=12¿Þ¤Ë¤è¤ëʬ²òÎã

    ÇÈÆ°´Ø¿ô¤Î²óž¤ÈÁ´³Ñ±¿Æ°Î̾ì¤È²óž¥Ù¥¯¥È¥ë¾ì¤È¤½¤Î²óž¥¹¥Ô¥Î¥ë¾ì¤È¤½¤Î²óž

    ¥¦¥£¥°¥Ê¡¼¡¦¥¨¥Ã¥«¥ë¥È¤ÎÄêÍý (Wigner-Eckart theorem)¥¯¥ì¥×¥·¥å¡¦¥´¥ë¥À¥ó·¸¿ô(Clebsch-Gordan coefficients)ÀÝÆ°ÏÀ¤Ë¤Ä¤¤¤Æ¥¦¥¤¥°¥Ê¡¼¡¦¥¨¥Ã¥«¥ë¥È¤ÎÄêÍý¤È¾ÚÌÀ

    ½ÌÂà¤ÈÂоÎÀ (Êä )Example:¥¹¥Ô¥ó·Ï¥¼¡¼¥Þ¥ó¸ú²Ì ¥ß¥Ë»î¸³¡§²óž·²¤È¤½¤Îɽ¸½¡¡£²£°£±£³Ç¯£··î£±Æü

    Àµ½àÊÑ´¹¤È¥ê¡¼·²Ìµ¸Â¾®ÊÑ´¹»î¸³2012»î¸³2013»î¸³2014»î¸³2015»î¸³2016»î¸³2017»î¸³2018

    ¤Þ¤ÀɬÍפÊÆâÍÆÄɲùàÌÜ