19
Stichwort Mikrobiom: Fördern Darmbakterien das Stammzellwachstum bei Darmkrebs? Prof. Dr. med. Sebastian Zeißig Medizinische Klinik 1, Universitätsklinikum Dresden Zentrum für Regenerative Therapien Dresden 13.10.2016

Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Stichwort Mikrobiom:

Fördern Darmbakterien

das Stammzellwachstum

bei Darmkrebs?

Prof. Dr. med. Sebastian Zeißig

Medizinische Klinik 1, Universitätsklinikum Dresden

Zentrum für Regenerative Therapien Dresden

13.10.2016

Page 2: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

40 Billion (4x1013)

Mikroorganismen

(Entspricht der Zahl

körpereigener Zellen)

0

1000000

2000000

3000000

4000000

An

za

hl d

er

Ge

ne

~23.000

menschliche

Gene

~3.3 Millionen

mikrobielle

Gene

Intestinale Mikrobiota

Qin et al., Nature 2010

Arumugam et al., Nature 2012 Sender et al., Cell, 2016

Page 3: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Intestinale Mikrobiota

Ley et al., Cell 2006

• circa 1200 mikrobielle Spezies

• Davon ca. 160 pro Individuum

• 99% Bakterien

• 0.1% Viren (primär Bakteriophagen)

Qin et al., Nature 2010

Page 4: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Helicobacter pylori und Magenkarzinom

Amieva, Peek, Gastroenterology 2016

Page 5: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Helicobacter, Entzündung, Karzinogenese

Polk and Peek, Nat Rev Cancer 2010

Page 6: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Terzic et al., Gastroenterology 2010

Fearon, Vogelstein, Cell 1990

Sequenzielle Mutagenese als Grundlage des

kolorektalen Karzinoms

Page 7: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Vermeulen, Snippert, Nat. Rev. Cancer 2014

Kolorektale Karzinogenese & Stammzellen

Page 8: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Die Mikrobiota als pathogener Faktor?

Rakoff-Nahoum et al., Science 2007

Dove et al., Cancer Res 2007

Lee et al., Nat Med 2010

Li et al., Carcinogenesis 2012

Arthur et al., Science 2012

Grivennikov et al., Nature 2014

Belcheva et al., Cell 2014

Song et al., Immunity 2014

Page 9: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Mikrobiota und entzündliche Signalwege im

kolorektalen Karzinom

Irrazabal, Mol Cell 2014

Greten et al., Cell 2004

Bollrath et al., Cancer Cell 2009

Grivennikov et al., Cancer Cell 2009

Vlantis et al., J Clin Invest 2011

Schwitalla et al., Cell 2013

Schwitalla et al., Cancer Cell 2013

Grivennikov et al., Nature 2014

Page 10: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Mikrobielle Barrieren im Darm

Johansson, PNAS 2008

Page 11: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Barrierestörung in intestinalen Adenomen und

Karzinomen

Normalgewebe Adenom

Page 12: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Barrierestörung, Entzündung, Proliferation

Dejea et al., PNAS 2015

Page 13: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Garrett et al., Science 2015

Dejea et al., PNAS 2014

Grivennikov et al., Nature 2014

Kostic, Cell Host Microbe 2013

Castellarin et al., Genome Res 2012

Kostic et al., Genome Res 2012

Arthur et al., Science 2011

Wu et al., Nat Med 2009

Nougayrede et al., Science 2006

Bakterielle Promotoren der Karzinogenese?

Page 14: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Fusobacterium nucleatum als Promoter des

Tumorwachstums

Kostic,

Cell Host Microbe

2013

Page 15: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

INTESTINAL TUMOR NORMAL IEC

mic

robio

ta

MA

MP

s

str

atificatio

n

(mu

cus, A

MP

s)

Calmodulin

Calcineurin

Dclk1

tumor cell proliferation

tumor growth

Lgr5 Olfm4

NFAT

P P P

NFAT

Nucleus

NFAT

CRAC PLCγ

TLR

IP3

ER

STIM1?

Ca2+

Ca2+

Calmodulin

Calcineurin

NFAT

P P P

CRAC PLCγ

TLR

ER

Ca2+

(Dclk1)

(Lgr5) (Olfm4)

alte

red

mic

robio

ta

alte

red

stra

tificatio

n

Nucleus

non-proliferating IEC

Calcineurin, NFAT und Darmkrebs

Peuker et al.,

Nat. Med. 2016

Page 16: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Zusammenfassung

• Bakterien und ihre Erkennung durch das Immunsystem

sind mit Entzündung auf zellulärer Ebene verbunden

• Diese Entzündungsprozesse tragen durch Regulation der

epithelialen Zellteilung, insbesondere in

Tumorstammzellen, zur Karzinogenese bei

• Keimfreie Mäuse sowie Mäuse mit Deletion von

Rezeptoren der bakteriellen Erkennung weisen eine

reduzierte kolorektale Karzinogenese auf

Page 17: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Nature Reviews | Microbiology

a b

Epithelium

Lamina propria

Intestinal lumen

Infla

m

ed epithelium

Secondary

colonizer

Tertiary colonizer

IL-17

CPT

ToxinLCN2

b-def

TH17 cell

IL-23DC

Adenoma

Primary

colonizer

their temporal association with the colonic

mucosa, and that these different associations

are dictated by alterations in the micro­

environment as the disease progresses.

Our model does not exclude the active

involvement of bacterial passengers, such

as Fusobacterium spp., in CRC develop­

ment. Instead, our analysis indicates that

the tumour microenvironment provides a

preferred niche for these bacteria and that

an involvement in CRC progression, if any,

will be more pronounced during the later

stages of the disease. Finally, it should be

realized that the microbiome ‘snapshots’ that

are provided by the currently available next­

generation sequencing data do not reflect

the whole continuum of microbiome shifts

that take place during CRC development.

Factors influencing the identification of bac-

terial drivers and passengers. As mentioned

above, technical limitations (attributable

to the complex and diverse composition of

the colonic microbiota), combined with the

limited depth of the microbiome analyses,

may impede the identification of bacterial

drivers and passengers of CRC. Moreover,

the lack of consistent colonization pat­

terns in the off­tumour samples from the

recent CRC microbiome studies (that is,

the inconsistency of CRC driver bacteria)

may also reflect biological factors. First,

CRC may be triggered by multifactorial

signals, and distinct bacteria may confer a

similar CRC risk (for example, ETBF and

members of the family Enterobacteriaceae, as discussed above). Increased coloniza­

tion by any one of these bacterial drivers

may initiate carcinogenesis, and this would

preclude consistent findings on the species

(or strain) level. Second, although meta­

genomic27 and metatranscriptomic28 data

sets were obtained by the recent studies,

these investigations focused mainly on iden­

tifying the taxonomic clades associated with

CRC, whereas the encoded functions were

neglected. Thus, there is no discrimination

between, for example, Bacteroides strains

that do and do not produce BFT, a toxin that

has been implicated in CRC initiation77,78.

Third, the presence or absence of certain

drivers may depend on their interaction

potential with other members of the intes­

tinal ecosystem. Multiple mechanisms can

be envisioned for such a dependency. For

instance, colonization by a maladapted spe­

cies may be aided by the ability of primary

colonizers to modulate the host response, as

put forward by the alpha­bug hypothesis29.

In this model, ETBF induces the production

of IL­22 and IL­23 by dendritic cells48. IL­23

stimulates several subsets of T cells to secrete

IL­17, which promotes amplification of the

host response by stimulating the intestinal

epithelium to secrete CXC-chemokines (which

are neutrophil chemoattractants) and anti­

microbial peptides (such as β­defensins,

lipocalin 2 (LCN2; also known as NGAL)

and calprotectin)79,80. The primary role of

this TH17 response is to prevent bacterial

dissemination from the gut, but it also

promotes colonization of the mucosa by

bacteria (including pathogens) that are

resistant to some of the induced antimicro­

bial responses81 (FIG. 3a). For instance, LCN2

binds to and sequesters bacterial sidero­

phores, which are required by a number of

species to survive in iron­limiting environ­

ments81. Certain pathogenic members of

the family Enterobacteriaceae, such as

Salmonella, Escherichia and Klebsiella spp.,

have evolved iron­sequestering siderophores

that are resistant to LCN2 binding81, giving

them a competitive advantage in the

environ ment of the inflamed gut. Similarly,

ETBF may facilitate colonization of species

that are resistant to β­defensins. One could

speculate that if these secondary colonizers

become established at the inflamed site, they

have the opportunity to become drivers of

CRC, especially if they produce genotoxins,

which would augment intestinal carcino­

genesis in the long term. Thus, when deciding

whether an individual is at high risk for

the development of CRC, it may be neces­

sary not only to identify the organisms that

are present in the indigenous (that is, off­

tumour) microbiota, but also to determine

their functional repertoire.

Interaction­dependent colonization may

also be one of the factors that explain the

large variation in the on­tumour microbi­

omes82,83. For instance, certain bacteria may

be poor colonizers of developing tumours

but may initially adhere to other species

Figure 3 | Interaction-dependent colonization of the intestinal epithe -

lium. Two models for interaction-dependent bacterial colonization of

inflamed and adenomatous intestinal tissue. Bacteria that ar e unable to colo-

nize the colonic mucosa in the absence of ‘helper’ bacteria are referred to as

secondary colonizers, and the helper bacteria are referred to as primary

colonizers. a | Secondary colonizers may be indirectly stimulated to colonize

an inflamed gut following induction of the host immune r esponse by primary

colonizers. Bacterial toxins released from the primary colonizers may induce

interleukin-23 (IL-23) and IL-17 responses from the dendritic cells (DCs) and

T helper 17 (TH17) cells, respectively, in the lamina propria, and this in turn

would cause intestinal epithelial cells to secr ete anti bacterial compounds

such as β-defensins (β‑def), calprotectin (CPT) and lipocalin 2 (LCN2) into the

gut lumen79–81. Increased levels of these compounds provide a selective pres-

sure in favour of resistant secondary colonizers (see main text for examples).

When they are established, secondary colonizers have the potential to

become drivers of colorectal cancer (CRC). b | Primary colonizers of adeno-

matous tissue may directly facilitate seeding of secondary colonizers by , for

example, providing an adherent surface for their attachment to the CRC

microenvironment. In addition, these secondary colonizers may in turn

function as ‘bridging organisms’ for tertiary colonizers.

PERSPECTIVES

580 | AUGUST 2012 | VOLUME 10 www.nature.com/reviews/micro

© 2012 Macmillan Publishers Limited. All rights reserved

Cancer is defined as uncontrolled, malignant

cell proliferation caused by accumulated

genetic and epigenetic mutations1,2. The

triggers for these mutations can be multi­

factorial in origin and remain elusive in

many cases. Several types of cancer are

associated with infectious agents, and many

of these cancers occur in tissues with a high

exposure to the microbiota3. It has been esti­

mated that about 20% of the global cancer

burden can be linked to infectious agents4.

Well­known examples include cervical

and gastric cancer, which can be caused by

human papilloma viruses and the bacterium

Helicobacter pylori, respectively4,5.

Bacteria constitute about 90% of all cells

in the human body, and it has been esti­

mated that the total number of microbial

genes exceeds the number of human genes

by two orders of magnitude or more6. The

majority of these bacteria, an estimated

1014 cells comprising >103 different species,

colonize the large intestine6–9. Interestingly,

the bacterial density in the large intestine

(~1012 cells per ml) is much greater than that

in the small intestine (~102 cells per ml), and

this is paralleled by an approximately 12­fold

increase in cancer risk for the large intes­

tine compared with the small intestine10,11.

Moreover, mutant mice that are genetically

susceptible to colorectal cancer (CRC)

develop significantly fewer tumours under

germ­free conditions than when they have

a conventional microbiota12–14. Despite this

knowledge, the possibility that intestinal

microorganisms have a direct effect on the

initiation and progression of sporadic CRC

has been largely ignored since Fearon and

Vogelstein formulated a genetic model for

this disease more than 15 years ago15.

In this Opinion article, we present a

brief overview of the intestinal microbiome

of humans, paying special attention to the

changes in bacterial composition during

CRC progression. We highlight recent data

that support a role for the gut microbiota in

this disease, and we propose that CRC can

be initiated by ‘driver’ bacteria, which are

eventually replaced by ‘passenger’ bacteria

that either promote or stall tumorigenesis.

On the basis of these predictions, we present

a bacterial driver–passenger model to clarify

how intestinal bacteria can directly or

indirectly mediate CRC development.

Colorectal cancer

CRC is the fourth most commonly diag­

nosed cancer in the world, with more

than one million new cases and more than

600,000 deaths annually16. Many of the

risk factors for CRC are associated with

a ‘Western’ lifestyle. In particular, a high

consumption of animal fat, processed meat

and red meat combined with a low intake

of vitamin D, fibre and fish is thought to

increase the risk of disease development17.

The underlying genetic basis of the disease

is described by the ‘adenoma–carcinoma

sequence’ model that was developed by

Fearon and Vogelstein, which posits that

accumulating genetic and epigenetic muta­

tions (genomic instability) drive epithelial

dysplasia and hyperplasia in the colon, ulti­

mately resulting in CRC15,18. Specifically,

CRC is initiated when the stem cells at the

base of the villus crypt develop a mutation

that renders them immortal and prone to the

accumulation of additional mutations19,20.

The most commonly mutated genes include

tumour suppressors (adenoma tous polyposis

coli (APC), the β­catenin gene (CTNNB1),

deleted in colorectal cancer (DCC) and

P53 (also known as TP53)) and oncogenes

(Kirsten rat sarcoma (KRAS) and myelo­

cytomatosis oncogene (MYC))21–24. These

mutations are termed driver mutations

and are associated with several disease

hallmarks, including cell growth without

external growth signals, insensitivity to

antigrowth signals, evasion of apoptosis

and immune destruction, limitless replica­

tive potential, reprogramming of energy

metabolism, increased angiogenesis, and

tissue invasion and metastasis25. Because the

transition from an adenoma to a carcinoma

requires a mutation in a tumour suppressor

gene or an oncogene, the process can be slow

and may take more than 10 years depending

on the mutation frequency. Meanwhile, the

genomes of the adenoma cells accumulate

numerous passenger mutations that have

no direct effect on tumour progression. The

triggers leading to this accumulation of

mutations remain ill defined.

Recently, deep­sequencing technology

has allowed us to explore the microbial

compo sition of both healthy and diseased

body sites, and we now have experimental

O PI NI O N

A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects

Harold Tjalsma, Annemarie Boleij, Julian R. Marchesi and Bas E. Dutilh

Abstract | Cancer has long been consider ed a genetic disease. However,

accumulating evidence supports the involvement of infectious agents in the

development of cancer, especially in those organs that are continuously exposed

to microorganisms, such as the large intestine. Recent next-generation sequencing

studies of the intestinal microbiota now offer an unprecedented view of the

aetiology of sporadic colorectal cancer and have revealed that the microbiota

associated with colorectal cancer contains bacterial species that differ in their

temporal associations with developing tumours. Her e, we propose a bacterial

driver–passenger model for microbial involvement in the development of

colorectal cancer and suggest that this model be incorpor ated into the genetic

paradigm of cancer progression.

PERSPECTIVES

NATURE REVIEWS | MICROBIOLOGY VOLUME 10 | AUGUST 2012 | 575

© 2012 Macmillan Publishers Limited. All rights reserved

Nat Rev Microbiol, 2012

Page 18: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

normal

tumor

Bakterien als therapeutische Vehikel?

Vivit Vivit

Vivit

Page 19: Stichwort Mikrobiom: Fördern Darmbakterien das ......40 Billion (4x1013) Mikroorganismen (Entspricht der Zahl körpereigener Zellen) 0 1000000 2000000 3000000 4000000 e ~23.000 menschliche

Vielen Dank!