Understanding elementary steps in methanol-to-olefins ... · PDF fileUnderstanding elementary steps in methanol-to-olefins chemistry Sebastian Müller ... are acrylonitrile, oxoalcohols,

Embed Size (px)

Citation preview

  • TECHNISCHE UNIVERSITT MNCHEN

    Lehrstuhl fr Technische Chemie II

    Understanding elementary steps in

    methanol-to-olefins chemistry

    Sebastian Mller

    Vollstndiger Abdruck der von der Fakultt fr Chemie der Technischen Universitt Mnchen

    zur Erlangung des akademischen Grades eines

    Doktors der Naturwissenschaften (Dr. rer. nat.)

    genehmigten Dissertation.

    Vorsitzender: Univ.-Prof. Dr.-Ing. K.-O. Hinrichsen

    Prfer der Dissertation:

    1. Univ.-Prof. Dr. J.A. Lercher

    2. Univ.-Prof. Dr. K. Khler

    Die Dissertation wurde am 15.12.2015 bei der Technischen Universitt Mnchen eingereicht

    und durch die Fakultt fr Chemie am 25.01.2016 angenommen.

  • Fr meine Eltern

    und Elisabeth

  • Acknowledgements

    I

    Acknowledgements

    The success of this thesis is closely related to the help of many people to whom I want to

    express my deepest gratitude.

    First of all, I would like to thank Prof. Dr. Johannes A. Lercher for giving me the opportunity

    to work on this stimulating topic, for excellent scientific discussions and the guidance

    throughout the thesis. I enjoyed the freedom of research that I had and the lessons and anecdotes

    which Johannes shared with me.

    I am very grateful to Dr. Maricruz Sanchez-Sanchez for the excellent collaboration during

    the last years. Her support, guidance and trust throughout my PhD thesis as well as numerous

    stimulating discussions and all corrections are gratefully acknowledged.

    I am also very grateful to my co-worker, Dr. Yue Liu, for being such a great partner. I

    appreciated the collaboration a lot and wish him all the best for the future.

    I would also like to thank Prof. Dr. Andr C. van Veen for the smooth collaboration we had

    at the beginning of my PhD.

    Furthermore, I would like to thank the BU Catalysts, Clariant Produkte (Deutschland)

    GmbH (former Sd-Chemie AG) for financial support and interesting discussions in the

    framework of MuniCat. In particular, I am very thankful to Prof. Dr. Richard Fischer and Dr.

    Markus Tonigold for their help.

    I am particularly indebted to my predecessor, Dr. Xianyong Sun, who helped me a lot at the

    beginning of my PhD and introduced me into the secrets of the 10-fold unit. I also thank my

    successor, Jrgen Hajdo, who joined me in the last months of my PhD, giving me new views

    on our topic. Moreover, I thank Dr. Muthusamy Vishnuvarthan for help with catalyst

    characterization at the beginning of my PhD.

    I am very grateful to our technical staff in this group for their strong support. Xaver Hecht

    helped me a lot with my setups and technical problems. I also would like to thank our current

    and former secretaries, Ulrike Sanwald, Bettina Federmann, Stefanie Seibold, Karen Schulz

    and Helen Lemmermhle. Andreas Marx and Martin Neukamm are gratefully acknowledged

    as well.

    I have to thank several students for their good work: Andreas Schiff, Benedikt Keller, Felix

    Reiter, Johanna Wiethaler, Kathrin Arzt, Lorenz Schiegerl, Martin Riedl, Michael Sauer,

  • Acknowledgements

    II

    Philipp Buck, Philipp Fritsch, Thomas Steiner, Tobias Bruhm, Tyll Bodden, Vinzenz Luidl and

    Wolfgang Strhof.

    I am also thankful to Prof. Gary L. Haller for language work on my first paper and several

    interesting discussions. Furthermore, I would like to thank Dr. Erika Ember and Dr. Carmen

    Hssner for help with EPR measurements.

    I would like to thank my colleagues and office mates Peter Hintermeier, Matthias Steib,

    Yanzhe Yu, Anastasia Pashigreva, Ferdinand Vogelgsang, Sebastian Eckstein, Andreas

    Ehrmeier, Sylvia Albersberger, Martina Braun, Yuanshuai Liu, Daniel Melzer and Eva

    Schachtl.

    I am deeply grateful to my parents for supporting me in any kind, not only during the past

    years but my whole life. I also would like to thank my brother and my sister for all support.

    Finally, I want to thank my girlfriend Elisabeth for helping and supporting me during the whole

    period of my PhD studies. I am especially grateful to her for always having an open ear and

    finding appropriate solutions. My girlfriend and my family always gave me some hope in dark

    moments of my PhD.

  • Abbreviations

    III

    Abbreviations

    AHFS Ammonium hexafluorosilicate

    BAS Brnsted acid site

    CBU Composite building unit

    CHA Chabazite

    CSTR Continuously operated stirred tank reactor

    DICP Dalian Institute of Chemical Physics

    DME Dimethyl ether

    DMM Dimethoxymethane

    DMTO Dimethyl ether or methanol-to-olefin

    DSC Differential scanning calorimetry

    EFAL Extra-framework aluminum

    EPR Electron paramagnetic resonance

    FAU Faujasite

    FCC Fluid catalytic cracking

    HT Hydrogen transfer

    I.D. Inner diameter

    IR Infrared

    IZA International Zeolite Association

    LAS Lewis acid site

    LDI Laser desorption/ionization

    LPG Liquefied petroleum gas

    MALDI Matrix-assisted laser desorption/ionization

    MFI Mordenite Framework Inverted

    MIHT Methanol-induced hydrogen transfer

    MOGD Mobil olefins to gasoline and distillate process

    MS Mass spectrometry

    MTG Methanol to gasoline, methanol-to-gasoline

    MTH Methanol to hydrocarbons, methanol-to-hydrocarbons

    MTO Methanol to olefins, methanol-to-olefins

  • Abbreviations

    IV

    MTP Methanol to propene, methanol-to-propene

    NMR Nuclear magnetic resonance

    No. Number

    OCP Olefin cracking process

    OIHT Olefin-induced hydrogen transfer

    PFR Plug-flow reactor

    RO Reaction order

    SAPO Silicoaluminophosphate

    STF Syngas to fuels

    TGA Thermogravimetric analysis

    TIGAS Topse integrated gasoline synthesis

    TOF Turnover frequency, time of flight

    TOS Time on stream, time-on-stream

    TPD Temperature-programmed desorption

    TPO Temperature-programmed oxidation

    TPSR Temperature-programmed surface reaction

  • Abstract

    V

    Abstract

    High local methanol concentrations induce the formation of strongly adsorbed oxygen-

    containing species on Brnsted acid sites of H-ZSM-5 catalysts in methanol-to-olefins

    conversion. These oxygenates cause fast deactivation and are transformed with time on stream

    into aromatics remaining attached to Brnsted acid sites. The major pathway leading to

    aromatics and paraffins involves the hydrogen transfer reaction from methanol to olefins at

    Lewis acid sites, forming formaldehyde and paraffins. Furthermore, formaldehyde is key

    compound for first C-C bond and olefins formation, as well as in deactivation.

    Hohe lokale Methanolkonzentrationen fhren in der Methanol-zu-Olefin-Umsetzung zur

    Bildung stark adsorbierter sauerstoffhaltiger Spezies an Brnsted-Surezentren von H-ZSM-5

    Katalysatoren. Diese sauerstoffhaltigen Verbindungen bewirken eine schnelle Deaktivierung

    und werden mit der Zeit in Aromaten umgewandelt, die an Brnsted-Surezentren adsorbiert

    bleiben. Der wesentliche Pfad zu Aromaten und Paraffinen schliet die

    Hydrogentransferreaktion von Methanol zu Olefinen an Lewis-Surezentren ein, wodurch sich

    Formaldehyd und Paraffine bilden. Zudem ist Formaldehyd Schlsselkomponente fr die

    Bildung der ersten C-C-Bindung und von Olefinen, ebenso wie in der Deaktivierung.

  • Table of Contents

    VI

    Table of Contents

    Acknowledgements ...............................................................................................I

    Abbreviations .................................................................................................... III

    Abstract ............................................................................................................... V

    Table of Contents............................................................................................... VI

    1. Introduction ................................................................................................. 1

    1.1 General introduction ....................................................................................... 2

    1.2 Catalysts in methanol-to-hydrocarbons (MTH) conversion ....................... 3

    1.2.1 Zeolites ................................................................................................................. 4

    1.2.1.1 General background .................................................................................................. 4 1.2.1.2 Methods for adjusting the chemical properties of zeolites .................................... 6 1.2.1.3 Structure type Mordenite Framework Inverted (MFI) ......................................... 6

    1.3 Mechanistic aspects in MTH reaction ........................................................... 8

    1.3.1 Reaction network ................................................................................................ 8

    1.3.2 Generation of first hydrocarbon species from methanol/DME ..................... 9

    1.3.3 Autocatalysis and hydrocarbon pool mechanism .......................................... 10

    1.3.4 Paring and side-chain reaction concepts ........................................................ 13

    1.3.5 Dual cycle concept ............................................................................................ 15

    1.3.6 Recent insight into the autocatalysis and hydrocarbon pool co