14
Nonequilibrium current and relaxation dynamics of a charge-fluctuating quantum dot Volker Meden Institut f¨ ur Theorie der Statistischen Physik with Christoph Karrasch, Sabine Andergassen, Dirk Schuricht, Mikhail Pletyukhov, L´ aszl´ o Borda, Herbert Schoeller

Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Nonequilibrium current and relaxation dynamics

of a charge-fluctuating quantum dot

Volker Meden

Institut fur Theorie der Statistischen Physik

with Christoph Karrasch, Sabine Andergassen, Dirk Schuricht,

Mikhail Pletyukhov, Laszlo Borda, Herbert Schoeller

Page 2: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Finite-bias current through quantum dots—limiting cases

spin fluctuations: nonequilibrium physics of the Kondo model

charge fluctuations: the interacting resonant level model (lattice version)

1 2 3t t t t t t

εL L R,t’R

µL µR

u u,t’

.H = εn2 + uL

(

n1 −12

)(

n2 −12

)

+ uR

(

n2 −12

)(

n3 −12

)

− t′L(

d†1d2 + H.c.)

.−t′R(

d†2d3 + H.c.)

− t∑

α=L,R

∞∑

j=1

(

c†j,αcj+1,α + H.c.)

− t(

d†1c1,L + d†3c1,R + H.c.)

model parameters:

• level position: ε (ε = 0: p-h symmetry)

• local Coulomb interaction: uα (= Uα/ρα)

• local tunneling: t′α2 (= Γ∞α /(2πρα))

• band width: B = 4t

• bias voltage: µL/R = ±V/2

Page 3: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

In equilibrium with L-R symmetry: scaling limit

consider field theoretical limit with |ε|, |u|, t′� B: ρ(ω)→ ρ(0)• relation to x-ray edge problem (Noziere & de Dominicis ’69)

• single lead: mapping to Kondo model (Wiegmann & Finkel’shtein ’78)

• bosonization and RG methods (Schlottmann ’80-82, . . . )

• numerical RG (Borda et al. ’07; Kashcheyevs et al. ’09)

here: functional RG and real-time RG in frequency space, small U(Karrasch, Enss & VM ’06; Schoeller ‘09)

example: susceptibility χ = − d〈n2〉dε

ε=0→ power law

0 0.1 0.2U

0

0.1

0.2

0.3

α χ

NRGFRGRTRG-FS2U

χ−1 ∼ (Γ∞)1−αχ

αχ = 2U +O(U 2)

RG: Γ∞ acts as cutoff

define scale: TK = 2πχ

Page 4: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

In equilibrium with L-R symmetry: lattice model

use numerical DMRG and Kubo formula (Bohr & Schmitteckert ’07)

here: functional RG for small u (Karrasch, Pletyukhov, Borda & VM ’10)

0 0.04 0.08ε / t

0

0.5

1

G /

G0

u/t=0u/t=0.3u/t=1u/t=5

t’ / t = 0.1

symbols: DMRG

lines: FRG

Page 5: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Finite bias: steady state at particle-hole and L-R symmetry

scaling limit and V � TK: I ∼ V −αV , αV = 2U +O(U2)(Doyon ’07; Boulat, Saleur & Schmitteckert ’08)

does V only act as (trivial) IR cutoff? (Borda & Zawadowski ’10)

lattice model, td-DMRG: (Boulat, Saleur & Schmitteckert ’08)

hopping parameter: t′/t = 0.5

⇒ not in scaling limit

⇒ no power law!

questions:

• compare nonequ. FRG to td-DMRG

• confirm power law in scaling limit• go away from p-h and L-R symmetry

Page 6: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Steady-state FRG on the Keldysh contour: ε = 0, L-R symmetric(Gezzi, Pruschke & VM ’07; Jakobs, VM & Schoeller ’07; Jakobs, Pletyukhov & Schoeller ’10)

cutoff: auxiliary leads to sites 1,2,3; coupling Λ from ∞→ 0

flow equation (first order in u):

∂Λt′Λ = i

u

dω{

GΛ∂Λ[GΛ0 ]−1GΛ

}off-diag.

Keldysh, t′Λ=∞ = t′

Green functions: (Γlead(ω) = πρ(ω)t2)

[GΛret]−1 =

ω + iΓlead + iΛ −t′Λ 0−t′Λ ω + iΛ −t′Λ

0 −t′Λ ω + iΓlead + iΛ

, GΛadv = [GΛ

ret]†

GΛKeldysh = −2iGΛ

ret

iΛ[1− 2fC] + Γlead

[1− 2fL]0

[1− 2fR]

GΛadv

occupation functions:

fL/R(ω) = f(ω ∓ V/2) physical leads

fC(ω) = f(ω) auxiliary leads

current (at Λ = 0): I = 4∫

Γ2lead(ω) [fL(ω)− fR(ω)]

∣G13ret(ω)

2dω

Page 7: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Comparison to td-DMRG

0 1 2 3V / t

0

0.5

1

1.5

I / e

/h

u/t=0u/t=0.3u/t=-1u/t=-1

t’ / t = 0.5

negative diff.

cond.

agreement

FRG-DMRG

bla

bla

bla

bla

bla

bla

(Boulat, Saleur & Schmitteckert ’08; Karrasch, Borda, Pletyukhov & VM ’10)

Page 8: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

FRG and RTRG-FS in scaling limit: ε = 0, L-R symmetric

flow equation for renormalized rate ΓΛ:

∂ΛΓΛ = −2UΓΛ Λ + ΓΛ

(V/2)2 + (Λ + ΓΛ)2, ΓΛ=∞ = Γ∞

⇒ Γ ≈ Γ∞(

Λ0

max{V/2,Γ}

)2U

, Λ0 ∼ B

⇒ V and Γ act as IR cutoffs

observables:

• susceptibility at V = 0:

χ−1 = πΓ/2 = πTK/2 ∼ (Γ∞)1−αχ , αχ = 2U +O(U2)

• current for V � Γ = TK: (agrees with Doyon ’07)

I =2Γπ

arctanV

Γ∼ Γ ∼ V −αV , αV = 2U +O(U2)

no interesting nonequilibrium physics??

Page 9: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

FRG and RTRG-FS in scaling limit: general case

flow of level positions is of order U2 and can be neglected

flow equation for renormalized rates ΓΛα: (ΓΛ =

α ΓΛα)

∂ΛΓΛα = −2UαΓΛ

α

Λ + ΓΛ/2(µα − ε)2 + (Λ + ΓΛ/2)

, ΓΛ=∞α = Γ∞α

⇒ Γα ≈ Γ∞α

(

Λ0

max{|µα − ε|,Γ/2}

)2Uα

, Λ0 ∼ B

current (at Λ = 0):

I =1π

ΓLΓRΓ

[

arctanV − 2ε

Γ+ arctan

V + 2εΓ

]

introduce TαK: TαK = Γ∞α (2Λ0/TK)2Uα , TK =∑

α TαK ( 6= Γ)

introduce asymmetry parameter: c2 = TLK/TRK

Page 10: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Away from p-h symmetry, still L-R symmetric

10-2 10-1 11 101 102

ε /TK

0

0.2

0.4

0.6

0.8

1

G/G

0

V/TK =0

V/TK =0.6

V/TK =1

V/TK =2

V/TK =5

V/TK=50

L-R symmetric

U = 0.1/π

lines: RTRG-FS

symbols: FRG

⇒ maximum of G = dI/dV at ε = V/2: resonance!

Page 11: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

On-resonance current

11 102 104

V/TK

10-2

10-1

I/T K

-0.06

0

log. deriv.

ε=V/2

ε=0 L-R symmetric

U = 0.1/π

lines: RTRG-FS

symbols: FRG

current for V � TK: I(V ) ≈ TK2

(

TKΓ

)2UL(

TK2V

)2UR

c(

TKΓ

)2UL+1c

(

TK2V

)2UR

c1+c2

.

⇒ V is not a simple IR cutoff

power law only for

• V ≫ TK

• c� 1 ⇒ I ∼ V −2UR

(does not agree with Doyon ’07)

Page 12: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Left-right asymmetry, off-resonance

10-2 100 102 104 106

V/TK

0

0.1

0.2

(1+c

2 )2I/

4c2 T

K

γ = 0.75, c2=21.4

γ = 0.5, c2=7.9

γ = 0.25, c2=2.8

γ = 0, c2=1

L-R asymmetric

UL/R = (1± γ) 0.1/π

ε = 0

lines: RTRG-FS

current for V � TK, V � ε: I(V ) ≈ TK(

TKV

)2UL(

TKV

)2UR

c(

TKV

)2UL+1c

(

TKV

)2UR

c1+c2

.

⇒ V is not a simple IR cutoff for generic cases

power law only for• UL = UR ⇒ I ∼ V −2U

• UL 6= UR, c� 1 ⇒ I ∼ V −2UL

• UL 6= UR, c� 1 ⇒ I ∼ V −2UR

Page 13: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Relaxation dynamics into the steady state: RTRG-FS

long-time behavior, off-resonance (ε, V, |ε− V/2| � TK, 1/t)

〈n2(t)〉 ≈(

1− e−Γ1t)

〈n2〉 −1

2πe−Γ2t (TKt)

1+2U

×[

sin(

(ε+V2 )t)

(ε+V2 )2 t2

−πU

4

cos(

(ε+V2 )t)

(ε+V2 )2 t2

+ (V →−V )

]

0

0.2

0.4

<n2(t)

>

0 1 2 3 4 5TK t

0

0.2

0.4

I(t)/

T K

V/TK =10V/TK =20V/TK =50V/TK =200

0 1 20

0.04

L-R symmetric

〈n2(t = 0)〉 = 0

U = 0.1/π, ε = 10TK

Γ1 ≈ Γ (charge relaxation)

Γ2 ≈ Γ/2 (level broadening)

oscillation freqs. ε± V/2

⇒ exponential and power-law decay, two decay rates

Page 14: Volker Meden Institut f¨ur Theorie der Statistischen Physikhome.itp.ac.ru/~qd2010/Talks/Meden_Talk.pdf · Volker Meden Institut f¨ur Theorie der Statistischen Physik with Christoph

Summary

• finite bias IRLM contains interesting nonequilibrium physics . . .

• which doesn’t show up for left-right symmetry and off-resonance

• interesting relaxation dynamics

• FRG and RTRG-FS are suitable tools to study the nonequ. IRLM

• td-DMRG results (not in scaling limit) confirmed

Refs.:

• Karrasch, Andergassen, Pletyukhov, Schuricht, Borda, VM & Schoeller, EPL90, 30003 (2010)

• Karrasch, Pletyukhov, Borda & VM, PRB 81, 125122 (2010)