090430 Organische Substanz · – hydrophobic interactions with clay surface – long-term...

Preview:

Citation preview

1

Fragen

• Was versteht man unter GPP, NPP, NEP, NBP und NEE?• Wie sieht ein Jahresgang für GPP, Reco und NEE aus?

Welche Unterschiede bestehen zwischen einem Buchenwald und einem Kartoffelacker?

• Welche Faktoren bestimmen die Kohlenstoffbilanz vonÖkosystemen?

• Wie ist organische Substanz in Böden definiert?• Welche Pflanzenteile werden schnell, welche langsam

abgebaut? Warum?

2

Litter decomposition – Three phases

Cotrufo et al., in Schulze et al., 2002, Fig. 3.3.4

3

Soil organisms

Soil organisms

Bodenflora< 0,02 mm

Megafauna> 20 mm

Makrofauna2-20 mm

Mesofauna0,2-2 mm

Mikrofauna0,02-0,2 mm

5

Decomposers in the soil Organismus Regenwurm Fadenwürmer Milben Bakterien Pilze

Größe 9-30 cm 0.3-1.5 mm 0.2-0.3 mm 0.0001- 0.0005 mm

Hyphen: mehrere Meter

Lebensspanne 3-6 Jahre ? 6-12 Monate Teilung alle 20 min

unbestimmt

Population 300/m² 30 Mio./m² 600000/m² 1x1015/m² 20000km/m²

Aktivität Bioturbation, Fragmentierung, Aggregatbildung, Durchmischung von organischer Substanz und Mineralpartikeln

fressen Mikrofauna, verteilen Bakterien, Mineralisation

Fragmentierung, Verbesserung der Bodenstruktur

Mineralisation, chemischer Umbau

Mineralisation, chemischer Umbau

6

Decomposition under anaerobic conditions

1. Fermentation / Gärung• Der Energiegewinnung dienende Stoffwechselprozesse in derem Zuge

organische Verbindungen oxidiert werden

• Beispiel: Alkoholische Gärung, Milchsäuregärung

• Im Gegensatz zur Atmung bei der Zucker vollständig zu CO2 und H2O

mineralisiert werden, enthalten die Abbauprodukte der Gärung noch

Energie (z.B. Ethanol, Acetat) und können weiter abgebaut werden

• Endprodukte der Gärung sind Ausgangssubstrate für die

Methanogenese im Zuge der anaeroben Nahrungskette (z.B. aus

Acetat oder H2 und CO2)

Fritsche 1998

7

Decomposition under anaerobic conditions

2. Anaerobe Atmung• Effektivere Nutzung der im Substrat enthaltenen Energie als bei der

Gärung

• Als Wasserstoffakzeptoren dienen statt O2 beispielsweise

NO3- (Nitratatmung) → N2 / N2O

SO42- (Sulftatmung) → H2S

CO2 (Carbonatatmung) → CH4 (Methanogenese)

Insgesamt: weniger biologische Aktivität, langsamerer

Abbau, selektive Anreicherung bestimmter Substanzen wie

Lignin, Bildung von organischen Säuren, Alkoholen sowie

den Gasen CH4, H2S und N2O

8

Fragen

• Wie beeinflusst die Makro- und Mesofauna die Geschwindigkeit des Abbaus von organischer Substanz?

9

Stabilization of soil organic matter

Steppe Wald

10

Soil carbon content

The organic matter content of soils

depends on:

• chemical recalcitance of organic matter

• spatial inaccessibility

• interactions with surfaces and metal ions

• Recycling of C by microorganisms

• the amount and quality of litter input

• environment factors favouring orreducing microbial activity

• other factors affecting C decomposition

11

StabilizationStabilization and and mobilisationmobilisation of of SoilSoil organicorganic mattermatter

chulze & Freibauer 2005

Streu, Tote Organismen

CO2CH4

Stabilisierung von C Mobilisierung von COrganischer C

Aktiv:leicht abbaubar

Passiv:schwer abbaubarhydrophobgeschützt

•Schwere Abbaubarkeit•Einschluss in Aggregaten•Assoziation mit Tonmineralen•Komplexierung mit Metallen•Recycling durch MOs

•Zerstörung von Aggregaten•Streuabbau•Mineralisation•Veränderung der Umwelt-bedingungen durch Mensch und Klima

Bedingungen, die C-Anreicherung begünstigen•geringe biologische Aktivität•kalte, saure Böden•hydrologische Extreme•hoher Tongehalt

Auswaschung von•partikulärem organischem C•gelöstem organischem CC-Anreicherung:

Input > OutputStabilisierung > Mobilisierung

CO2, CH4

12

Chemical recalcitrance

rapid decomposition slower decomposition

Recalcitrance: some organic soil components are less decomposable due to their chemical structure

• monomersglucose, amino acids

• complex structures includinghydolysable bondings(ester, glycoside, peptide)proteins, cellulose…

• polymershydrocarbons (cellulose…)

• complex structures witharomatic rings, long chainswith C-C-bondings (alkanes)lignin, fats, waxes

13

Chemical recalcitrance

Humic substance ?C H O N

Former theory: humic substances generate from partly decomposedplant material e.g. by spontaneouspolycondensation, but there is fewevidence for this reaction

→ maybe supramolecularassociations (hydorgen bonding, hydrophobic interactions) rather than macromolecules (Piccolo 2002)

14

Black carbonCharred organic matter

turnover time in soils : 500-10 000 y(estimate, faster in the presence ofeasily available energy sources)

Chemical recalcitrance

Schmidt et al. 2000

All known types and forms of carbon in the soil are potentially degradable by microbes!

15

Spatial inaccessibility of organic matter for decomposers

Processes that reduce OM accessibility include:

• Occlusion of organic matter by aggregation

• Inclusion within phyllosilicates

• Hydrophobicity of OM

16

C stabilization by interactions with clay minerals

Haider 1996

17

Stabilization due to interactions with mineral surfaces

• Strong organo-mineralbondings:– ion bondings– hydrogen bridges– dipol bondings

(via –O–)– hydrophobic interactions with

clay surface– long-term stabilization

P polysaccharide fragmentsTM clay mineral

P

Tonmineral

M+

18

Organo mineral complexes

Possible reasons for the stability of OM attached to surfaces:• cannot be incorporated into microorganisms as long as it is bound• conformational change of adsorbed organic molecules

makes them unavailable for enzymes• enzymes themselves get sorbed and thus immobilized at the surface of

clays

Important minerals for OM sorption in the soil• clay minerals with a high surface area• especially active Al and Fe-oxides and hydroxides• Allophane

19

Podzol Bs Ferralsol A Phaeozem A Andosol A Vertisol A Cambisol Bw

OC

[g

kg-1

]

0

50

100

150

200

OM <1.6 Mg m-3

Mineral-bonded OM

Clay minerals + gibbsiteGoethite / haematiteFerrihydriteNon-crystalline Al phases Allophane

Estimated sorption capacity

OM stored in soil total clay

610 g kg–1

170 g kg–1

230 g kg–1680 g kg–1

180 g kg–1

estimation based on data from various sources

70 g kg–1

adopted from Klaus Kaiser (2005)

Organo mineral complexes

20Jones DL & Edwards AC (1998) Soil Biol. Biochem. 30, 1895–1998

Incubation of dissolved 14C-citrate in presence of mineral phases

61%

83%

70%

99%

sorption[% initial C]

decomposition[% sorbed C]

~65%

~25%

12%

1%

control

illite

kaolinite

subsoil clay

Fe(OH)3

Organo mineral complexes

~76%

21

C Stabilization due to interactions with mineral surfaces

Schöning 2005

< 40 y old

730 y old

In particle size fractions, the oldest carbon is found in the clay fraction.

22

Guggenberger & Kaiser 2003

Stabilization due to interactions with mineral surfaces?

23

Stabilization of organic matter in soil aggregates

Baldock 2002

24

Aggregate hierarchy

• Macroaggregates: stabilized by polysaccharides, roots and hyphae

• Microaggregates: stabilized by persistent organic binding agents and sesquioxides.

• Microaggregates can form in macroaggregates• Only macroaggregates are affected by land

management.

Six et al., 2004

Primary Particles(<20 µm)

Microaggregates(20-250 µm)

Macroaggregates(>250 µm, often >2 mm)

25

Protection of organic matter in aggregates

Reasons for organic matter protection inside aggregates:

• reduced access for microbes (and also their predators)

• reduced diffusion of enzymes into aggregates

• restricted aerobic decomposition due to reduced diffusionof oxygen into aggregates

→ Pore size distribution is important

26

Life cycle of an aggregate in the soil

27

Earthworms enhance aggregation

0

10

20

30

40

50

60

>2000 250–2000 53–250 <53

Agg

rega

te d

ryw

eigh

t[%

]

pure soilsoil plus residuesoil plus residue plus earthworms

Bossuyt, H. et al. 2004

28

Aggregate formation in soils

The multiplicity of interactions and feedbacks betweenthe five major factors influencing aggregate formationand stabilization.

J. Six et al. 2004

29

C mineralization in soil aggregates

Haider 1996

30

Carbon retention by recycling within soil microorganisms

Biosphere

Atmosphere

primary biomass(litter)

secondarybiomass

(microorganisms)

degradation

degradation

degradation

SOMDOC

Pedosphere

31

Relevance of individual storage mechanisms and time scales

>100Ecosystems with fireCharcoal

>100All soils?Humic polymers

1-10 yForest floor, A-horizonsPlant litter and microbial products

Time scaleRelevant in soil types and horizons

1. Recalcitrance

Adopted from v. Lützow et al. 2006

32

> 100topsoilIncapsulation in organicmacromolecules

>100Acid soils?Intercalation within phyllosilicates

10-100Loamy and clayey soilsMicroaggregates

1-10 yLoamy and clayey soilsMacroaggregates

Time scaleRelevant in soil types and horizons

2. Spatial inaccessibility

Adopted from v. Lützow et al. 2006

Relevance of individual storage mechanisms and time scales

33

>100Acid or calcerous soils (Ca2+ orFe3+) or soils containing heavymetals

Interactions between metal ions and organic molecules (complexation)

>100Acid soils with oxidesCa2+ or Fe3+

probably all soils

Ligand exchangepolyvalent cation bridgesweak interactions

Time scaleRelevant in soil types and horizons

3. Interaction with surfaces and metal ions

Adopted from v. Lützow et al. 2006

Relevance of individual storage mechanisms and time scales

34

Fragen

1. Woraus besteht organische Substanz im Boden?

2. Welche Organismengruppen haben welche Funktion im Abbauprozess?

3. Wie unterscheiden sich aerober und anaerober Abbau?

4. Wie wird organische Substanz im Boden stabilisiert?- kurzfristig- mittelfristig- langfristig

35

Nitrogen Cyclingin Terrestrial Ecosystems

36

Contents

• Basics– pH– Redox reactions

• Nitrogen Forms• Nitrogen Stocks

– organisms– chemical forms

• Nitrogen Turnover– N2 fixation– N-nutrition of plants– N turnover processes in soils

• Plant N metabolism & N fertilization

37

Basics: pH

• Definition:– pH = -lg [H+]

– pH < 7 saure Lösung

– pH = 7 neutrale Lösung

– pH > 7 alkalische / basische Lösung

• z.B. Auto-Dissoziation von Wasser

Protonendonator / Protonenakzeptor

2 H2O → H3O+ + OH-

• Um wieviel ist eine Lösung mit pH = 4 saurer als eine

mit pH 6?

38

Redox-Reaktionen

• Definition: Redoxreaktion (Reduktions-Oxidations-Reaktion):chemische Reaktion, bei der ein Reaktionspartner Elektronen aufden anderen überträgt.Elektronenabgabe = OxidationElektronenaufnahme = Reduktion

• Bei einer Redoxreaktion reagiert ein Stoff A, der Elektronen abgibt(Elektronendonator, Reduktionsmittel) mit mindestens einem StoffB, der diese Elektronen aufnimmt (Elektronenakzeptor,Oxidationsmittel):

Oxidation: Stoff A gibt als Reduktionsmittel ein Elektron ab.A → A+ + e-

Reduktion: Das Elektron wird vom Oxidationsmittel B aufgenommen.B + e- → B-

Redoxreaktion: Stoff A gibt ein Elektron an Stoff B ab.A + B → A+ + B-

Wik

iped

ia

39

N Forms

• Inert– N2 not available to organisms –

only N2 fixation– N2O available to some microbes

under anaerobic conditions

• Reactive– organic N forms, depending on bondings– gases: NH3, NO, NO2 (NOx), NOy

– salt ions: NH4+, NO3

-

40

• Plants– amino acids, amino sugars, nucleins: -NH2

• Soil– >90% organic (cf. plants, microbes)– 10% mineral:

• NH4+ (exchangeable, fixed)

• NO3-

– Variable dominance of N forms depending onpH, climate, organisms

N Forms in the Biosphere

dominant mineral formvery rapid fluxes!

R-C-CNH2

OOH O

HH

H

H

HOHOH

OH

NH2

CH2OH

41

N stocks in soils

42

Frage

• In welchen Formen liegt mineralischer Stickstoff in den folgenden Ökosystemen (Böden) vor:

– Waldböden– Moore– Ackerböden– Savannen

43

Global N stocks and fluxes [Tg N]

3,900,000,000

3,500

95,000 – 140,000

N-Fixierungdurch Blitze

<3 – 5 (NOx)

20 (NOx)80 (NH3,fertilizer)

MenschlicheAktivitäten

10040

Biologische N-Fixierung

<200 Denitrifikation(N2, N2O)

1200

N-Eintrag in Biosphäre40% natürlich60% anthropogen

36 Flüsse30 15

110

Biologische N-Fixierung

11Grundwasser

Schlesinger 199710

Sedimentation

8000

44

Nitrogen Dynamicsin Terrestrial Ecosystems

45

Biological N fixation

• N2-fixing bacteria– free living cyanobacteria

– Symbionts with fungi (lychens)

– Symbionts with higher plants (legumes, Alnus) – requires energy and electrons from organic matter

Fe-Mo-Enzym, 960 kJ mol-1 NN2 + 18H+ + 8e- + 16ATP

2NH4+ + H2 + 16ADP + 16Pi

• Supply of plants with amino acids

46

Typical biological N fixation rates

• non-symbiotic N fixation: <50 kg N/ha/year• symbiotic N fixation: 75-300 kg N/ha/year

lichens, blue- kg N/ha/yrgreen algae 10-100

temperatelegumes 100-200

bacteria, C4-plants,tropical legumes 100-200

blue-greenalgae 30-120

temperatelegumes 100-200

lichens, blue-green algae 10-100

47

N dynamics in ecosystems

Nitrat, Ammonium

Konkurrenz um Substrat

48

N mineralisation

49

N mineralisation

• 2. Nitrification (NH4+ NO3

-)– Inhibited in acidic and cold conditions– Aerobic process

50

Denitrification

• NO3- N2O N2

• Facultative anaerobic process• Inhibited by oxygen

51Davidson et al. 2000

Nitrification and denitrification

52

Frage

• Warum wird Nitrat leichter als Ammonium aus Böden ausgewaschen?

Recommended